VARIABLE CALDERÓN-HARDY SPACES ON THE HEISENBERG GROUP

PABLO ROCHA

ABSTRACT. Let \mathbb{H}^n be the Heisenberg group and Q=2n+2. For $1< q<\infty,\ \gamma>0$ and an exponent function $p(\cdot)$ on \mathbb{H}^n , which satisfy log-Hölder conditions, with $0< p_- \le p_+ <\infty$, we introduce the variable Calderón–Hardy spaces $\mathcal{H}^{p(\cdot)}_{q,\gamma}(\mathbb{H}^n)$, and show for every $f\in H^{p(\cdot)}(\mathbb{H}^n)$ that the equation $\mathcal{L}F=f$ has a unique solution F in $\mathcal{H}^{p(\cdot)}_{q,2}(\mathbb{H}^n)$, where \mathcal{L} is the sublaplacian on \mathbb{H}^n , $1< q< \frac{n+1}{n}$, and $Q(2+\frac{Q}{q})^{-1}<\min\{p_-,1\}$.

1. Introduction

The Heisenberg group \mathbb{H}^n can be identified with $\mathbb{R}^{2n} \times \mathbb{R}$ whose group law (noncommutative) is given by

$$(x,t)\cdot(y,s) = (x+y,t+s+x^tJy), \qquad (1)$$

where J is the $2n \times 2n$ skew-symmetric matrix given by

$$J = 2 \left(\begin{array}{cc} 0 & -I_n \\ I_n & 0 \end{array} \right)$$

with I_n denoting the $n \times n$ identity matrix.

The dilation group on \mathbb{H}^n is defined by

$$r \cdot (x,t) = (rx, r^2t), \quad r > 0.$$

With this structure we have that e = (0,0) is the neutral element, $(x,t)^{-1} = (-x,-t)$ is the inverse of (x,t), and $r \cdot ((x,t) \cdot (y,s)) = (r \cdot (x,y)) \cdot (r \cdot (y,s))$.

The Koranyi norm on \mathbb{H}^n is the function $\rho: \mathbb{H}^n \to [0, \infty)$ defined by

$$\rho(x,t) = (|x|^4 + t^2)^{1/4}, \ (x,t) \in \mathbb{H}^n,$$
 (2)

where $|\cdot|$ is the usual Euclidean norm on \mathbb{R}^{2n} . Moreover, ρ is continuous on \mathbb{H}^n and is smooth on $\mathbb{H}^n \setminus \{e\}$.

The ρ -ball centered at $z_0 \in \mathbb{H}^n$ with radius $\delta > 0$ is defined by

$$B(z_0, \delta) := \{ w \in \mathbb{H}^n : \rho(z_0^{-1} \cdot w) < \delta \}.$$

The topology in \mathbb{H}^n induced by the ρ -balls coincides with the Euclidean topology of $\mathbb{R}^{2n} \times \mathbb{R} \equiv \mathbb{R}^{2n+1}$ (see [5, Proposition 3.1.37]). So, the borelian sets of \mathbb{H}^n are

Submitted: May 23, 2025

Accepted: November 5, 2025

²⁰²⁰ Mathematics Subject Classification. 42B25, 42B30, 42B35, 43A80.

Key words and phrases. variable Calderón–Hardy spaces, variable Hardy spaces, atomic decomposition, Heisenberg group, sublaplacian.

PABLO ROCHA

identified with those of \mathbb{R}^{2n+1} . The Haar measure in \mathbb{H}^n is the Lebesgue measure of \mathbb{R}^{2n+1} , thus $L^p(\mathbb{H}^n) \equiv L^p(\mathbb{R}^{2n+1})$, for every $0 . Moreover, for <math>f \in L^1(\mathbb{H}^n)$ and for r > 0 fixed, we have

$$\int_{\mathbb{H}^n} f(r \cdot z) \, dz = r^{-Q} \int_{\mathbb{H}^n} f(z) \, dz,\tag{3}$$

where Q = 2n + 2. The number 2n + 2 is known as the homogeneous dimension of \mathbb{H}^n (we observe that the topological dimension of \mathbb{H}^n is 2n + 1).

If f and g are measurable functions on \mathbb{H}^n , their convolution f * g is defined by

$$(f*g)(z) := \int_{\mathbb{H}^n} f(w)g(w^{-1} \cdot z) dw,$$

when the integral is finite.

A measurable function $p(\cdot): \mathbb{H}^n \to (0, \infty)$ is called an exponent on \mathbb{H}^n , we adopt the standard notation in variable exponents. Given a measurable set $E \subset \mathbb{H}^n$, let

$$p_{-}(E) = \operatorname*{ess\,inf}_{z \in E} p(z), \quad \operatorname*{and} \quad p_{+}(E) = \operatorname*{ess\,sup}_{z \in E} p(z).$$

When $E = \mathbb{H}^n$, we will simply write $p_- := p_-(\mathbb{H}^n)$ and $p_+ := p_+(\mathbb{H})$. Throughout this paper, we will assume that $0 < p_- \le p_+ < \infty$. We also define $p = \min\{p_-, 1\}$.

Given an exponent $p(\cdot): \mathbb{H}^n \to (0, \infty)$, on the set of the all measurable function f, we define the modular function $\kappa_{p(\cdot)}$ by

$$\kappa_{p(\cdot)}(f) = \int_{\mathbb{H}^n} |f(z)|^{p(z)} dz. \tag{4}$$

By $L^{p(\cdot)}(\mathbb{H}^n)$ we denote the space of all measurable functions f on \mathbb{H}^n such that for some $\lambda > 0$,

$$\kappa_{p(\cdot)}(f/\lambda) < \infty.$$

We set

2

$$||f||_{p(\cdot)} = \inf \left\{ \lambda > 0 : \kappa_{p(\cdot)}(f/\lambda) \le 1 \right\}.$$

We see that $(L^{p(\cdot)}(\mathbb{H}^n), \|.\|_{p(\cdot)})$ is a quasi normed space. These spaces are referred as the Lebesgue spaces with variable exponents or variable Lebesgue spaces (see [1]).

In [4], for $0 , G. Folland and E. M. Stein defined the Hardy Spaces <math>H^p(\mathbb{H}^n)$ on the Heisenberg group with the norm given by

$$||f||_{H^p(\mathbb{H}^n)} = \left\| \sup_{t>0} \sup_{\phi \in \mathcal{F}_N} |f * \phi_t| \right\|_p,$$

where $\phi_t(z) = t^{-Q}\phi(t^{-1} \cdot z)$ with t > 0 and \mathcal{F}_N is a suitable family of smooth functions. In the paper [2], J. Fang and J. Zhao defined the variable Hardy spaces on the Heisenberg group $H^{p(\cdot)}(\mathbb{H}^n)$, replacing L^p by $L^{p(\cdot)}$ in the above norm and they investigate their several properties.

Let $L_{loc}^q(\mathbb{H}^n)$, $1 < q < \infty$, be the space of all measurable functions g on \mathbb{H}^n that belong locally to L^q for compact sets of \mathbb{H}^n . We endowed $L_{loc}^q(\mathbb{H}^n)$ with the

Submitted: May 23, 2025 Accepted: November 5, 2025

This peer-reviewed unedited article has been accepted for publication. The final copyedited version may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

VARIABLE CALDERÓN-HARDY SPACES ON THE HEISENBERG GROUP

topology generated by the seminorms

$$|g|_{q,B} = \left(|B|^{-1} \int_{B} |g(w)|^{q} dw\right)^{1/q},$$

where B is a ρ -ball in \mathbb{H}^n and |B| denotes its Haar measure. For $g \in L^q_{loc}(\mathbb{H}^n)$, we define a maximal function $\eta_{q,\gamma}(g;z)$ as

$$\eta_{q,\gamma}(g;z) = \sup_{r>0} r^{-\gamma} |g|_{q,B(z,r)},$$
(5)

where γ is a positive real number and B(z,r) is the ρ -ball centered at z with radius r.

