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VARIABLE CALDERÓN–HARDY SPACES

ON THE HEISENBERG GROUP

PABLO ROCHA

Abstract. Let Hn be the Heisenberg group and Q = 2n + 2. For 1 < q <

∞, γ > 0 and an exponent function p(·) on Hn, which satisfy log-Hölder

conditions, with 0 < p− ≤ p+ < ∞, we introduce the variable Calderón–

Hardy spaces Hp(·)
q,γ (Hn), and show for every f ∈ Hp(·)(Hn) that the equation

LF = f has a unique solution F in Hp(·)
q,2 (Hn), where L is the sublaplacian on

Hn, 1 < q < n+1
n

, and Q(2 + Q
q
)−1 < min{p−, 1}.

1. Introduction

The Heisenberg group Hn can be identified with R2n × R whose group law
(noncommutative) is given by

(x, t) · (y, s) =
(
x+ y, t+ s+ xtJy

)
, (1)

where J is the 2n× 2n skew-symmetric matrix given by

J = 2

(
0 −In
In 0

)
with In denoting the n× n identity matrix.

The dilation group on Hn is defined by

r · (x, t) = (rx, r2t), r > 0.

With this structure we have that e = (0, 0) is the neutral element, (x, t)−1 =
(−x,−t) is the inverse of (x, t), and r · ((x, t) · (y, s)) = (r · (x, y)) · (r · (y, s)).

The Koranyi norm on Hn is the function ρ : Hn → [0,∞) defined by

ρ(x, t) =
(
|x|4 + t2

)1/4
, (x, t) ∈ Hn, (2)

where | · | is the usual Euclidean norm on R2n. Moreover, ρ is continuous on Hn

and is smooth on Hn \ {e}.
The ρ-ball centered at z0 ∈ Hn with radius δ > 0 is defined by

B(z0, δ) := {w ∈ Hn : ρ(z−1
0 · w) < δ}.

The topology in Hn induced by the ρ-balls coincides with the Euclidean topology
of R2n × R ≡ R2n+1 (see [5, Proposition 3.1.37]). So, the borelian sets of Hn are
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identified with those of R2n+1. The Haar measure in Hn is the Lebesgue measure of
R2n+1, thus Lp(Hn) ≡ Lp(R2n+1), for every 0 < p ≤ ∞. Moreover, for f ∈ L1(Hn)
and for r > 0 fixed, we have∫

Hn

f(r · z) dz = r−Q

∫
Hn

f(z) dz, (3)

where Q = 2n+ 2. The number 2n+ 2 is known as the homogeneous dimension of
Hn (we observe that the topological dimension of Hn is 2n+ 1).

If f and g are measurable functions on Hn, their convolution f ∗ g is defined by

(f ∗ g)(z) :=
∫
Hn

f(w)g(w−1 · z) dw,

when the integral is finite.
A measurable function p(·) : Hn → (0,∞) is called an exponent on Hn, we adopt

the standard notation in variable exponents. Given a measurable set E ⊂ Hn, let

p−(E) = ess inf
z∈E

p(z), and p+(E) = ess sup
z∈E

p(z).

When E = Hn, we will simply write p− := p−(Hn) and p+ := p+(H). Throughout
this paper, we will assume that 0 < p− ≤ p+ < ∞. We also define p = min {p−, 1}.

Given an exponent p(·) : Hn → (0,∞), on the set of the all measurable func-
tion f , we define the modular function κp(·) by

κp(·)(f) =

∫
Hn

|f(z)|p(z) dz. (4)

By Lp(·)(Hn) we denote the space of all measurable functions f on Hn such that
for some λ > 0,

κp(·)(f/λ) < ∞.

We set

∥f∥p(·) = inf
{
λ > 0 : κp(·)(f/λ) ≤ 1

}
.

We see that
(
Lp(·)(Hn), ∥.∥p(·)

)
is a quasi normed space. These spaces are referred

as the Lebesgue spaces with variable exponents or variable Lebesgue spaces (see
[1]).

In [4], for 0 < p < ∞, G. Folland and E. M. Stein defined the Hardy Spaces
Hp(Hn) on the Heisenberg group with the norm given by

∥f∥Hp(Hn) =

∥∥∥∥sup
t>0

sup
ϕ∈FN

|f ∗ ϕt|
∥∥∥∥
p

,

where ϕt(z) = t−Qϕ(t−1 · z) with t > 0 and FN is a suitable family of smooth
functions. In the paper [2], J. Fang and J. Zhao defined the variable Hardy spaces
on the Heisenberg group Hp(·)(Hn), replacing Lp by Lp(·) in the above norm and
they investigate their several properties.

Let Lq
loc(Hn), 1 < q < ∞, be the space of all measurable functions g on Hn

that belong locally to Lq for compact sets of Hn. We endowed Lq
loc(Hn) with the
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topology generated by the seminorms

|g|q, B =

(
|B|−1

∫
B

|g(w)|q dw
)1/q

,

where B is a ρ-ball in Hn and |B| denotes its Haar measure.
For g ∈ Lq

loc(Hn), we define a maximal function ηq, γ(g; z) as

ηq, γ(g; z) = sup
r>0

r−γ |g|q, B(z,r), (5)

where γ is a positive real number and B(z, r) is the ρ-ball centered at z with
radius r.

