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LARGE-SCALE HOMOGENEITY AND ISOTROPY
VERSUS FINE-SCALE CONDENSATION:

A MODEL BASED ON MUCKENHOUPT-TYPE DENSITIES

HUGO AIMAR AND FEDERICO MORANA

Abstract. In this brief note we aim to provide, through a well-known class
of singular densities in harmonic analysis, a simple approach to the fact that
the homogeneity of the universe on scales of the order of a hundred million
light years is entirely compatible with the fine-scale condensation of matter
and energy. We give precise and quantitative definitions of homogeneity and
isotropy on large scales. Then we show that Muckenhoupt densities have
the ingredients required for a model of the large-scale homogeneity and the
fine-scale condensation of the universe. In particular, these densities can take
locally infinitely large values (black holes) and, at the same time, they are
independent of location at large scales. We also show some locally singular
densities that satisfy the large-scale isotropy property.

1. Introduction

The cosmological principle of the universe states that the universe is homoge-
neous and isotropic at large scales. Here, “large” means lengths larger than the
diameter of galaxy clusters (see [7, Chapter 27]). But, of course, no homogeneity
could be expected at small scales. Planets, stars, galaxies are real inhomogeneities
in which there is concentration of mass and energy.

From the point of view of mathematics, homogeneity has also been considered
from several perspectives. Perhaps the simplest but non-quantitative meaning is
that of topological homogeneity. In this approach the expression “the space looks
the same no matter where you are” is interpreted from the topological perspective.
Hence a topological space X is homogeneous if, for every couple of points x and y
in X, there exists a homeomorphism f : X → X such that f(x) = y. This means
that the universe looks topologically the same about x as about y. Nevertheless,
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70 H. AIMAR AND F. MORANA

this concept does not take into account the local heterogeneities and it is not
quantitative.

For simplicity, assume that the “substance” of an n-dimensional Euclidean uni-
verse is distributed according to a density ρ(x). Here x = (x1, . . . , xn) is a point
of Rn, and ρ(x) ≥ 0.

Let us proceed to give a plausible definition of homogeneity in the large scales for
a general density ρ(x) of our n-dimensional space. Assume that our universe has
two astronomers, located at different points x1 and x2 (see Figure 1). Assume that
their astronomical skills grow with the same rhythm. In particular they are able to
weigh their own neighborhoods. Set B(xi, R), i = 1, 2, to denote the Euclidean ball
centered at xi with radius R > 0. Precisely, B(xi, R) = {x ∈ Rn : |x − xi| < R}.
At the beginning their observations will be disjoint; when R increases, they will
start sharing part of their observable universe. When R is very large, they will
share most of their measurements but the two observed regions will never coincide.

In our elementary interpretation, the two observers are drawing the increasing
functions

M1(R) =
∫

B(x1,R)
ρ(x) dx

and

M2(R) =
∫

B(x2,R)
ρ(x) dx,

respectively. We say that the universe, modeled by ρ(x), is homogeneous in the
large scales if no matter what the locations x1 and x2 are, the two observers are
weighing the same mass for R large. More precisely, if

M1(R)
M2(R) −−−−→

R→∞
1 (1.1)

for every choice x1, x2 of points in Rn. It is worth noticing that not every locally
integrable density satisfies this property. In fact, as it is easy to prove, exponential
growth is not allowed.

The question is whether or not there are nontrivial densities satisfying (1.1).
Nontriviality should allow very strong local heterogeneities. Not only objects of
large mass but also points of infinitely large density in order to include, at least in
an heuristic way, an elementary model for black holes.

We aim to show that there is a huge class of densities ρ in Rn fulfilling this
two apparently contradictory conditions: homogeneity in the large scales, in the
sense of (1.1), and strong local heterogeneity allowing heavy objects and locally
unbounded density.

The class of densities that we shall consider is the well-known, in harmonic
analysis, class of Muckenhoupt weights. See [8, 6, 3].

Section 2 is devoted to a brief introduction of this class of densities and to the
presentation of some nontrivial examples, including densities that are singular on
sets of positive dimension. In Section 3 we prove that the densities defined by
Muckenhoupt weights provide the desired homogeneity at large scales in the sense
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Figure 1. Two observers at x1 and x2 improving their astronom-
ical skills. (Image source: NASA Goddard.)
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of (1.1). In Section 4 we briefly discuss the corresponding isotropy condition with
these types of mass distributions.