Let k a non negative integer and \mathcal{P}_k the subspace of $L^q_{loc}(\mathbb{H}^n)$ formed by all the polynomials of homogeneous degree at most k. We denote by E^q_k the quotient space of $L^q_{loc}(\mathbb{H}^n)$ by \mathcal{P}_k . If $G \in E^q_k$, we define the seminorm $\|G\|_{q,B} = \inf\{|g|_{q,B}: g \in G\}$. The family of all these seminorms induces on E^q_k the quotient topology.

Given a positive real number γ , we can write $\gamma = k + t$, where k is a non negative integer and $0 < t \le 1$. This decomposition is unique.

For $G \in E_k^q$, we define a maximal function $N_{q,\gamma}(G;z)$ as

$$N_{q,\gamma}(G;z) = \inf \{ \eta_{q,\gamma}(g;z) : g \in G \},$$
 (6)

such maximal function is lower semicontinuous, see [12, Lemma 9].

Definition 1.1. Let $p(\cdot): \mathbb{H}^n \to (0, \infty)$ be an exponent such that $0 < p_- \le p_+ < \infty$, we say that an element $G \in E_k^q$ belongs to the variable Calderón–Hardy space on the Heisenberg group $\mathcal{H}_{q,\gamma}^{p(\cdot)}(\mathbb{H}^n)$ if the maximal function $N_{q,\gamma}(G;\cdot) \in L^{p(\cdot)}(\mathbb{H}^n)$. The "norm" of G in $\mathcal{H}_{q,\gamma}^{p(\cdot)}(\mathbb{H}^n)$ is defined as $\|G\|_{\mathcal{H}_{q,\gamma}^{p(\cdot)}(\mathbb{H}^n)} = \|N_{q,\gamma}(G;\cdot)\|_{p(\cdot)}$.

The Calderón–Hardy spaces were defined in the setting of the classical Lebesgue spaces by A. B. Gatto, J. G. Jiménez and C. Segovia in [6], they characterize the solution of the equation $\Delta^m F = f$, $m \in \mathbb{N}$, for $f \in H^p(\mathbb{R}^n)$. Moreover, they proved that the iterated Laplace operator Δ^m is a bijective mapping from the Calderón–Hardy spaces onto $H^p(\mathbb{R}^n)$.

The equation $\Delta^m F = f$, $m \in \mathbb{N}$, for $f \in H^{p(\cdot)}(\mathbb{R}^n)$ and $f \in H^p(\mathbb{R}^n, w)$, was studied by the author in [9] and [11] respectively, obtaining analogous results to those of Gatto, Jiménez and Segovia.

Lately, Z. Liu, Z. He and H. Mo in [7] extended the definition of Calderón–Hardy spaces to Orlicz setting. These new Orlicz Calderón–Hardy spaces can cover classical Calderón–Hardy spaces in [6]. As an application, they solved the equation $\Delta^m F = f$ when $f \in H^{\Phi}(\mathbb{R}^n)$, where $H^{\Phi}(\mathbb{R}^n)$ are the Orlicz–Hardy spaces defined in [8].

Recently, the author in [12] studied an analogous problem on the Heisenberg group. More precisely, we proved that the equation $\mathcal{L}F = f$ for $f \in H^p(\mathbb{H}^n)$ has a unique solution F in $\mathcal{H}^p_{q,2}(\mathbb{H}^n)$, where \mathcal{L} is the sublaplacian on \mathbb{H}^n , $1 < q < \frac{n+1}{n}$ and $Q(2 + \frac{Q}{q})^{-1} .$

Submitted: May 23, 2025 Accepted: November 5, 2025

This peer-reviewed unedited article has been accepted for publication. The final copyedited version may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

PABLO ROCHA

The purpose of this work is to extend the results obtained by the author in [12] to the variable setting. For them, we must take into account certain aspects inherent to the variable spaces.

We say that an exponent function $p(\cdot): \mathbb{H}^n \to (0, \infty)$ such that $0 < p_- \le p_+ < \infty$ belongs to $\mathcal{P}^{\log}(\mathbb{H}^n)$, if there exist positive constants C, C_{∞} and p_{∞} such that $p(\cdot)$ satisfies the local log-Hölder continuity condition, i.e.:

$$|p(z) - p(w)| \le \frac{C}{-\log(\rho(z^{-1} \cdot w))}$$
 for $\rho(z^{-1} \cdot w) \le \frac{1}{2}$,

and is log-Hölder continuous at infinity, i.e.:

$$|p(z) - p_{\infty}| \le \frac{C_{\infty}}{\log(e + \rho(z))}$$
 for all $z \in \mathbb{H}^n$.

Here ρ is the *Koranyi norm* given by (2).

Let $G \in \mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$, then $N_{q,2}(G;z_0) < \infty$ a.e. $z_0 \in \mathbb{H}^n$. By Lemma 2.4-(i) below, there exists $g \in G$ such that $N_{q,2}(G;z_0) = \eta_{q,2}(g;z_0)$. Now, from Proposition 2.6 below it follows that $g \in \mathcal{S}'(\mathbb{H}^n)$. So the sublaplacian of g, $\mathcal{L}g$, is well defined in sense of distributions. On the other hand, since any two representatives of G differ in a polynomial of homogeneous degree at most 1, we have that $\mathcal{L}g$ is independent of the representative $g \in G$ chosen. Therefore, for $G \in E_1^q$, we shall define $\mathcal{L}G$ as the distribution $\mathcal{L}g$, where g is any representative of G.

Our main results are the following.

Theorem 3.1. Let $p(\cdot)$ be an exponent that belongs to $\mathcal{P}^{\log}(\mathbb{H}^n)$ and $1 < q < \frac{n+1}{n}$. If $\underline{p} > Q(2+Q/q)^{-1}$, then the sublaplacian \mathcal{L} is a bijective mapping from $\mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$ onto $H^{p(\cdot)}(\mathbb{H}^n)$. Moreover, there exist two positive constants c_1 and c_2 such that

$$c_1 \|G\|_{\mathcal{H}_{a,2}^{p(\cdot)}(\mathbb{H}^n)} \le \|\mathcal{L}G\|_{H^{p(\cdot)}(\mathbb{H}^n)} \le c_2 \|G\|_{\mathcal{H}_{a,2}^{p(\cdot)}(\mathbb{H}^n)}$$

hold for all $G \in \mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$.

The case $p_+ \leq Q(2 + Q/q)^{-1}$ is trivial.

Theorem 3.2 If $p(\cdot)$ is an exponent function on \mathbb{H}^n such that $p_+ \leq Q(2+Q/q)^{-1}$, then $\mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n) = \{0\}$.

In Section 2 we state the basics of the Heisenberg group and variable Lebesgue spaces together with some auxiliary lemmas and propositions related to variable Calderón–Hardy and variable Hardy spaces on the Heisenberg group. We also recall the definition and atomic decomposition of variable Hardy spaces on \mathbb{H}^n given in [2]. Finally, in Section 3 we prove our main results.

Notation. The symbol $A \lesssim B$ stands for the inequality $A \leq cB$ for some constant c, and $A \sim B$ stands for $B \lesssim A \lesssim B$. We denote by $B(z_0, \delta)$ the ρ -ball centered at $z_0 \in \mathbb{H}^n$ with radius δ . Given $\beta > 0$ and a ρ -ball $B = B(z_0, \delta)$, we set

Submitted: May 23, 2025 Accepted: November 5, 2025

This peer-reviewed unedited article has been accepted for publication. The final copyedited version may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

VARIABLE CALDERÓN-HARDY SPACES ON THE HEISENBERG GROUP

 $\beta B = B(z_0, \beta \delta)$. For a measurable subset $E \subseteq \mathbb{H}^n$ we denote by |E| and χ_E the Haar measure of E and the characteristic function of E respectively.

Throughout this paper, C will denote a positive constant, not necessarily the same at each occurrence.