Let k a non negative integer and Pk the subspace of Lq
loc(Hn) formed by all

the polynomials of homogeneous degree at most k. We denote by Eq
k the quo-

tient space of Lq
loc(Hn) by Pk. If G ∈ Eq

k, we define the seminorm ∥G∥q, B =
inf {|g|q, B : g ∈ G}. The family of all these seminorms induces on Eq

k the quotient
topology.

Given a positive real number γ, we can write γ = k+t, where k is a non negative
integer and 0 < t ≤ 1. This decomposition is unique.

For G ∈ Eq
k, we define a maximal function Nq, γ(G; z) as

Nq, γ(G; z) = inf {ηq, γ(g; z) : g ∈ G} , (6)

such maximal function is lower semicontinuous, see [12, Lemma 9].

Definition 1.1. Let p(·) : Hn → (0,∞) be an exponent such that 0 < p− ≤ p+ <
∞, we say that an element G ∈ Eq

k belongs to the variable Calderón–Hardy space

on the Heisenberg group Hp(·)
q, γ (Hn) if the maximal function Nq, γ(G; ·) ∈ Lp(·)(Hn).

The ”norm” of G in Hp(·)
q, γ (Hn) is defined as ∥G∥Hp(·)

q, γ (Hn)
= ∥Nq, γ(G; ·)∥p(·).

The Calderón–Hardy spaces were defined in the setting of the classical Lebesgue
spaces by A. B. Gatto, J. G. Jiménez and C. Segovia in [6], they characterize the
solution of the equation ∆mF = f , m ∈ N, for f ∈ Hp(Rn). Moreover, they
proved that the iterated Laplace operator ∆m is a bijective mapping from the
Calderón–Hardy spaces onto Hp(Rn).

The equation ∆mF = f , m ∈ N, for f ∈ Hp(·)(Rn) and f ∈ Hp(Rn, w), was
studied by the author in [9] and [11] respectively, obtaining analogous results to
those of Gatto, Jiménez and Segovia.

Lately, Z. Liu, Z. He and H. Mo in [7] extended the definition of Calderón–
Hardy spaces to Orlicz setting. These new Orlicz Calderón–Hardy spaces can
cover classical Calderón–Hardy spaces in [6]. As an application, they solved the
equation ∆mF = f when f ∈ HΦ(Rn), where HΦ(Rn) are the Orlicz–Hardy spaces
defined in [8].

Recently, the author in [12] studied an analogous problem on the Heisenberg
group. More precisely, we proved that the equation LF = f for f ∈ Hp(Hn) has
a unique solution F in Hp

q,2(Hn), where L is the sublaplacian on Hn, 1 < q < n+1
n

and Q(2 + Q
q )

−1 < p ≤ 1.
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The purpose of this work is to extend the results obtained by the author in [12] to
the variable setting. For them, we must take into account certain aspects inherent
to the variable spaces.

We say that an exponent function p(·) : Hn → (0,∞) such that 0 < p− ≤ p+ <
∞ belongs to P log(Hn), if there exist positive constants C, C∞ and p∞ such that
p(·) satisfies the local log-Hölder continuity condition, i.e.:

|p(z)− p(w)| ≤ C

− log(ρ(z−1 · w))
for ρ(z−1 · w) ≤ 1

2
,

and is log-Hölder continuous at infinity, i.e.:

|p(z)− p∞| ≤ C∞

log(e+ ρ(z))
for all z ∈ Hn.

Here ρ is the Koranyi norm given by (2).

Let G ∈ Hp(·)
q, 2 (Hn), then Nq, 2(G; z0) < ∞ a.e. z0 ∈ Hn. By Lemma 2.4-(i)

below, there exists g ∈ G such that Nq, 2(G; z0) = ηq, 2(g; z0). Now, from Propo-
sition 2.6 below it follows that g ∈ S ′(Hn). So the sublaplacian of g, Lg, is well
defined in sense of distributions. On the other hand, since any two representatives
of G differ in a polynomial of homogeneous degree at most 1, we have that Lg is
independent of the representative g ∈ G chosen. Therefore, for G ∈ Eq

1 , we shall
define LG as the distribution Lg, where g is any representative of G.

Our main results are the following.

Theorem 3.1. Let p(·) be an exponent that belongs to P log(Hn) and 1 < q < n+1
n .

If p > Q(2+Q/q)−1, then the sublaplacian L is a bijective mapping from Hp(·)
q,2 (Hn)

onto Hp(·)(Hn). Moreover, there exist two positive constants c1 and c2 such that

c1∥G∥Hp(·)
q,2 (Hn)

≤ ∥LG∥Hp(·)(Hn) ≤ c2∥G∥Hp(·)
q,2 (Hn)

hold for all G ∈ Hp(·)
q,2 (Hn).

The case p+ ≤ Q(2 +Q/q)−1 is trivial.

Theorem 3.2 If p(·) is an exponent function on Hn such that p+ ≤ Q(2+Q/q)−1,

then Hp(·)
q, 2 (Hn) = {0}.

In Section 2 we state the basics of the Heisenberg group and variable Lebesgue
spaces together with some auxiliary lemmas and propositions related to variable
Calderón–Hardy and variable Hardy spaces on the Heisenberg group. We also
recall the definition and atomic decomposition of variable Hardy spaces on Hn

given in [2]. Finally, in Section 3 we prove our main results.