2. Muckenhoupt densities

Let us start by introducing the Muckenhoupt classes in the Euclidean setting Rn.
There are extensive treatments of the subject in harmonic analysis, such as [8, 6, 3].
These approaches focus usually more on operator theory than on the geometrical
properties associated to these densities. With B we shall denote the Euclidean open
balls of Rn. We shall write B(x, r) when the center x ∈ Rn and the radius r > 0
of B have to be explicit. A positive measurable and locally integrable function
ρ defined in Rn satisfies always, by the Schwarz inequality, the following upper
estimate for the volume |B| of a ball B:

|B|2 =
(∫

B

dx

)2
=

(∫
B

ρ
1
2 ρ− 1

2 dx

)2

≤
(∫

B

ρ dx

) (∫
B

ρ−1 dx

)
for every ball B. More generally, from the Hölder inequality with 1 < p < ∞ and
1
q + 1

p = 1, we also have

|B|p =
(∫

B

dx

)p

=
(∫

B

ρ
1
p ρ− 1

p dx

)p

≤

{(∫
B

ρ dx

) 1
p

(∫
B

ρ− q
p dx

) 1
q

}p

=
(∫

B

ρ dx

) (∫
B

ρ− 1
p−1 dx

)p−1

again for every ball B and every density ρ.
It is easy to provide examples of densities in which the above estimates for the

volume of B are far from being optimal. On the other hand, it is clear that the above
inequalities become equations for balls in regions where the density ρ is constant,
and that |B|p and

( ∫
B

ρ dx
)( ∫

B
ρ− 1

p−1 dx
)p−1 are of the same order if there exist

positive and finite constants 0 < c1 ≤ ρ(x) ≤ c2 < ∞ for every x ∈ Rn. In other
words, these two magnitudes become equivalent when ρ is almost constant. Also,
from the point of view of a density model for the universe, the property 0 < c1 ≤
ρ(x) ≤ c2 < ∞ is unrealistic because it prevents the existence of highly localized
massive objects and also the occurrence of points with vanishing density. Precisely,
Muckenhoupt densities deserve analysis and particular consideration because the
quantities |B|p and

( ∫
B

ρ dx
)( ∫

B
ρ− 1

p−1 dx
)p−1 are equivalent and ρ can still have

singularities, points of infinity density and points of vanishing density.
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Definition 2.1. Let ρ be a density in Rn and 1 < p < ∞. We shall say that ρ is
a Muckenhoupt density, of the class Ap, if there exists a constant C such that(∫

B

ρ dx

) (∫
B

ρ− 1
p−1 dx

)p−1
≤ C|B|p

for every ball B in Rn.
A density ρ is said to belong to A1 if there exists a constant C such that∫

B

ρ dx ≤ C inf
B

ρ · |B|

for every ball B in Rn.
A density ρ is said to belong to A∞ if ρ ∈ Ap for some 1 ≤ p < ∞.

Benjamin Muckenhoupt introduced in [8] these densities as the exact classes for
the boundedness of Hardy–Littlewood and singular integrals operators in Lebesgue
spaces. In this brief introduction we shall only collect the measure-theoretical
aspects of Muckenhoupt densities allowing us to prove, in the next section, the
homogeneity in the large scales of a universe modeled by this type of densities ρ.

The next proposition contains the main properties of Muckenhoupt densities
related with the subsequent development of our model.

Proposition 2.2. Let ρ be a density in Rn, the n-dimensional Euclidean space.
Then

(a) for 1 < p < q and ρ ∈ Ap, we have that ρ ∈ Aq;
(b) for p > 1 and ρ ∈ Ap, there exists a constant C such that the inequality

|E|
|B|

≤ C

(
ρ(E)
ρ(B)

)1/p

,

where ρ(A) =
∫

A
ρ dx, holds for every ball B and every measurable subset E

of B;
(c) for p > 1, ρ ∈ Ap and C as in (b), the mass satisfies the following doubling

property:
ρ(B(x, 2R)) ≤ 2npCpρ(B(x, R))

for every x ∈ Rn and every R > 0;
(d) let ρ be any A∞ density; then there exist two constants C̃ > 0 and γ > 0

such that the inequality
ρ(E)
ρ(B) ≤ C̃

(
|E|
|B|

)γ

holds for every ball B and every measurable subset E of B.