2. Preliminaries

2.1. Basics on Heisenberg group. Let \mathbb{H}^n be the Heisenberg group with group law given by (1). If $B(z_0, \delta)$ is a ρ -ball of \mathbb{H}^n , then its Haar measure is

$$|B(z_0, \delta)| = c\delta^Q,$$

where c = |B(e, 1)| and Q = 2n + 2. Given $\lambda > 0$, we put $\lambda B = \lambda B(z_0, \delta) = B(z_0, \lambda \delta)$. So $|\lambda B| = \lambda^Q |B|$.

The Hardy–Littlewood maximal operator M on the Heisenberg group is defined by

$$Mf(z) = \sup_{B\ni z} |B|^{-1} \int_{B} |f(w)| dw,$$

where f is a locally integrable function on \mathbb{H}^n and the supremum is taken over all the ρ -balls B containing z.

For every $i=1,2,...,2n+1,\ X_i$ denotes the left invariant vector field on \mathbb{H}^n given by

$$X_i = \frac{\partial}{\partial x_i} + 2x_{i+n}\frac{\partial}{\partial t}, \quad i = 1, 2, ..., n;$$

$$X_{i+n} = \frac{\partial}{\partial x_{i+n}} - 2x_i \frac{\partial}{\partial t}, \ i = 1, 2, ..., n;$$

and

$$X_{2n+1} = \frac{\partial}{\partial t}.$$

The sublaplacian on \mathbb{H}^n , denoted by \mathcal{L} , is the counterpart of the Laplacian Δ on \mathbb{R}^n . The sublaplacian \mathcal{L} is defined by

$$\mathcal{L} = -\sum_{i=1}^{2n} X_i^2,$$

where X_i , i=1,...,2n, are the left invariant vector fields defined above. Given a multi-index $I=(i_1,i_2,...,i_{2n},i_{2n+1})\in(\mathbb{N}\cup\{0\})^{2n+1}$, we set

$$|I| = i_1 + i_2 + \dots + i_{2n} + i_{2n+1}, \quad d(I) = i_1 + i_2 + \dots + i_{2n} + 2i_{2n+1}.$$

The amount |I| is called the length of I and d(I) the homogeneous degree of I. We adopt the following multi-index notation for higher order derivatives and for monomials on \mathbb{H}^n . If $I=(i_1,i_2,...,i_{2n+1})$ is a multi-index, $X=\{X_i\}_{i=1}^{2n+1}$, and $z=(x,t)=(x_1,...,x_{2n},t)\in\mathbb{H}^n$, we put

$$X^I := X_1^{i_1} X_2^{i_2} \cdots X_{2n+1}^{i_{2n+1}}, \quad \text{and} \quad z^I := x_1^{i_1} \cdots x_{2n}^{i_{2n}} \cdot t^{i_{2n+1}}.$$

Submitted: May 23, 2025 Accepted: November 5, 2025

This peer-reviewed unedited article has been accepted for publication. The final copyedited version may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

PABLO ROCHA

Every polynomial p on \mathbb{H}^n can be written as a unique finite linear combination of the monomials z^I , that is

$$p(z) = \sum_{I \in \mathbb{N}_0^n} c_I z^I, \tag{7}$$

where all but finitely many of the coefficients $c_I \in \mathbb{C}$ vanish. The homogeneous degree of a polynomial p written as (7) is $\max\{d(I): I \in \mathbb{N}_0^n \text{ with } c_I \neq 0\}$. Let $k \in$ $\mathbb{N} \cup \{0\}$, we remember that \mathcal{P}_k denotes the subspace formed by all the polynomials of homogeneous degree at most k. So, every $p \in \mathcal{P}_k$ can be written as p(z) = $\sum_{d(I) < k} c_I z^I$, with $c_I \in \mathbb{C}$.

The Schwartz space $\mathcal{S}(\mathbb{H}^n)$ is defined by

$$\mathcal{S}(\mathbb{H}^n) = \left\{ \phi \in C^{\infty}(\mathbb{H}^n) : \sup_{z \in \mathbb{H}^n} (1 + \rho(z))^N | (X^I \phi)(z)| < \infty \ \forall \ N \in \mathbb{N}_0, \ I \in (\mathbb{N}_0)^{2n+1} \right\}.$$

We topologize the space $\mathcal{S}(\mathbb{H}^n)$ with the following family of seminorms

$$\|\phi\|_{\mathcal{S}(\mathbb{H}^n), N} = \sum_{d(I) \le N} \sup_{z \in \mathbb{H}^n} (1 + \rho(z))^N |(X^I \phi)(z)| \quad (N \in \mathbb{N}_0),$$

with $\mathcal{S}'(\mathbb{H}^n)$ we denote the dual space of $\mathcal{S}(\mathbb{H}^n)$.

- 2.2. Basics on variable Lebesgue spaces. Given an exponent $p(\cdot): \mathbb{H}^n \to$ $(0,\infty)$, we consider the variable Lebesgue space $L^{p(\cdot)}(\mathbb{H}^n)$ defined above. It not so hard to see the following,
 - 1. $||f||_{p(\cdot)} \ge 0$, and $||f||_{p(\cdot)} = 0$ if and only if $f \equiv 0$.

 - 2. $||cf||_{p(\cdot)} = |c| ||f||_{p(\cdot)}$ for $c \in \mathbb{C}$. 3. $||f+g||_{p(\cdot)}^{p} \le ||f||_{p(\cdot)}^{p} + ||g||_{p(\cdot)}^{p}$. 4. $||f||_{p(\cdot)}^{s} = ||f|^{s}||_{p(\cdot)/s}$, for every s > 0.

A direct consequence of p-triangle inequality is the quasi-triangle inequality

$$||f + g||_{p(\cdot)} \le 2^{1/\underline{p}-1} \left(||f||_{p(\cdot)} + ||g||_{p(\cdot)} \right)$$

for all $f, g \in L^{p(\cdot)}(\mathbb{H}^n)$.

The following Fefferman–Stein vector-valued maximal inequality on $L^{p(\cdot)}(\mathbb{H}^n)$ was proved in [2].

Theorem 2.1 ([2, Theorem 4.2]). Let $p(\cdot) \in \mathcal{P}^{\log}(\mathbb{H}^n)$ with $1 < p_- \le p_+ < \infty$. Then for every $\theta \in (1, \infty)$, we have

$$\left\| \left(\sum_{j=1}^{\infty} \left(M f_j \right)^{\theta} \right)^{\frac{1}{\theta}} \right\|_{L^{p(\cdot)}(\mathbb{H}^n)} \lesssim \left\| \left(\sum_{j=1}^{\infty} \left| f_j \right|^{\theta} \right)^{\frac{1}{\theta}} \right\|_{L^{p(\cdot)}(\mathbb{H}^n)}$$

for all sequences of bounded measurable functions with compact support $\{f_j\}_{j=1}^{\infty}$.

The following two results refer to the modular function $\kappa_{p(\cdot)}$ given by (4).

Submitted: May 23, 2025 Accepted: November 5, 2025

This peer-reviewed unedited article has been accepted for publication. The final copyedited version may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

VARIABLE CALDERÓN-HARDY SPACES ON THE HEISENBERG GROUP

Lemma 2.2. Let $p(\cdot)$ be an exponent on \mathbb{H}^n such that $0 < p_- \le p_+ < \infty$. Then $f \in L^{p(\cdot)}(\mathbb{H}^n)$ if and only if $\kappa_{p(\cdot)}(f) < \infty$.