Notation. The symbol A ≲ B stands for the inequality A ≤ cB for some con-
stant c, and A ∼ B stands for B ≲ A ≲ B. We denote by B(z0, δ) the ρ-ball
centered at z0 ∈ Hn with radius δ. Given β > 0 and a ρ-ball B = B(z0, δ), we set

https://doi.org/10.33044/revuma.5270
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βB = B(z0, βδ). For a measurable subset E ⊆ Hn we denote by |E| and χE the
Haar measure of E and the characteristic function of E respectively.

Throughout this paper, C will denote a positive constant, not necessarily the
same at each occurrence.

2. Preliminaries

2.1. Basics on Heisenberg group. Let Hn be the Heisenberg group with group
law given by (1). If B(z0, δ) is a ρ-ball of Hn, then its Haar measure is

|B(z0, δ)| = cδQ,

where c = |B(e, 1)| and Q = 2n + 2. Given λ > 0, we put λB = λB(z0, δ) =
B(z0, λδ). So |λB| = λQ|B|.

The Hardy–Littlewood maximal operator M on the Heisenberg group is defined
by

Mf(z) = sup
B∋z

|B|−1

∫
B

|f(w)| dw,

where f is a locally integrable function on Hn and the supremum is taken over all
the ρ-balls B containing z.

For every i = 1, 2, ..., 2n + 1, Xi denotes the left invariant vector field on Hn

given by

Xi =
∂

∂xi
+ 2xi+n

∂

∂t
, i = 1, 2, ..., n;

Xi+n =
∂

∂xi+n
− 2xi

∂

∂t
, i = 1, 2, ..., n;

and

X2n+1 =
∂

∂t
.

The sublaplacian on Hn, denoted by L, is the counterpart of the Laplacain ∆ on
Rn. The sublaplacian L is defined by

L = −
2n∑
i=1

X2
i ,

where Xi, i = 1, ..., 2n, are the left invariant vector fields defined above.
Given a multi-index I = (i1, i2, ..., i2n, i2n+1) ∈ (N ∪ {0})2n+1, we set

|I| = i1 + i2 + · · ·+ i2n + i2n+1, d(I) = i1 + i2 + · · ·+ i2n + 2 i2n+1.

The amount |I| is called the length of I and d(I) the homogeneous degree of I.
We adopt the following multi-index notation for higher order derivatives and for
monomials on Hn. If I = (i1, i2, ..., i2n+1) is a multi-index, X = {Xi}2n+1

i=1 , and
z = (x, t) = (x1, ..., x2n, t) ∈ Hn, we put

XI := Xi1
1 Xi2

2 · · ·Xi2n+1

2n+1 , and zI := xi1
1 · · · xi2n

2n · ti2n+1 .

https://doi.org/10.33044/revuma.5270


Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

Submitted: May 23, 2025
Accepted: November 5, 2025
Published (early view): November 5, 2025

6 PABLO ROCHA

Every polynomial p on Hn can be written as a unique finite linear combination of
the monomials zI , that is

p(z) =
∑
I∈Nn

0

cIz
I , (7)

where all but finitely many of the coefficients cI ∈ C vanish. The homogeneous
degree of a polynomial p written as (7) is max{d(I) : I ∈ Nn

0 with cI ̸= 0}. Let k ∈
N∪{0}, we remember that Pk denotes the subspace formed by all the polynomials
of homogeneous degree at most k. So, every p ∈ Pk can be written as p(z) =∑

d(I)≤k cI z
I , with cI ∈ C.

The Schwartz space S(Hn) is defined by

S(Hn) =

{
ϕ ∈ C∞(Hn) : sup

z∈Hn

(1 + ρ(z))N |(XIϕ)(z)| < ∞ ∀ N ∈ N0, I ∈ (N0)
2n+1

}
.

We topologize the space S(Hn) with the following family of seminorms

∥ϕ∥S(Hn), N =
∑

d(I)≤N

sup
z∈Hn

(1 + ρ(z))N |(XIϕ)(z)| (N ∈ N0),

with S ′(Hn) we denote the dual space of S(Hn).

2.2. Basics on variable Lebesgue spaces. Given an exponent p(·) : Hn →
(0,∞), we consider the variable Lebesgue space Lp(·)(Hn) defined above. It not so
hard to see the following,

1. ∥f∥p(·) ≥ 0, and ∥f∥p(·) = 0 if and only if f ≡ 0.
2. ∥c f∥p(·) = |c| ∥f∥p(·) for c ∈ C.
3. ∥f + g∥pp(·) ≤ ∥f∥pp(·) + ∥g∥pp(·).
4. ∥f∥sp(·) = ∥|f |s∥p(·)/s, for every s > 0.

A direct consequence of p-triangle inequality is the quasi-triangle inequality

∥f + g∥p(·) ≤ 21/p−1
(
∥f∥p(·) + ∥g∥p(·)

)
for all f, g ∈ Lp(·)(Hn).

The following Fefferman–Stein vector-valued maximal inequality on Lp(·)(Hn)
was proved in [2].

Theorem 2.1 ([2, Theorem 4.2]). Let p(·) ∈ P log(Hn) with 1 < p− ≤ p+ < ∞.
Then for every θ ∈ (1,∞), we have∥∥∥∥∥∥∥

 ∞∑
j=1

(Mfj)
θ

 1
θ

∥∥∥∥∥∥∥
Lp(·)(Hn)

≲

∥∥∥∥∥∥∥
 ∞∑

j=1

|fj |θ
 1

θ

∥∥∥∥∥∥∥
Lp(·)(Hn)

for all sequences of bounded measurable functions with compact support {fj}∞j=1.