The proof of the above proposition can be found in [3] or [6]. The first three
properties are simple consequences of the definition of Ap. Property (d) instead re-
lies on subtle arguments such as the Calderón–Zygmund decomposition technique.
On the other hand, Property (d) shall be crucial in our proof of the large scale of
homogeneity in the next section.
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Let us give some examples of locally quite heterogeneous Muckenhoupt densities.
The first class of nontrivial A∞ densities which are radial with respect to some point
x0 ∈ Rn are the powers of the distance. In fact, ρ(x) = |x − x0|β belongs to the
Muckenhoupt class Ap(Rn) if and only if −n < β < n(p−1). Hence ρ(x) = |x−x0|β
belongs to A∞ if and only if β > −n. When β = 0, we recover the trivial constant
weights, but when −n < β < 0, we have a singularity in x0 and ρ can be arbitrarily
large in any neighborhood of x0. On the other hand, when β > 0, we have densities
that are unbounded at infinity, but they are still A∞ densities. An extension of
the above is due to Ricci and Stein [9] (see also [10]).

The singularities of the density can actually be concentrated on sets which are
quite irregular. The most recent and interesting result concerning the structure of
these sets is given in [2]. The authors provide a necessary an sufficient condition
on a set F of the Euclidean space in order to produce A1 Muckenhoupt weights as
negative powers of d(x, F ). This condition is a weak form of porosity and essentially
contains the situations described in [4], [1] and [5]. The results are of the following
type. The function ρ(x) = d−β(x, F ) belongs to the class A1 if and only if F is
(weakly) porous. In particular, the function

ρ(x) = 1√
d(x, F )

belongs to A∞ if F is the smooth boundary of some open domain in Rn. Hence
we can have densities with infinitely large values on very large sets of Hausdorff
dimension less than n, for example, on a surface in R3.

Several important results of harmonic analysis provide tools for building singu-
lar weights. In particular, the relation of Muckenhoupt classes with the space of
functions of bounded mean oscillation.

These results reveal that power laws are in some sense the extremals of the
A∞ class of densities. No exponential behavior for a density, as illustrated in
Section 1, will produce the desired homogeneity in the large scales allowing strong
heterogeneities in any bounded region of the space.

3. The main result

Let us formally state and prove the main result of this note.

Theorem 3.1. Let ρ(x) be an A∞(Rn) Muckenhoupt density. Then Rn with the
density ρ(x) is homogeneous at the large scales.

Proof. Let x1 and x2 be two points in Rn, and let R > 0 be given. With the
notation introduced in Section 2 we have to prove that

ρ(B(x1, R))
ρ(B(x2, R)) −−−−→

R→∞
1.
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With the standard notation for intersections and differences of sets we may write

ρ(B(x1, R))
ρ(B(x2, R)) = ρ(B(x1, R) ∩ B(x2, R)) + ρ(B(x1, R) \ B(x2, R))

ρ(B(x2, R) ∩ B(x1, R)) + ρ(B(x2, R) \ B(x1, R))

=
1 + ρ(A1)

ρ(B(x1, R) ∩ B(x2, R))

1 + ρ(A2)
ρ(B(x2, R) ∩ B(x1, R))

with A1 = B(x1, R) \ B(x2, R) and A2 = B(x2, R) \ B(x1, R). Notice that
(1) A1 ⊂ E1 = B(x1, R) \ B(x1, R − |x1 − x2|) ⊂ B(x1, R);
(2) A2 ⊂ E2 = B(x2, R) \ B(x2, R − |x1 − x2|) ⊂ B(x2, R);
(3) B(x1, R

2 ) ⊂ B(x1, R) ∩ B(x2, R) for R large enough;
(4) B(x2, R

2 ) ⊂ B(x1, R) ∩ B(x2, R) for R large enough.
Now use (3), (4) and the doubling property (c) in Proposition 2.2 and obtain

ρ(Ai)
ρ(B(x1, R) ∩ B(x2, R)) ≤ ρ(Ai)

ρ(B(xi, R/2)) ≤ 2npCp ρ(Ai)
ρ(B(xi, R))

for i = 1, 2 and p such that ρ ∈ Ap(Rn). The constant C is that in (c) of Propo-
sition 2.2. Let us now apply (1) and (2) above and then (d) in Proposition 2.2.
Doing so, since Ei ⊂ B(xi, R) (i = 1, 2), we get

ρ(Ai)
ρ(B(x1, R) ∩ B(x2, R)) ≤ 2npCp ρ(Ei)

ρ(B(xi, R))

≤ 2npCpC̃

(
|Ei|

|B(xi, R)|

)γ

= 2npCpC̃

[
Rn − (R − |x1 − x2|)n

Rn

]γ

= 2npCpC̃

[
1 −

(
1 − |x1 − x2|

R

)n]γ

for i = 1, 2. Since the above expression tends to zero for R → ∞, we have the
desired homogeneity in the large scales, i.e.,

ρ(B(x1, R))
ρ(B(x2, R)) −−−−→

R→∞
1.