Proof. Clearly, if $\kappa_{p(\cdot)}(f) < \infty$, then $f \in L^{p(\cdot)}(\mathbb{H}^n)$. Conversely, if $f \in L^{p(\cdot)}(\mathbb{H}^n)$, then we have that $\kappa_{p(\cdot)}(f/\lambda) < \infty$ for some $\lambda > 1$. Then

$$\kappa_{p(\cdot)}(f) = \int_{\mathbb{H}^n} \left| \frac{\lambda f(z)}{\lambda} \right|^{p(z)} dz \le \lambda^{p_+} \kappa_{p(\cdot)}(f/\lambda) < \infty.$$

Lemma 2.3. Let $p(\cdot)$ be an exponent on \mathbb{H}^n such that $0 < p_- \le p_+ < \infty$. If $\{f_i\}$ is a sequence of measurable functions on \mathbb{H}^n such that $\kappa_{p(\cdot)}(f_i) \to 0$, then $||f_j||_{p(\cdot)} \to 0.$

Proof. Suppose that $\kappa_{p(\cdot)}(f_j) \to 0$. Given $0 < \epsilon < 1$ for sufficiently large j we have $\kappa_{p(\cdot)}(f_i) \leq \epsilon$ and so

$$\kappa_{p(\cdot)}\left(f_j\kappa_{p(\cdot)}(f_j)^{-1/p_+}\right) \leq \kappa_{p(\cdot)}(f_j)^{-1}\kappa_{p(\cdot)}(f_j) = 1,$$

from this it follows that $||f_j||_{p(\cdot)} \le \kappa_{p(\kappa)}(f_j)^{1/p_+} \le \epsilon^{1/p_+}$. Thus, $||f_j||_{p(\cdot)} \to 0$.

2.3. Variable Calderón–Hardy spaces on \mathbb{H}^n . Let $1 < q < \infty$ and $\gamma > 0$. In this section we establish some results concerning to the maximal functions $\eta_{q,\gamma}(g;\cdot)$ and $N_{q,\gamma}(G;\cdot)$ defined in (5) and (6) respectively. We recall that the maximal function $N_{q,\gamma}(G;\cdot)$ is used to define the variable Calderón–Hardy spaces on \mathbb{H}^n (see Definition 1.1).

- **Lemma 2.4.** Let $G \in E_k^q$ with $N_{q,\gamma}(G;z_0) < \infty$, for some $z_0 \in \mathbb{H}^n$. Then: (i) There exists a unique $g \in G$ such that $\eta_{q,\gamma}(g;z_0) < \infty$ and, therefore, $\eta_{q,\,\gamma}(g;z_0) = N_{q,\,\gamma}(G;z_0).$
- (ii) For any ρ -ball B, there is a constant c depending on z_0 and B such that if q is the unique representative of G given in (i), then

$$||G||_{q, B} \le |g|_{q, B} \le c \, \eta_{q, \gamma}(g; z_0) = c \, N_{q, \gamma}(G; z_0).$$

The constant c can be chosen independently of z_0 provided that z_0 varies in a compact set.

Proof. The proof is similar to the one given in [6, Lemma 3].

Lemma 2.5. Let $\{G_j\}$ be a sequence in E_k^q such that for a given point $z_0 \in \mathbb{H}^n$, the series $\sum_{j} N_{q,\gamma}(G_j; z_0)$ is finite. Then

(i) The series $\sum_{j} G_{j}$ converges in E_{k}^{q} to an element G and

$$N_{q, \gamma}(G; z_0) \le \sum_{j} N_{q, \gamma}(G_j; z_0).$$

(ii) If g_j is the unique representative of G_j satisfying $\eta_{q,\gamma}(g_j;z_0) = N_{q,\gamma}(G_j;z_0)$, then $\sum_j g_j$ converges in $L^q_{loc}(\mathbb{H}^n)$ to a function g that is the unique representative of G satisfying $\eta_{q,\gamma}(g;z_0) = N_{q,\gamma}(G;z_0)$

Proof. The proof is similar to the one given in [6, Lemma 4].

Submitted: May 23, 2025 Accepted: November 5, 2025

PABLO ROCHA

Proposition 2.6 ([12, Proposition 15]). If $g \in L^q_{loc}(\mathbb{H}^n)$, $1 < q < \infty$, and there is a point $z_0 \in \mathbb{H}^n$ such that $\eta_{q,\gamma}(g;z_0) < \infty$, then $g \in \mathcal{S}'(\mathbb{H}^n)$.

Given an exponent $p(\cdot): \mathbb{H}^n \to (0, \infty)$, $1 < q < \infty$ and $\gamma > 0$, we consider the variable Calderón–Hardy space $\mathcal{H}_{q,\gamma}^{p(\cdot)}(\mathbb{H}^n)$. The following result states the completeness of variable Calderón–Hardy spaces.

Proposition 2.7. The space $\mathcal{H}_{q,\gamma}^{p(\cdot)}(\mathbb{H}^n)$, $0 < p_- \le p_+ < \infty$, is complete.

Proof. The proof is similar to the one given in [9, Proposition 9].

2.4. Variable Hardy spaces on \mathbb{H}^n . In the paper [2], J. Fang and J. Zhao give a variety of distinct approaches, based on differing definitions, all lead to the same notion of variable Hardy space $H^{p(\cdot)}(\mathbb{H}^n)$.

We recall some terminologies and notations from the study of maximal functions used in [2]. Given $N \in \mathbb{N}$, define

$$\mathcal{F}_N = \left\{ \phi \in \mathcal{S}(\mathbb{H}^n) : \sum_{d(I) < N} \sup_{z \in \mathbb{H}^n} (1 + \rho(z))^N \left| (X^I \phi)(z) \right| \le 1 \right\}.$$

For any $f \in \mathcal{S}'(\mathbb{H}^n)$, the grand maximal function of f is given by

$$\mathcal{M}_{\mathcal{F}_{N}}f(z) = \sup_{t>0} \sup_{\phi \in \mathcal{F}_{N}} \left| \left(f * t^{-Q} \phi(t^{-1} \cdot) \right) (z) \right|,$$

where N is a large and fix integer.

Definition 2.8. Given an exponent function $p(\cdot): \mathbb{H}^n \to (0, \infty)$ with $0 < p_- \le p_+ < \infty$, we define the integer $\mathcal{D}_{p(\cdot)}$ by

$$\mathcal{D}_{p(\cdot)} := \min\{k \in \mathbb{N} \cup \{0\} : (2n + k + 3)p_{-} > 2n + 2\}.$$

For $N \geq \mathcal{D}_{p(\cdot)} + 1$, define the variable Hardy space $H^{p(\cdot)}(\mathbb{H}^n)$ to be the collection of $f \in \mathcal{S}'(\mathbb{H}^n)$ such that $\|\mathcal{M}_{\mathcal{F}_N} f\|_{L^{p(\cdot)}(\mathbb{H}^n)} < \infty$. Then, the "norm" on the space $H^{p(\cdot)}(\mathbb{H}^n)$ is taken to be $\|f\|_{H^{p(\cdot)}} := \|\mathcal{M}_{\mathcal{F}_N} f\|_{L^{p(\cdot)}}$.

Remark 2.9. For $N \geq \mathcal{D}_{p(\cdot)} + 1$, the $H^{p(\cdot)}$ -norm defined above does not depend on N (see e.g. [4], therein it considers the case when $p(\cdot)$ is a constant, the variable case is similar).

Definition 2.10. Let $p(\cdot): \mathbb{H}^n \to (0,\infty), \ 0 < p_- \le p_+ < \infty, \ \text{and} \ p_0 > 1$. Fix an integer $D \ge \mathcal{D}_{p(\cdot)}$. A measurable function $a(\cdot)$ on \mathbb{H}^n is called a $(p(\cdot), p_0, D)$ - atom centered at a ρ -ball $B = B(z_0, \delta)$ if it satisfies the following conditions:

 a_1) supp $(a) \subset B$,

$$a_2$$
) $||a||_{L^{p_0}(\mathbb{H}^n)} \le \frac{|B|^{\frac{1}{p_0}}}{||\chi_B||_{L^{p(\cdot)}(\mathbb{H}^n)}},$

$$a_3$$
) $\int_{\mathbb{H}^n} a(z) z^I dz = 0$ for all multiindex I such that $d(I) \leq D$.

Indeed, every $(p(\cdot), p_0, D)$ - atom $a(\cdot)$ belongs to $H^{p(\cdot)}(\mathbb{H}^n)$. Moreover, there exists an universal constant C > 0 such that $||a||_{H^{p(\cdot)}} \leq C$ for all $(p(\cdot), p_0, D)$ - atom $a(\cdot)$.