The following two results refer to the modular function κp(·) given by (4).

https://doi.org/10.33044/revuma.5270
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Lemma 2.2. Let p(·) be an exponent on Hn such that 0 < p− ≤ p+ < ∞. Then
f ∈ Lp(·)(Hn) if and only if κp(·)(f) < ∞.

Proof. Clearly, if κp(·)(f) < ∞, then f ∈ Lp(·)(Hn). Conversely, if f ∈ Lp(·)(Hn),
then we have that κp(·)(f/λ) < ∞ for some λ > 1. Then

κp(·)(f) =

∫
Hn

∣∣∣∣λf(z)λ

∣∣∣∣p(z) dz ≤ λp+κp(·)(f/λ) < ∞. □

Lemma 2.3. Let p(·) be an exponent on Hn such that 0 < p− ≤ p+ < ∞. If
{fj} is a sequence of measurable functions on Hn such that κp(·)(fj) → 0, then
∥fj∥p(·) → 0.

Proof. Suppose that κp(·)(fj) → 0. Given 0 < ϵ < 1 for sufficiently large j we have
κp(·)(fj) ≤ ϵ and so

κp(·)

(
fjκp(·)(fj)

−1/p+

)
≤ κp(·)(fj)

−1κp(·)(fj) = 1,

from this it follows that ∥fj∥p(·) ≤ κp(κ)(fj)
1/p+ ≤ ϵ1/p+ . Thus, ∥fj∥p(·) → 0. □

2.3. Variable Calderón–Hardy spaces on Hn. Let 1 < q < ∞ and γ > 0. In
this section we establish some results concerning to the maximal functions ηq, γ(g; ·)
and Nq, γ(G; ·) defined in (5) and (6) respectively. We recall that the maximal
function Nq, γ(G; ·) is used to define the variable Calderón–Hardy spaces on Hn

(see Definition 1.1).

Lemma 2.4. Let G ∈ Eq
k with Nq, γ(G; z0) < ∞, for some z0 ∈ Hn. Then:

(i) There exists a unique g ∈ G such that ηq, γ(g; z0) < ∞ and, therefore,
ηq, γ(g; z0) = Nq, γ(G; z0).

(ii) For any ρ-ball B, there is a constant c depending on z0 and B such that if
g is the unique representative of G given in (i), then

∥G∥q, B ≤ |g|q, B ≤ c ηq, γ(g; z0) = cNq, γ(G; z0).

The constant c can be chosen independently of z0 provided that z0 varies in a
compact set.

Proof. The proof is similar to the one given in [6, Lemma 3]. □

Lemma 2.5. Let {Gj} be a sequence in Eq
k such that for a given point z0 ∈ Hn,

the series
∑

j Nq, γ(Gj ; z0) is finite. Then

(i) The series
∑

j Gj converges in Eq
k to an element G and

Nq, γ(G; z0) ≤
∑
j

Nq, γ(Gj ; z0).

(ii) If gj is the unique representative of Gj satisfying ηq, γ(gj ; z0) = Nq, γ(Gj ; z0),
then

∑
j gj converges in Lq

loc(Hn) to a function g that is the unique representative

of G satisfying ηq, γ(g; z0) = Nq, γ(G; z0)

Proof. The proof is similar to the one given in [6, Lemma 4]. □

https://doi.org/10.33044/revuma.5270


Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5270.

Submitted: May 23, 2025
Accepted: November 5, 2025
Published (early view): November 5, 2025

8 PABLO ROCHA

Proposition 2.6 ([12, Proposition 15]). If g ∈ Lq
loc(Hn), 1 < q < ∞, and there is

a point z0 ∈ Hn such that ηq, γ(g; z0) < ∞, then g ∈ S ′(Hn).

Given an exponent p(·) : Hn → (0,∞), 1 < q < ∞ and γ > 0, we consider the

variable Calderón–Hardy space Hp(·)
q, γ (Hn). The following result states the com-

pleteness of variable Calderón–Hardy spaces.

Proposition 2.7. The space Hp(·)
q, γ (Hn), 0 < p− ≤ p+ < ∞, is complete.

Proof. The proof is similar to the one given in [9, Proposition 9]. □

2.4. Variable Hardy spaces on Hn. In the paper [2], J. Fang and J. Zhao give
a variety of distinct approaches, based on differing definitions, all lead to the same
notion of variable Hardy space Hp(·)(Hn).

We recall some terminologies and notations from the study of maximal functions
used in [2]. Given N ∈ N, define

FN =

{
ϕ ∈ S(Hn) :

∑
d(I)≤N

sup
z∈Hn

(1 + ρ(z))
N |(XIϕ)(z)| ≤ 1

}
.

For any f ∈ S ′(Hn), the grand maximal function of f is given by

MFN
f(z) = sup

t>0
sup

ϕ∈FN

∣∣(f ∗ t−Qϕ(t−1·)
)
(z)
∣∣ ,

where N is a large and fix integer.

Definition 2.8. Given an exponent function p(·) : Hn → (0,∞) with 0 < p− ≤
p+ < ∞, we define the integer Dp(·) by

Dp(·) := min{k ∈ N ∪ {0} : (2n+ k + 3)p− > 2n+ 2}.