Actually, the last estimate provides a velocity of convergence in terms of the dis-
tance |x1 − x2| between the two observers. □

4. Isotropy

The second component of the cosmological principle is the large-scale isotropy
of the universe. Roughly speaking, isotropy entails that, from every point in space,
the universe looks the same in any direction at large scales.
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Assume as before that the density of the universe of n dimensions is distributed
according to the nonnegative density function ρ(x) = ρ(x1, . . . , xn). A quantitative
version of the above qualitative formulation can be given by the fact that

lim
R→∞

λ(x1, v⃗1, R)
λ(x2, v⃗2, R) = 1

for every x1, x2 ∈ Rn and v⃗1, v⃗2 ∈ Sn−1, where

λ(x, v⃗, R) =
∫ R

0
ρ(x + tv⃗) dt

for x ∈ Rn and v⃗ ∈ Sn−1 the unit sphere in Rn.
Notice that in order to have the function λ well defined for every x ∈ Rn,

every R > 0 and every v⃗ ∈ Sn−1, we need more than the local integrability of ρ.
Nevertheless, some local singularities of ρ are still possible with power laws weaker
than those providing homogeneity. The next result shows a simple example of
isotropy and homogeneity with a singularity.

Lemma 4.1. Let x0 be a fixed point in Rn and 0 < α < 1. Let ρ(x) = |x − x0|−α.
Then

1
1 − α

[(
|x − x0| + R

)1−α − |x − x0|1−α
]

≤ λ(x, v⃗, R)

≤ |x − x0|1−α

1 − α
+ 1

1 − α

(
R − |x − x0|

)1−α

for every x ∈ Rn, v⃗ ∈ Sn−1 and R > |x − x0|.

Proof. Let us first estimate pointwise from above and from below the restriction
of the density ρ to the half line {x + tv⃗ : t > 0}. Since − |x − x0| ≤ (x − x0) · v⃗ ≤
|x − x0|, we have, for t > 0, that −2t |x − x0| ≤ 2t(x − x0) · v⃗ ≤ 2t |x − x0|. Hence∣∣∣∣(x − x0) − t

x − x0

|x − x0|

∣∣∣∣2
≤ |(x − x0) + tv⃗|2 ≤

∣∣∣∣(x − x0) + t
x − x0

|x − x0|

∣∣∣∣2
.

Then, for ρ(x + tv⃗) = |(x + tv⃗) − x0|−α, we have

ρ

(
x + t

x − x0

|x − x0|

)
≤ ρ(x + tv⃗) ≤ ρ

(
x − t

x − x0

|x − x0|

)
.

Therefore, integrating for t ∈ [0, R], we get∫ R

0

∣∣∣∣(x − x0) + t
x − x0

|x − x0|

∣∣∣∣−α

dt ≤ λ(x, v⃗, R) ≤
∫ R

0

∣∣∣∣(x − x0) − t
x − x0

|x − x0|

∣∣∣∣−α

dt.

Then ∫ R

0
(t + |x − x0|)−α dt ≤ λ(x, v⃗, R) ≤

∫ R

0
||x − x0| − t|−α

dt,
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or, for R large,
1

1 − α

[
(|x − x0| + R)1−α − |x − x0|1−α

]
≤ λ(x, v⃗, R)

≤
∫ |x−x0|

0
(|x − x0| − t)−α dt +

∫ R

|x−x0|
(t − |x − x0|)−α dt

= |x − x0|1−α

1 − α
+ 1

1 − α
(R − |x − x0|)1−α,

as desired. □

Proposition 4.2. For x0 ∈ Rn and 0 < α < 1, the density ρ(x) = |x − x0|−α is
homogeneous and isotropic.

Proof. Take x1, x2 ∈ Rn, v⃗1, v⃗2 ∈ Sn−1 and R large. Applying Lemma 4.1 we have
1

1−α

[
(|x1 − x0| + R)1−α − |x1 − x0|1−α

]
|x2 − x0|1−α

1 − α
+ 1

1 − α
(R − |x2 − x0|)1−α

≤ λ(x1, v⃗1, R)
λ(x2, v⃗2, R)

≤

|x1 − x0|1−α

1 − α
+ 1

1 − α
(R − |x1 − x0|)1−α

1
1−α

[
(|x2 − x0| + R)1−α − |x2 − x0|1−α

] .

The first and the last terms in the above inequalities tend to one for R → ∞, and
we are done, since ρ is a Muckenhoupt weight. □
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equations in planar Hölder-α domains, Math. Models Methods Appl. Sci. 20 no. 1 (2010),
95–120. DOI MR Zbl
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