Submitted: May 23, 2025 Accepted: November 5, 2025

VARIABLE CALDERÓN-HARDY SPACES ON THE HEISENBERG GROUP

The following results talk about the size of the ρ -balls in the $L^{p(\cdot)}(\mathbb{H}^n)$ -norm.

Lemma 2.11 ([2, Lemma 4.1]). Suppose that $p(\cdot)$ is an exponent function such that $p(\cdot) \in \mathcal{P}^{\log}(\mathbb{H}^n)$ and $0 < p_- \le p_+ < \infty$.

1) For all ρ -balls $B = B(z, \delta)$ with $z \in \mathbb{H}^n$ and $|B| \leq 1$, we have

$$|B|^{\frac{1}{p_{-}(B)}} \sim |B|^{\frac{1}{p_{+}(B)}} \sim |B|^{\frac{1}{p(z)}} \sim ||\chi_{B}||_{L^{p(\cdot)}(\mathbb{H}^{n})}.$$

2) For all ρ -balls $B = B(z, \delta)$ with $z \in \mathbb{H}^n$ and $|B| \ge 1$ we have

$$|B|^{\frac{1}{p_{\infty}}} \sim \|\chi_B\|_{L^{p(\cdot)}(\mathbb{H}^n)}.$$

Here the implicit constants in \sim do not depend on z and r > 0.

Definition 2.12. Let $p(\cdot): \mathbb{H}^n \to (0,\infty)$ be an exponent such that $0 < p_- \le p_+ < \infty$. Given a sequence of nonnegative numbers $\{\lambda_j\}_{j=1}^{\infty}$ and a family of ρ -balls $\{B_j\}_{j=1}^{\infty}$, we define

$$\mathcal{A}\left(\{\lambda_{j}\}_{j=1}^{\infty}, \{B_{j}\}_{j=1}^{\infty}, p(\cdot)\right) := \left\| \left\{ \sum_{j=1}^{\infty} \left(\frac{\lambda_{j} \chi_{B_{j}}}{\|\chi_{B_{j}}\|_{L^{p(\cdot)}}} \right)^{\underline{p}} \right\}^{1/\underline{p}} \right\|_{L^{p(\cdot)}}.$$
 (8)

The space $H_{atom}^{p(\cdot),p_0,D}(\mathbb{H}^n)$ is the set of all distributions $f \in S'(\mathbb{H}^n)$ such that it can be written as

$$f = \sum_{j=1}^{\infty} \lambda_j a_j \tag{9}$$

in $S'(\mathbb{H}^n)$, where $\{\lambda_j\}_{j=1}^{\infty}$ is a sequence of non negative numbers, the a_j 's are $(p(\cdot), p_0, D)$ - atoms supported on the ρ -ball B_j and $\mathcal{A}\left(\{\lambda_j\}_{j=1}^{\infty}, \{B_j\}_{j=1}^{\infty}, p(\cdot)\right) < \infty$. One defines

$$||f||_{H_{atom}^{p(\cdot),p_0,D}} = \inf \mathcal{A}\left(\{\lambda_j\}_{j=1}^{\infty}, \{B_j\}_{j=1}^{\infty}, p(\cdot)\right)$$

where the infimum is taken over all admissible expressions as in (9).

Definition 2.13. Given a collection of sets $\{E_j\}_{j\in\mathbb{N}}$, we say that the family $\{E_j\}_{j\in\mathbb{N}}$ has the bounded intersection property if there exists $L\in\mathbb{N}$ such that no point of $\bigcup_{k\in\mathbb{N}}E_k$ lies in more than L of the sets E_j .

Next, we establish the following version of [2, Theorem 4.5].

Theorem 2.14. If $p(\cdot) \in \mathcal{P}^{\log}(\mathbb{H}^n)$ and $p_0 > \max\{p_+, 1\}$ is sufficiently large, then the quantities $\|f\|_{H^{p(\cdot),p_0,D}_{atom}}$ and $\|f\|_{H^{p(\cdot)}}$ are comparable. Moreover, f admits an

atomic decomposition $f = \sum_{j=1}^{\infty} \lambda_j a_j$ such that

$$A\left(\{\lambda_j\}_{j=1}^{\infty}, \{B_j\}_{j=1}^{\infty}, p(\cdot)\right) \le C \|f\|_{H^{p(\cdot)}},$$

where C does not depend on f and the family of ρ -balls $\{B_j\}_{j=1}^{\infty}$ has the bounded intersection property.

Submitted: May 23, 2025 Accepted: November 5, 2025

Published (early view): November 5, 2025

9

This peer-reviewed unedited article has been accepted for publication. The final copyedited version may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

PABLO ROCHA

The following two results were proved in Lemma 5.7 and Proposition 3.3 of [10], respectively.

Lemma 2.15. Let $p(\cdot): \mathbb{H}^n \to (0,\infty)$ be an exponent function with $0 < p_- \le p_+ < \infty$ and let $\{B_j\}$ be a family of ρ -balls which satisfies the bounded intersection property. If $0 < p_* < p$, then

$$\left\| \left\{ \sum_{j} \left(\frac{\lambda_{j} \chi_{B_{j}}}{\|\chi_{B_{j}}\|_{L^{p(\cdot)}}} \right)^{p_{*}} \right\}^{1/p_{*}} \right\|_{L^{p(\cdot)}} \sim \mathcal{A}\left(\left\{ \lambda_{j} \right\}_{j=1}^{\infty}, \left\{ B_{j} \right\}_{j=1}^{\infty}, p(\cdot) \right)$$

for any sequence of nonnegative numbers $\{\lambda_j\}_{j=1}^{\infty}$

Proposition 2.16. Let $p(\cdot): \mathbb{H}^n \to (0, \infty)$ such that $p(\cdot) \in \mathcal{P}^{\log}(\mathbb{H}^n)$ and $0 < p_- \leq p_+ < \infty$. Let s > 1 and $0 < p_* < \underline{p}$ such that $sp_* > p_+$ and let $\{b_j\}_{j=1}^{\infty}$ be a sequence of nonnegative functions in $L^s(\mathbb{H}^n)$ such that each b_j is supported in a ρ -ball $B_j \subset \mathbb{H}^n$ and

$$||b_j||_{L^s(\mathbb{H}^n)} \le A_j |B_j|^{1/s},\tag{10}$$

where $A_j > 0$ for all $j \ge 1$. Then, for any sequence of nonnegative numbers $\{\lambda_j\}_{j=1}^{\infty}$ we have

$$\left\| \sum_{j=1}^{\infty} \lambda_j b_j \right\|_{L^{p(\cdot)/p_*}(\mathbb{H}^n)} \le C \left\| \sum_{j=1}^{\infty} A_j \lambda_j \chi_{B_j} \right\|_{L^{p(\cdot)/p_*}(\mathbb{H}^n)},$$

where C is a positive constant which does not depend on $\{b_j\}_{j=1}^{\infty}$, $\{A_j\}_{j=1}^{\infty}$, and $\{\lambda_j\}_{j=1}^{\infty}$.

For our next result, we first introduce two maximal operators on \mathbb{H}^n . The first is a discrete maximal and the second one is a non-tangential maximal. Given $\phi \in \mathcal{S}(\mathbb{H}^n)$, we define

$$(M_{\phi}^{dis}f)(z) := \sup \{ |(f * \phi_{2^j})(z)| : j \in \mathbb{Z} \},$$

where $\phi_{2^j}(z) = 2^{-jQ}\phi(2^{-j}z)$, and put

$$(M_{\phi}f)(z) := \sup \{ |(f * \phi_t)(w)| : \rho(w^{-1} \cdot z) < t, \ 0 < t < \infty \}.$$

The following pointwise inequality is obvious:

$$(M_{\phi}^{dis}f)(z) \le (M_{\phi}f)(z)$$

for all $z \in \mathbb{H}^n$. Now, this inequality and [12, Proposition 16] lead to the next result.