For N ≥ Dp(·) + 1, define the variable Hardy space Hp(·)(Hn) to be the collection
of f ∈ S ′(Hn) such that ∥MFN

f∥Lp(·)(Hn) < ∞. Then, the ”norm” on the space

Hp(·)(Hn) is taken to be ∥f∥Hp(·) := ∥MFN
f∥Lp(·) .

Remark 2.9. For N ≥ Dp(·) + 1, the Hp(·)-norm defined above does not depend
on N (see e.g. [4], therein it considers the case when p(·) is a constant, the variable
case is similar).

Definition 2.10. Let p(·) : Hn → (0,∞), 0 < p− ≤ p+ < ∞, and p0 > 1. Fix
an integer D ≥ Dp(·). A measurable function a(·) on Hn is called a (p(·), p0, D) -
atom centered at a ρ-ball B = B(z0, δ) if it satisfies the following conditions:

a1) supp(a) ⊂ B,

a2) ∥a∥Lp0 (Hn) ≤
|B|

1
p0

∥χB∥Lp(·)(Hn)

,

a3)

∫
Hn

a(z) zI dz = 0 for all multiindex I such that d(I) ≤ D.

Indeed, every (p(·), p0, D) - atom a(·) belongs to Hp(·)(Hn). Moreover, there
exists an universal constant C > 0 such that ∥a∥Hp(·) ≤ C for all (p(·), p0, D) -
atom a(·).

https://doi.org/10.33044/revuma.5270
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The following results talk about the size of the ρ-balls in the Lp(·)(Hn)-norm.

Lemma 2.11 ([2, Lemma 4.1]). Suppose that p(·) is an exponent function such
that p(·) ∈ P log(Hn) and 0 < p− ≤ p+ < ∞.
1) For all ρ-balls B = B(z, δ) with z ∈ Hn and |B| ≤ 1, we have

|B|
1

p−(B) ∼ |B|
1

p+(B) ∼ |B|
1

p(z) ∼ ∥χB∥Lp(·)(Hn) .

2) For all ρ-balls B = B(z, δ) with z ∈ Hn and |B| ≥ 1 we have

|B|
1

p∞ ∼ ∥χB∥Lp(·)(Hn) .

Here the implicit constants in ∼ do not depend on z and r > 0.

Definition 2.12. Let p(·) : Hn → (0,∞) be an exponent such that 0 < p− ≤
p+ < ∞. Given a sequence of nonnegative numbers {λj}∞j=1 and a family of ρ-balls
{Bj}∞j=1, we define

A
(
{λj}∞j=1, {Bj}∞j=1, p(·)

)
:=

∥∥∥∥∥∥∥


∞∑
j=1

(
λjχBj

∥χBj∥Lp(·)

)p


1/p
∥∥∥∥∥∥∥
Lp(·)

. (8)

The space H
p(·),p0,D
atom (Hn) is the set of all distributions f ∈ S′(Hn) such that it can

be written as

f =

∞∑
j=1

λjaj (9)

in S′(Hn), where {λj}∞j=1 is a sequence of non negative numbers, the aj ’s are

(p(·), p0, D) - atoms supported on the ρ-ball Bj and A
(
{λj}∞j=1 , {Bj}∞j=1 , p(·)

)
<

∞. One defines

∥f∥
H

p(·),p0,D
atom

= inf A
(
{λj}∞j=1 , {Bj}∞j=1 , p(·)

)
where the infimum is taken over all admissible expressions as in (9).

Definition 2.13. Given a collection of sets {Ej}j∈N, we say that the family
{Ej}j∈N has the bounded intersection property if there exists L ∈ N such that
no point of ∪k∈NEk lies in more than L of the sets Ej .

Next, we establish the following version of [2, Theorem 4.5].

Theorem 2.14. If p(·) ∈ P log(Hn) and p0 > max{p+, 1} is sufficiently large, then
the quantities ∥f∥

H
p(·),p0,D
atom

and ∥f∥Hp(·) are comparable. Moreover, f admits an

atomic decomposition f =
∞∑
j=1

λjaj such that

A
(
{λj}∞j=1 , {Bj}∞j=1 , p(·)

)
≤ C ∥f∥Hp(·) ,

where C does not depend on f and the family of ρ-balls {Bj}∞j=1 has the bounded
intersection property.
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The following two results were proved in Lemma 5.7 and Proposition 3.3 of [10],
respectively.

Lemma 2.15. Let p(·) : Hn → (0,∞) be an exponent function with 0 < p− ≤
p+ < ∞ and let {Bj} be a family of ρ-balls which satisfies the bounded intersection
property. If 0 < p∗ < p, then∥∥∥∥∥∥∥

∑
j

(
λjχBj

∥χBj
∥Lp(·)

)p∗


1/p∗

∥∥∥∥∥∥∥
Lp(·)

∼ A
(
{λj}∞j=1, {Bj}∞j=1, p(·)

)
for any sequence of nonnegative numbers {λj}∞j=1.