Proposition 2.17. Let $g \in L^q_{loc} \cap \mathcal{S}'(\mathbb{H}^n)$ and $f = \mathcal{L}g$ in $\mathcal{S}'(\mathbb{H}^n)$. If $\phi \in \mathcal{S}(\mathbb{H}^n)$ and N > Q + 2, then

$$(M_{\phi}^{dis}f)(z) \le C \|\phi\|_{\mathcal{S}(\mathbb{H}^n), N} \ \eta_{q,2}(g; z)$$

holds for all $z \in \mathbb{H}^n$.

A fundamental solution for the sublaplacian on \mathbb{H}^n was obtained by G. Folland in [3]. More precisely, he proved the following result.

Submitted: May 23, 2025 Accepted: November 5, 2025

This peer-reviewed unedited article has been accepted for publication. The final copyedited version may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

VARIABLE CALDERÓN-HARDY SPACES ON THE HEISENBERG GROUP

Theorem 2.18. $c_n \rho^{-2n}$ is a fundamental solution for \mathcal{L} with source at 0, where

$$\rho(x,t) = (|x|^4 + t^2)^{1/4},$$

and

$$c_n = \left[n(n+2) \int_{\mathbb{H}^n} |x|^2 (\rho(x,t)^4 + 1)^{-(n+4)/2} dx dt \right]^{-1}.$$

In others words, for any $u \in \mathcal{S}(\mathbb{H}^n)$, $(\mathcal{L}u, c_n \rho^{-2n}) = u(0)$.

If a is a bounded function with compact support on \mathbb{H}^n , its potential b, defined as

$$b(z) := (a * c_n \rho^{-2n})(z) = c_n \int_{\mathbb{H}^n} \rho(w^{-1} \cdot z)^{-2n} a(w) dw,$$

is a locally bounded function and, by Theorem 2.18, $\mathcal{L}b = a$ in the sense of distributions. For these potentials, we have the following result.

In the sequel, β is the constant in [4, Corollary 1.44], we observe that $\beta \geq 1$ (see [4, p. 29]).

Lemma 2.19. Let $a(\cdot)$ be an $(p(\cdot), p_0, D)$ -atom centered at the ρ -ball $B = B(z_0, \delta)$. If $b(z) = (a * c_n \rho^{-2n})(z)$, then for $\rho(z_0^{-1}z) \ge 2\beta^2\delta$ and every multi-index I there exists a positive constant C_I such that

$$|(X^I b)(z)| \le C_I \delta^{2+Q} \|\chi_B\|_{p(\cdot)}^{-1} \rho(z_0^{-1} \cdot z)^{-Q-d(I)}$$

holds.

Proof. The proof is similar to the one given in [12, Lemma 19], but considering now the Definition 2.10 above.

Proposition 2.20. Let $a(\cdot)$ be an $(p(\cdot), p_0, D)$ -atom centered at the ρ -ball $B = B(z_0, \delta)$. If $b(z) = (a * c_n \rho^{-2n})(z)$, then for all $z \in \mathbb{H}^n$

$$N_{q,2}\left(\widetilde{b};z\right) \lesssim \|\chi_B\|_{p(\cdot)}^{-1} \left[(M\chi_B)(z) \right]^{\frac{2+Q/q}{Q}} + \chi_{4\beta^2 B}(z)(Ma)(z)$$

$$+ \chi_{4\beta^2 B}(z) \sum_{d(I)=2} (T_I^*a)(z),$$
(11)

where \widetilde{b} is the class of b in E_1^q , M is the Hardy–Littlewood maximal operator and $(T_I^*a)(z) = \sup_{\epsilon>0} \left| \int_{\rho(w^{-1}\cdot z)>\epsilon} (X^I \rho^{-2n})(w^{-1}\cdot z) a(w) \, dw \right|.$

Proof. We point out that the argument used in the proof of Proposition 20 in [12], to obtain the pointwise inequality (16) there, works in this setting as well, but considering now the conditions a1), a2) and a3) given in Definition 2.10 of $(p(\cdot), p_0, D)$ -atom. These conditions are similar to those of the atoms in classical context (see p. 71-72 in [4]). Then, this observation and Lemma 2.19 allow us to get (11).

Submitted: May 23, 2025 Accepted: November 5, 2025

PABLO ROCHA

3. Main results

In this section we will prove our main results.

Theorem 3.1. Let $p(\cdot)$ be an exponent that belongs to $\mathcal{P}^{\log}(\mathbb{H}^n)$ and $1 < q < \frac{n+1}{n}$. If $\underline{p} > Q(2+Q/q)^{-1}$, then the sublaplacian \mathcal{L} is a bijective mapping from $\mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$ onto $H^{p(\cdot)}(\mathbb{H}^n)$. Moreover, there exist two positive constants c_1 and c_2 such that

$$c_1 \|G\|_{\mathcal{H}^{p(\cdot)}_{q,2}(\mathbb{H}^n)} \le \|\mathcal{L}G\|_{H^{p(\cdot)}(\mathbb{H}^n)} \le c_2 \|G\|_{\mathcal{H}^{p(\cdot)}_{q,2}(\mathbb{H}^n)}$$

hold for all $G \in \mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$.

12

Proof. Let $G \in \mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$. Since $N_{q,2}(G;z)$ is finite a.e. $z \in \mathbb{H}^n$, by (i) in Lemma 2.4 and Proposition 2.6, the unique representative g of G (which depends on z), satisfying $\eta_{q,2}(g;z) = N_{q,2}(G;z)$, is a function in $L_{loc}^q(\mathbb{H}^n) \cap \mathcal{S}'(\mathbb{H}^n)$. In particular, for a radial function $\phi \in \mathcal{S}(\mathbb{H}^n)$ with $\int \phi = 1$, by Proposition 2.17, we get

$$M_{\phi}^{dis}(\mathcal{L}G)(z) \leq C_{\phi} N_{q,2}(G;z).$$

Thus, this inequality and Theorem 3.2 in [2] give $\mathcal{L}G \in H^{p(\cdot)}(\mathbb{H}^n)$ and

$$\|\mathcal{L}G\|_{H^{p(\cdot)}(\mathbb{H}^n)} \le C \|G\|_{\mathcal{H}^{p(\cdot)}_{q,2}(\mathbb{H}^n)}.$$
 (12)

This proves the continuity of sublaplacian \mathcal{L} from $\mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$ into $H^{p(\cdot)}(\mathbb{H}^n)$.

Now we shall see that the operator \mathcal{L} is onto. By Theorem 2.14, given $f \in H^{p(\cdot)}(\mathbb{H}^n)$ there exists a sequence of nonnegative numbers $\{\lambda_j\}_{j=1}^{\infty}$ and a sequence of ρ -balls $\{B_j\}_{j=1}^{\infty}$ (with the bounded intersection property) and $(p(\cdot), p_0, D)$ -atoms a_j centered at B_j , such that $f = \sum_{j=1}^{\infty} \lambda_j a_j$ and

$$\mathcal{A}\left(\left\{\lambda_{j}\right\}_{j=1}^{\infty},\left\{B_{j}\right\}_{j=1}^{\infty},p(\cdot)\right)\lesssim\|f\|_{H^{p(\cdot)}(\mathbb{H}^{n})}.$$

For each $j \in \mathbb{N}$ we put $b_j(z) = (a_j * c_n \rho^{-2n})(z)$, from Proposition 2.20 we have

$$N_{q,2}\left(\widetilde{b}_{j};z\right) \lesssim \|\chi_{B_{j}}\|_{p(\cdot)}^{-1} \left[(M\chi_{B_{j}})(z) \right]^{\frac{2+Q/q}{Q}} + \chi_{4\beta^{2}B}(z)(Ma_{j})(z) + \chi_{4\beta^{2}B_{j}}(z) \sum_{d(I)=2} (T_{I}^{*}a_{j})(z)$$