Proposition 2.16. Let p(·) : Hn → (0,∞) such that p(·) ∈ P log(Hn) and 0 <
p− ≤ p+ < ∞. Let s > 1 and 0 < p∗ < p such that sp∗ > p+ and let {bj}∞j=1 be
a sequence of nonnegative functions in Ls(Hn) such that each bj is supported in a
ρ-ball Bj ⊂ Hn and

∥bj∥Ls(Hn) ≤ Aj |Bj |1/s, (10)

where Aj > 0 for all j ≥ 1. Then, for any sequence of nonnegative numbers {λj}∞j=1

we have ∥∥∥∥∥∥
∞∑
j=1

λjbj

∥∥∥∥∥∥
Lp(·)/p∗ (Hn)

≤ C

∥∥∥∥∥∥
∞∑
j=1

AjλjχBj

∥∥∥∥∥∥
Lp(·)/p∗ (Hn)

,

where C is a positive constant which does not depend on {bj}∞j=1, {Aj}∞j=1, and
{λj}∞j=1.

For our next result, we first introduce two maximal operators on Hn. The first
is a discrete maximal and the second one is a non-tangential maximal. Given
ϕ ∈ S(Hn), we define

(Mdis
ϕ f)(z) := sup {|(f ∗ ϕ2j )(z)| : j ∈ Z} ,

where ϕ2j (z) = 2−jQϕ(2−jz), and put

(Mϕf)(z) := sup
{
|(f ∗ ϕt)(w)| : ρ(w−1 · z) < t, 0 < t < ∞

}
.

The following pointwise inequality is obvious:

(Mdis
ϕ f)(z) ≤ (Mϕf)(z)

for all z ∈ Hn. Now, this inequality and [12, Proposition 16] lead to the next result.

Proposition 2.17. Let g ∈ Lq
loc ∩ S ′(Hn) and f = Lg in S ′(Hn). If ϕ ∈ S(Hn)

and N > Q+ 2, then

(Mdis
ϕ f)(z) ≤ C∥ϕ∥S(Hn),N ηq,2(g; z)

holds for all z ∈ Hn.

A fundamental solution for the sublaplacian on Hn was obtained by G. Folland
in [3]. More precisely, he proved the following result.
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Theorem 2.18. cn ρ
−2n is a fundamental solution for L with source at 0, where

ρ(x, t) = (|x|4 + t2)1/4,

and

cn =

[
n(n+ 2)

∫
Hn

|x|2(ρ(x, t)4 + 1)−(n+4)/2dxdt

]−1

.

In others words, for any u ∈ S(Hn),
(
Lu, cnρ−2n

)
= u(0).

If a is a bounded function with compact support on Hn, its potential b, defined
as

b(z) :=
(
a ∗ cn ρ−2n

)
(z) = cn

∫
Hn

ρ(w−1 · z)−2na(w)dw,

is a locally bounded function and, by Theorem 2.18, Lb = a in the sense of distri-
butions. For these potentials, we have the following result.

In the sequel, β is the constant in [4, Corollary 1.44], we observe that β ≥ 1 (see
[4, p. 29]).

Lemma 2.19. Let a(·) be an (p(·), p0, D)-atom centered at the ρ-ball B = B(z0, δ).
If b(z) = (a ∗ cnρ−2n)(z), then for ρ(z−1

0 z) ≥ 2β2δ and every multi-index I there
exists a positive constant CI such that∣∣(XIb)(z)

∣∣ ≤ CI δ
2+Q ∥χB∥−1

p(·) ρ(z
−1
0 · z)−Q−d(I)

holds.

Proof. The proof is similar to the one given in [12, Lemma 19], but considering
now the Definition 2.10 above. □

Proposition 2.20. Let a(·) be an (p(·), p0, D)-atom centered at the ρ-ball B =
B(z0, δ). If b(z) = (a ∗ cnρ−2n)(z), then for all z ∈ Hn

Nq,2

(
b̃; z
)

≲ ∥χB∥−1
p(·) [(MχB)(z)]

2+Q/q
Q + χ4β2B(z)(Ma)(z) (11)

+ χ4β2B(z)
∑

d(I)=2

(T ∗
I a)(z),

where b̃ is the class of b in Eq
1 , M is the Hardy–Littlewood maximal operator and

(T ∗
I a)(z) = supϵ>0

∣∣∣∫ρ(w−1·z)>ϵ
(XIρ−2n)(w−1 · z)a(w) dw

∣∣∣.
Proof. We point out that the argument used in the proof of Proposition 20 in
[12], to obtain the pointwise inequality (16) there, works in this setting as well,
but considering now the conditions a1), a2) and a3) given in Definition 2.10 of
(p(·), p0, D)-atom. These conditions are similar to those of the atoms in classical
context (see p. 71-72 in [4]). Then, this observation and Lemma 2.19 allow us to
get (11). □
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3. Main results

In this section we will prove our main results.

Theorem 3.1. Let p(·) be an exponent that belongs to P log(Hn) and 1 < q < n+1
n .

If p > Q(2+Q/q)−1, then the sublaplacian L is a bijective mapping from Hp(·)
q,2 (Hn)

onto Hp(·)(Hn). Moreover, there exist two positive constants c1 and c2 such that

c1∥G∥Hp(·)
q,2 (Hn)

≤ ∥LG∥Hp(·)(Hn) ≤ c2∥G∥Hp(·)
q,2 (Hn)

hold for all G ∈ Hp(·)
q,2 (Hn).