Thus

$$\begin{split} \sum_{j=1}^{\infty} k_{j} N_{q,2} \left(\widetilde{b}_{j}; \, z \right) & \lesssim & \sum_{j=1}^{\infty} \lambda_{j} \| \chi_{B_{j}} \|_{p(\cdot)}^{-1} \left[(M \chi_{B_{j}})(z) \right]^{\frac{2 + Q/q}{Q}} \\ & + & \sum_{j=1}^{\infty} \lambda_{j} \chi_{4\beta^{2}B_{j}}(z) (Ma_{j})(z) \\ & + & \sum_{j=1}^{\infty} \lambda_{j} \chi_{4\beta^{2}B_{j}}(z) \sum_{d(I)=2} (T_{I}^{*}a_{j})(z) \\ & = & I + II + III. \end{split}$$

Submitted: May 23, 2025 Accepted: November 5, 2025

This peer-reviewed unedited article has been accepted for publication. The final copyedited version may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

VARIABLE CALDERÓN-HARDY SPACES ON THE HEISENBERG GROUP

To study I, by hypothesis, we have that (2 + Q/q)p > Q. Then

$$||I||_{p(\cdot)} = \left\| \sum_{j=1}^{\infty} \lambda_{j} ||\chi_{B_{j}}||_{p(\cdot)}^{-1} \left[(M\chi_{B_{j}})(\cdot) \right]^{\frac{2+Q/q}{Q}} \right\|_{p(\cdot)}$$

$$= \left\| \left\{ \sum_{j=1}^{\infty} \lambda_{j} ||\chi_{B_{j}}||_{p(\cdot)}^{-1} \left[(M\chi_{B_{j}})(\cdot) \right]^{\frac{2+Q/q}{Q}} \right\}^{\frac{Q}{2+Q/q}} \right\|_{\frac{2+Q/q}{Q}p(\cdot)}^{\frac{2+Q/q}{Q}}$$

$$\lesssim \left\| \left\{ \sum_{j=1}^{\infty} \lambda_{j} ||\chi_{B_{j}}||_{p(\cdot)}^{-1} \chi_{B_{j}}(\cdot) \right\}^{\frac{Q}{2+Q/q}} \right\|_{\frac{2+Q/q}{Q}p(\cdot)}^{\frac{2+Q/q}{Q}}$$

$$= \left\| \sum_{j=1}^{\infty} \lambda_{j} ||\chi_{B_{j}}||_{p(\cdot)}^{-1} \chi_{B_{j}}(\cdot) \right\|_{p(\cdot)}^{\frac{2+Q/q}{Q}p(\cdot)}$$

$$\lesssim \left\| \left\{ \sum_{j=1}^{\infty} \left(\lambda_{j} ||\chi_{B_{j}}||_{p(\cdot)}^{-1} \chi_{B_{j}}(\cdot) \right)^{\frac{p}{2}} \right\}^{\frac{1/p}{p}} \right\|_{p(\cdot)}^{\frac{1}{2}}$$

$$= \mathcal{A} \left(\left\{ \lambda_{j} \right\}_{j=1}^{\infty}, \left\{ B_{j} \right\}_{j=1}^{\infty}, p(\cdot) \right) \lesssim \|f\|_{H^{p(\cdot)}},$$

where the first inequality follows from Theorem 2.1, since $(2+Q/q)\underline{p}>Q$ and (2+Q/q)/Q>1. The embedding $\ell^{\underline{p}}=\ell^{\min\{p_-,1\}}\hookrightarrow\ell^1$ gives the second inequality.

To study II, let $0 < p_* < \underline{p}$ be fixed and $p_0 > \max\{p_+, 1\}$. Since the Hardy–Littlewood maximal operator M is bounded on $L^{p_0}(\mathbb{H}^n)$ (see [13, Theorem 1, p. 13]), we have

$$\|(Ma_j)^{p_*}\|_{L^{p_0/p_*}(4\beta B_j)} \lesssim \|a_j\|_{p_0}^{p_*} \lesssim \frac{|B_j|^{p_*/p_0}}{\|\chi_{B_j}\|_{p(\cdot)}^{p_*}} \lesssim \frac{|4\beta B_j|^{p_*/p_0}}{\|\chi_{4\beta B_j}\|_{p(\cdot)/p_*}},$$

where the third inequality holds since the quantities $\|\chi_{4\beta B_j}\|_{p(\cdot)}$ and $\|\chi_{B_j}\|_{p(\cdot)}$ are comparable (see Lemma 2.11). Now, since $0 < p_* < 1$, we apply the p_* -inequality and Proposition 2.16 with $b_j = (\chi_{4\beta B_j} (Ma_j)^{p_*})$, $A_j = \|\chi_{4\beta B_j}\|_{L^{p(\cdot)/p_*}}^{-1}$ and $s = p_0/p_*$, to obtain

$$||II||_{L^{p(\cdot)}} \lesssim \left\| \sum_{j} \left(\lambda_{j} \chi_{4\beta B_{j}} M a_{j} \right)^{p_{*}} \right\|_{L^{p(\cdot)/p_{*}}}^{1/p_{*}}$$

$$\lesssim \left\| \sum_{j} \left(\frac{\lambda_{j}}{\left\| \chi_{4\beta B_{j}} \right\|_{L^{p(\cdot)}}} \right)^{p_{*}} \chi_{4\beta B_{j}} \right\|_{L^{p(\cdot)/p_{*}}}^{1/p_{*}}.$$

Submitted: May 23, 2025 Accepted: November 5, 2025

PABLO ROCHA

It is easy to check that $\chi_{4\beta B_j} \leq (M\chi_{B_j})^2$. From this inequality, Theorem 2.1 and Lemma 2.11, we have

$$||II||_{L^{p(\cdot)}} \lesssim \left\| \left\{ \sum_{j} \left(\frac{\lambda_{j}^{p_{*}/2}}{\|\chi_{B_{j}}\|_{L^{p(\cdot)}}^{p_{*}/2}} (M\chi_{B_{j}}) \right)^{2} \right\}^{1/2} \right\|_{L^{2p(\cdot)/p_{*}}}^{2/p_{*}}$$

$$\lesssim \left\| \left\{ \sum_{j} \left(\frac{\lambda_{j}\chi_{B_{j}}}{\|\chi_{B_{j}}\|_{L^{p(\cdot)}}} \right)^{p_{*}} \right\}^{1/p_{*}} \right\|_{L^{p(\cdot)}}.$$

Finally, Lemma 2.15 gives

$$||II||_{L^{p(\cdot)}} \lesssim \mathcal{A}\left(\{\lambda_i\}_{i=1}^{\infty}, \{B_i\}_{i=1}^{\infty}, p(\cdot)\right) \lesssim ||f||_{H^{p(\cdot)}}.$$

Now we study III. By [3, Theorem 3] and [13, Corollary 2, p. 36] (see also [13, 2.5, p. 11]), we have, for every multi-index I with d(I) = 2, that the operator T_I^* is bounded on $L^{p_0}(\mathbb{H}^n)$ for every $1 < p_0 < \infty$. Proceeding as in the estimate of II, we get

$$||III||_{L^{p(\cdot)}} \lesssim \mathcal{A}\left(\{\lambda_j\}_{j=1}^{\infty}, \{B_j\}_{j=1}^{\infty}, p(\cdot)\right) \lesssim ||f||_{H^{p(\cdot)}}.$$

Thus, we have

14

$$\left\| \sum_{j=1}^{\infty} \lambda_j N_{q,2}(\widetilde{b}_j; \cdot) \right\|_{p(\cdot)} \lesssim \|f\|_{H^{p(\cdot)}}.$$

By Lemma 2.2, we obtain $\kappa_{p(\cdot)}\left(\sum_{j=1}^{\infty}\lambda_{j}N_{q,2}(\widetilde{b}_{j};\cdot)\right)<\infty$. Hence

$$\sum_{j=1}^{\infty} \lambda_j N_{q,2}(\widetilde{b}_j; z) < \infty \quad \text{a.e. } z \in \mathbb{H}^n$$
 (13)

and

$$\kappa_{p(\cdot)}\left(\sum_{j=M+1}^{\infty} \lambda_j N_{q,2}(\widetilde{b}_j; \cdot)\right) \to 0, \text{ as } M \to \infty.$$
(14)