Proof. LetG ∈ Hp(·)
q, 2 (Hn). SinceNq,2(G; z) is finite a.e. z ∈ Hn, by (i) in Lemma 2.4

and Proposition 2.6, the unique representative g of G (which depends on z), satis-
fying ηq,2(g; z) = Nq,2(G; z), is a function in Lq

loc(Hn) ∩ S ′(Hn). In particular, for
a radial function ϕ ∈ S(Hn) with

∫
ϕ = 1, by Proposition 2.17, we get

Mdis
ϕ (LG)(z) ≤ Cϕ Nq, 2(G; z).

Thus, this inequality and Theorem 3.2 in [2] give LG ∈ Hp(·)(Hn) and

∥LG∥Hp(·)(Hn) ≤ C ∥G∥Hp(·)
q, 2 (Hn)

. (12)

This proves the continuity of sublaplacian L from Hp(·)
q, 2 (Hn) into Hp(·)(Hn).

Now we shall see that the operator L is onto. By Theorem 2.14, given f ∈
Hp(·)(Hn) there exists a sequence of nonnegative numbers {λj}∞j=1 and a sequence
of ρ-balls {Bj}∞j=1 (with the bounded intersection property) and (p(·), p0, D)-atoms

aj centered at Bj , such that f =
∑∞

j=1 λjaj and

A
(
{λj}∞j=1 , {Bj}∞j=1 , p(·)

)
≲ ∥f∥Hp(·)(Hn).

For each j ∈ N we put bj(z) = (aj ∗ cnρ−2n)(z), from Proposition 2.20 we have

Nq,2

(
b̃j ; z

)
≲ ∥χBj

∥−1
p(·)
[
(MχBj

)(z)
] 2+Q/q

Q + χ4β2B(z)(Maj)(z)

+ χ4β2Bj
(z)

∑
d(I)=2

(T ∗
I aj)(z)

Thus
∞∑
j=1

kjNq,2

(
b̃j ; z

)
≲

∞∑
j=1

λj∥χBj
∥−1
p(·)
[
(MχBj

)(z)
] 2+Q/q

Q

+

∞∑
j=1

λjχ4β2Bj
(z)(Maj)(z)

+

∞∑
j=1

λjχ4β2Bj
(z)

∑
d(I)=2

(T ∗
I aj)(z)

= I + II + III.
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To study I, by hypothesis, we have that (2 +Q/q)p > Q. Then

∥I∥p(·) =

∥∥∥∥∥∥
∞∑
j=1

λj∥χBj
∥−1
p(·)
[
(MχBj

)(·)
] 2+Q/q

Q

∥∥∥∥∥∥
p(·)

=

∥∥∥∥∥∥∥


∞∑
j=1

λj∥χBj
∥−1
p(·)
[
(MχBj

)(·)
] 2+Q/q

Q


Q

2+Q/q

∥∥∥∥∥∥∥
2+Q/q

Q

2+Q/q
Q p(·)

≲

∥∥∥∥∥∥∥


∞∑
j=1

λj∥χBj
∥−1
p(·)χBj

(·)


Q

2+Q/q

∥∥∥∥∥∥∥
2+Q/q

Q

2+Q/q
Q p(·)

=

∥∥∥∥∥∥
∞∑
j=1

λj∥χBj
∥−1
p(·)χBj

(·)

∥∥∥∥∥∥
p(·)

≲

∥∥∥∥∥∥∥


∞∑
j=1

(
λj∥χBj∥−1

p(·)χBj (·)
)p

1/p
∥∥∥∥∥∥∥
p(·)

= A
(
{λj}∞j=1 , {Bj}∞j=1 , p(·)

)
≲ ∥f∥Hp(·) ,

where the first inequality follows from Theorem 2.1, since (2 + Q/q)p > Q and

(2+Q/q)/Q > 1. The embedding ℓp = ℓmin{p−,1} ↪→ ℓ1 gives the second inequality.

To study II, let 0 < p∗ < p be fixed and p0 > max{p+, 1}. Since the Hardy–
Littlewood maximal operator M is bounded on Lp0(Hn) (see [13, Theorem 1,
p. 13]), we have

∥(Maj)
p∗∥Lp0/p∗ (4βBj)

≲ ∥aj∥p∗
p0

≲
|Bj |p∗/p0

∥χBj
∥p∗
p(·)

≲
|4βBj |p∗/p0

∥χ4βBj
∥p(·)/p∗

,

where the third inequality holds since the quantities ∥χ4βBj
∥p(·) and ∥χBj

∥p(·)
are comparable (see Lemma 2.11). Now, since 0 < p∗ < 1, we apply the p∗-

inequality and Proposition 2.16 with bj =
(
χ4βBj

(Maj)
p∗
)
, Aj =

∥∥χ4βBj

∥∥−1

Lp(·)/p∗

and s = p0/p∗, to obtain

∥II∥Lp(·) ≲

∥∥∥∥∥∥
∑
j

(
λj χ4βBj

Maj
)p∗

∥∥∥∥∥∥
1/p∗

Lp(·)/p∗

≲

∥∥∥∥∥∥
∑
j

(
λj∥∥χ4βBj

∥∥
Lp(·)

)p∗

χ4βBj

∥∥∥∥∥∥
1/p∗

Lp(·)/p∗

.
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It is easy to check that χ4βBj ≤ (MχBj )
2. From this inequality, Theorem 2.1 and

Lemma 2.11, we have

∥II∥Lp(·) ≲

∥∥∥∥∥∥∥∥

∑
j

 λ
p∗/2
j∥∥χBj

∥∥p∗/2

Lp(·)

(MχBj
)

2


1/2
∥∥∥∥∥∥∥∥
2/p∗

L2p(·)/p∗

≲

∥∥∥∥∥∥∥
∑

j

(
λjχBj

∥χBj
∥Lp(·)

)p∗


1/p∗

∥∥∥∥∥∥∥
Lp(·)

.