From (13) and Lemma 2.5, there exists a function G such that $\sum_{j=1}^{\infty} \lambda_j \tilde{b}_j = G$ in E_1^q and

$$N_{q,2}\left(\left(G-\sum_{j=1}^{M}\lambda_{j}\widetilde{b}_{j}\right);\,z\right)\leq c\,\sum_{j=M+1}^{\infty}\lambda_{j}N_{q,2}(\widetilde{b}_{j};z).$$

This estimate together with (14) and Lemma 2.3 implies

$$\left\| G - \sum_{j=1}^{M} \lambda_j \widetilde{b}_j \right\|_{\mathcal{H}^{p(\cdot)}_{q,2}} \to 0, \text{ as } M \to \infty.$$

Submitted: May 23, 2025 Accepted: November 5, 2025

VARIABLE CALDERÓN-HARDY SPACES ON THE HEISENBERG GROUP

By Proposition 2.7, we have that $G \in \mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$ and $G = \sum_{j=1}^{\infty} \lambda_j \widetilde{b}_j$ in $\mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$. Since \mathcal{L} is a continuous operator from $\mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$ into $H^{p(\cdot)}(\mathbb{H}^n)$, we get

$$\mathcal{L}G = \sum_{j} \lambda_{j} \mathcal{L}\widetilde{b}_{j} = \sum_{j} \lambda_{j} a_{j} = f,$$

in $H^{p(\cdot)}(\mathbb{H}^n)$. This shows that \mathcal{L} is onto $H^{p(\cdot)}(\mathbb{H}^n)$. Moreover,

$$\|G\|_{\mathcal{H}^{p(\cdot)}_{q,2}} = \left\| \sum_{j=1}^{\infty} \lambda_j \widetilde{b}_j \right\|_{\mathcal{H}^{p(\cdot)}_{q,2}} \lesssim \left\| \sum_{j=1}^{\infty} \lambda_j N_{q,2}(\widetilde{b}_j; \cdot) \right\|_{p(\cdot)} \lesssim \|f\|_{H^{p(\cdot)}} = \|\mathcal{L}G\|_{H^{p(\cdot)}}.$$

For to conclude the proof, we will show that the operator \mathcal{L} is injective on $\mathcal{H}_{q,2}^{p(\cdot)}$. Let $\mathcal{O} = \{z : N_{q,2}(G;z) > 1\}$. The set \mathcal{O} is open because of that $N_{q,2}(G;\cdot)$ is lower semicontinuous. We take a constant r > 0 such that $r \geq \max\{q, p_+\}$. Since $N_{q,2}(G;\cdot) \in L^{p(\cdot)}(\mathbb{H}^n)$ it follows that $|\mathcal{O}|$ is finite and $N_{q,2}(G;\cdot) \in L^r(\mathbb{H}^n \setminus \mathcal{O})$ thus following the proof of Theorem 18 in [12] we have that if $G \in \mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$ and $\mathcal{L}G = 0$, then $G \equiv 0$. This proves the injectivity of \mathcal{L} .

Therefore, Theorem 3.1 allows us to conclude, for $Q(2+Q/q)^{-1} < \underline{p}$, that the equation

$$\mathcal{L}F = f, \quad f \in H^{p(\cdot)}(\mathbb{H}^n)$$

has a unique solution in $\mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$, namely: $F := \mathcal{L}^{-1}f$.

We shall now see that the case $0 < p_+ \le Q (2 + \frac{Q}{q})^{-1}$ is trivial.

Theorem 3.2. If $p(\cdot)$ is an exponent function on \mathbb{H}^n such that $p_+ \leq Q(2+Q/q)^{-1}$, then $\mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n) = \{0\}$.

Proof. Let $G \in \mathcal{H}_{q,2}^{p(\cdot)}(\mathbb{H}^n)$ and assume $G \neq 0$. Then there exists $g \in G$ that is not a polynomial of homogeneous degree less or equal to 1. It is easy to check that there exist a positive constant c and a ρ -ball B = B(e, r) with r > 1 such that

$$\int_{B} |g(w) - P(w)|^{q} dw \ge c > 0$$

for every $P \in \mathcal{P}_1$.

Let z be a point such that $\rho(z) > r$ and let $\delta = 2\rho(z)$. Then $B(e,r) \subset B(z,\delta)$. If $h \in G$, then h = g - P for some $P \in \mathcal{P}_1$ and

$$\delta^{-2}|h|_{q,B(z,\delta)} \ge c\rho(z)^{-2-Q/q}.$$

So $N_{q,2}(G;z) \geq c \rho(z)^{-2-Q/q}$, for $\rho(z) > r$. Since $p_+ \leq Q(2+Q/q)^{-1}$, we have that

$$\kappa_{p(\cdot)}(N_{q,2}(G;\cdot)) \ge c \int_{\rho(z) > r} \rho(z)^{-(2+Q/q)p_+} dz = \infty,$$

which gives a contradiction. Thus $\mathcal{H}_{q,2}^p(\mathbb{H}^n) = \{0\}$, if $p_+ \leq Q(2 + Q/q)^{-1}$.

Submitted: May 23, 2025 Accepted: November 5, 2025

Published (early view): November 5, 2025

15

16 PABLO ROCHA

Acknowledgements

My thanks go to the referee for the useful suggestions and comments which helped me to improve the original manuscript.

References

- [1] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev spaces with Variable Exponents, Springer, 2011.
- [2] J. Fang and J. Zhao, Variable Hardy Spaces on the Heisenberg Group, Anal. Theory Appl., 32 (3) (2016), 242-271.
- [3] G. Folland, A fundamental solution for a subelliptic operator, Bull. Am. Math. Soc., 79 (1973), 373-376.
- [4] G. Folland and E. Stein, Hardy spaces on homogeneous groups, Math. Notes, Princeton Univ. Press 28, 1982.
- [5] V. Fischer and M. Ruzhansky, Quantization on Nilpotent Lie groups, Progress in Mathematics, vol. 314, Birkhäuser/Springer, 2016.
- [6] A. B. Gatto, J. G. Jiménez and C. Segovia, On the solution of the equation $\Delta^m F = f$ for $f \in H^p$. Conference on Harmonic Analysis in honor of Antoni Zygmund, Volumen II, Wadsworth international mathematics series, (1983).
- [7] Z. Liu, Z. He and H. Mo, Orlicz Calderón-Hardy spaces, Front. Math., (2025). doi.org/10.1007/s11464-024-0149-7
- [8] E. Nakai and Y. Sawano, Orlicz-Hardy spaces and their duals, Sci. China Math., 57 (5) (2014), 903-962.
- [9] P. Rocha, Calderón–Hardy spaces with variable exponents and the solution of the equation $\Delta^m F = f$ for $f \in H^{p(\cdot)}(\mathbb{R}^n)$, Math. Ineq. & appl., Vol 19 (3) (2016), 1013-1030.
- [10] P. Rocha, Convolution operators and variable Hardy spaces on the Heisenberg group, Acta Math. Hung., 174 (2) (2024), 429-452.
- [11] P. Rocha, Weighted Calderón-Hardy spaces, Math. Bohem., vol. 150 (2) (2025), 187-205.
- [12] P. Rocha, Calderón–Hardy spaces on the Heisenberg group and the solution of the equation $\mathcal{L}F = f$ for $f \in H^p(\mathbb{H}^n)$. Preprint 2025: arXiv:2505.12163
- [13] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.

(Pablo Rocha) Instituto de Matemática (INMABB), Departamento de Matemática, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina

 $Email\ address: {\tt pablo.rocha@uns.edu.ar}$

Submitted: May 23, 2025 Accepted: November 5, 2025