Finally, Lemma 2.15 gives

∥II∥Lp(·) ≲ A
(
{λj}∞j=1, {Bj}∞j=1, p(·)

)
≲ ∥f∥Hp(·) .

Now we study III. By [3, Theorem 3] and [13, Corollary 2, p. 36] (see also [13,
2.5, p. 11]), we have, for every multi-index I with d(I) = 2, that the operator T ∗

I

is bounded on Lp0(Hn) for every 1 < p0 < ∞. Proceeding as in the estimate of II,
we get

∥III∥Lp(·) ≲ A
(
{λj}∞j=1, {Bj}∞j=1, p(·)

)
≲ ∥f∥Hp(·) .

Thus, we have ∥∥∥∥∥∥
∞∑
j=1

λjNq,2(̃bj ; ·)

∥∥∥∥∥∥
p(·)

≲ ∥f∥Hp(·) .

By Lemma 2.2, we obtain κp(·)

(∑∞
j=1 λjNq,2(̃bj ; ·)

)
< ∞. Hence

∞∑
j=1

λjNq,2(̃bj ; z) < ∞ a.e. z ∈ Hn (13)

and

κp(·)

 ∞∑
j=M+1

λjNq,2(̃bj ; ·)

→ 0, as M → ∞. (14)

From (13) and Lemma 2.5, there exists a function G such that
∑∞

j=1 λj b̃j = G in

Eq
1 and

Nq,2

G−
M∑
j=1

λj b̃j

 ; z

 ≤ c

∞∑
j=M+1

λjNq,2(̃bj ; z).

This estimate together with (14) and Lemma 2.3 implies∥∥∥∥∥∥G−
M∑
j=1

λj b̃j

∥∥∥∥∥∥
Hp(·)

q,2

→ 0, as M → ∞.
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By Proposition 2.7, we have that G ∈ Hp(·)
q,2 (Hn) and G =

∑∞
j=1 λj b̃j in Hp(·)

q,2 (Hn).

Since L is a continuous operator from Hp(·)
q,2 (Hn) into Hp(·)(Hn), we get

LG =
∑
j

λjLb̃j =
∑
j

λjaj = f,

in Hp(·)(Hn). This shows that L is onto Hp(·)(Hn). Moreover,

∥G∥Hp(·)
q,2

=

∥∥∥∥∥∥
∞∑
j=1

λj b̃j

∥∥∥∥∥∥
Hp(·)

q,2

≲

∥∥∥∥∥∥
∞∑
j=1

λjNq,2(̃bj ; ·)

∥∥∥∥∥∥
p(·)

≲ ∥f∥Hp(·) = ∥LG∥Hp(·) .

For to conclude the proof, we will show that the operator L is injective on Hp(·)
q, 2 .

Let O = {z : Nq,2(G; z) > 1}. The set O is open because of that Nq,2(G; ·) is
lower semicontinuous. We take a constant r > 0 such that r ≥ max{q, p+}. Since
Nq,2(G; ·) ∈ Lp(·)(Hn) it follows that |O| is finite and Nq,2(G; ·) ∈ Lr(Hn \ O)

thus following the proof of Theorem 18 in [12] we have that if G ∈ Hp(·)
q,2 (Hn) and

LG = 0, then G ≡ 0. This proves the injectivity of L. □

Therefore, Theorem 3.1 allows us to conclude, for Q(2 + Q/q)−1 < p, that the
equation

LF = f, f ∈ Hp(·)(Hn)

has a unique solution in Hp(·)
q,2 (Hn), namely: F := L−1f .

We shall now see that the case 0 < p+ ≤ Q (2 + Q
q )

−1 is trivial.

Theorem 3.2. If p(·) is an exponent function on Hn such that p+ ≤ Q(2+Q/q)−1,

then Hp(·)
q, 2 (Hn) = {0}.

Proof. Let G ∈ Hp(·)
q, 2 (Hn) and assume G ̸= 0. Then there exists g ∈ G that is not

a polynomial of homogeneous degree less or equal to 1. It is easy to check that
there exist a positive constant c and a ρ-ball B = B(e, r) with r > 1 such that∫

B

|g(w)− P (w)|q dw ≥ c > 0

for every P ∈ P1.
Let z be a point such that ρ(z) > r and let δ = 2ρ(z). Then B(e, r) ⊂ B(z, δ).

If h ∈ G, then h = g − P for some P ∈ P1 and

δ−2|h|q,B(z,δ) ≥ cρ(z)−2−Q/q.

So Nq,2(G; z) ≥ c ρ(z)−2−Q/q, for ρ(z) > r. Since p+ ≤ Q(2 + Q/q)−1, we have
that

κp(·) (Nq,2(G; ·)) ≥ c

∫
ρ(z)>r

ρ(z)−(2+Q/q)p+ dz = ∞,

which gives a contradiction. Thus Hp
q,2(Hn) = {0}, if p+ ≤ Q(2 +Q/q)−1. □

https://doi.org/10.33044/revuma.5270
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