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CLIQUE COLORING EPT GRAPHS
ON BOUNDED DEGREE TREES

PABLO DE CARIA, MARÍA PÍA MAZZOLENI, AND MARÍA GUADALUPE PAYO VIDAL

Abstract. The edge-intersection graph of a family of paths on a host tree
is called an EPT graph. When the host tree has maximum degree h, we say
that the graph is [h, 2, 2]. If the host tree also satisfies being a star, we have
the corresponding classes of EPT-star and [h, 2, 2]-star graphs. In this paper,
we prove that [4, 2, 2]-star graphs are 2-clique colorable, we find other classes
of EPT-star graphs that are also 2-clique colorable, and we study the values
of h such that the class [h, 2, 2]-star is 3-clique colorable. If a graph belongs
to [4, 2, 2] or [5, 2, 2], we prove that it is 3-clique colorable, even when the host
tree is not a star. Moreover, we study some restrictions on the host trees to
obtain subclasses that are 2-clique colorable.

1. Introduction

An EPT representation of a graph G is a pair ⟨P, T ⟩, where T is a tree and P is
a family (Pv)v∈V (G) of paths of T satisfying that two vertices v and v′ are adjacent
in G if and only if their corresponding paths Pv and Pv′ have edge intersection.
The tree T is called a host tree. We say that G is an EPT graph if it has an EPT
representation. Moreover, when the host tree is a star, we say that the graph is
EPT-star. The EPT class was first investigated by Golumbic and Jamison [16, 17].

When the maximum degree of the host tree is at most h, the EPT representation
of G is called an (h, 2, 2)-representation. The class of graphs that admit an (h, 2, 2)-
representation is denoted by [h, 2, 2]. This definition clearly implies that [h′, 2, 2]
is a subclass of [h, 2, 2] for h′ < h. We say that a graph is [h, 2, 2]-star if it has an
(h, 2, 2)-representation where the host tree is a star. It is known that [3, 2, 2] is the
class of EPT Chordal graphs [19], while [4, 2, 2] is the class of EPT Weakly Chordal
graphs [18]. A complete hierarchy of related graph classes emerging by imposing
restrictions on the tree representation is published in [16]. The class [∞, 2, 2] is the
class of EPT graphs, where ∞ means that there is no restriction in the maximum
degree of the host tree. Recognizing EPT graphs is an NP-complete problem [16].

EPT graphs are used in network applications, where the problem of scheduling
undirected calls in a tree network is equivalent to the problem of coloring an EPT
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graph (see [14, 16]). The communication network is represented as an undirected
interconnection graph, where each edge is associated with a physical link between
two nodes. An undirected call is a path in the network. When the network is a
tree, this model is clearly an EPT representation. Coloring the EPT graph such
that two adjacent vertices have different colors implies that paths sharing at least
one common edge in the EPT representation have different colors, meaning that
undirected calls that share a physical link are scheduled in different times. Another
application is assigning wavelengths to connections in an optical network, where
virtual connections share physical links by wavelength-division multiplexing. This
problem is equivalent to the problem of coloring an EPT graph as follows: in
the optical interconnection graph, every edge is associated with an optical link
between two vertices. Virtual connections that share the same optical link must
have different wavelengths. The coloring may be associated with assignment of
wavelengths such that connections of the same color can be assigned the same
wavelength. For a survey, see [5, 15].

Let ⟨P, T ⟩ be an EPT representation of G. For an edge e of T , we define
P[e] = {P ∈ P | e ∈ P}. For any induced subgraph H of T isomorphic to K1,3,
let P[H] = {P ∈ P | P contains two edges of H}. Clearly, each P[e] and each
P[H] corresponds to a complete set of G. A clique of the form P[e] is called an
edge clique, and one of the form P[H], a claw clique. Thus we have:

Theorem 1.1 ([16]). Let G be an EPT graph, and let ⟨P, T ⟩ be an EPT represen-
tation of G. Every clique C of G corresponds to a subcollection of the form P[e]
or P[H] for some edge e in T or some induced claw H in T .

Note that the condition of being edge clique or claw clique depends on the given
EPT representation.

A family F satisfies the Helly property if every pairwise intersecting subfamily
of F has an element in common, that is, for any subfamily F ′ of F we have
Fi ∩ Fj ̸= ∅ for all Fi, Fj ∈ P ′ implies that

⋂
Fi∈F ′ Fi ̸= ∅.

A Helly-EPT representation is an EPT representation ⟨P, T ⟩ such that the
family (E(P ))P ∈P satisfies the Helly property. We say that a graph is EPT-Helly
if it has an EPT-Helly representation. As a consequence of these definitions, in an
EPT-Helly representation all cliques are edge cliques.

For an integer k > 2, a pie of size k in an EPT representation ⟨P, T ⟩ is a star
subgraph of T with center q and neighbours q1, . . . , qk, and a subfamily of paths
P1, . . . , Pk such that {qi, q, qi+1} ⊆ V (Pi) for i ∈ [1, k − 1] (the natural interval
{1, 2, . . . , k − 1}), and {qk, q, q1} ⊆ V (Pk). In that case, we say that the paths
P1, . . . , Pk of P form a pie. Golumbic and Jamison introduced the notion of pie
to describe the EPT representations of induced cycles.

Theorem 1.2 ([17]). Let ⟨P, T ⟩ be an EPT representation of a graph G. If G
contains an induced cycle Ck, with k > 3, then ⟨P, T ⟩ contains a pie of size k
whose paths are in one to one correspondence with the vertices of Ck.

A proper k-coloring of a graph G is a function f : V (G) → {1, 2, . . . , k} such that
if v, w ∈ V (G) are adjacent in G, then f(v) ̸= f(w). A graph G is k-colorable if it
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has a proper k-coloring. The chromatic number χ(G) of a graph G is the smallest
integer k such that G is k-colorable.

A k-clique coloring of a graph G is a function f : V (G) → {1, 2, . . . , k} such that
no clique of G with size at least two has all its vertices with the same color (we
usually say that a set is monochromatic when all its elements have the same color).
A graph G is k-clique colorable if it has a k-clique coloring. The clique chromatic
number of G, denoted by χc(G), is the smallest integer k such that G is k-clique
colorable. The clique coloring can also be seen as coloring the clique hypergraph
of a graph. The question of coloring clique hypergraphs was proposed in [13].

Clique coloring has some similarities with usual coloring. For example, every
proper k-coloring is also a k-clique coloring, and χ(G) and χc(G) coincide if G is
triangle-free. However, there are also major differences. For example, a clique col-
oring of a graph need not be a clique coloring for its subgraphs. Indeed, subgraphs
may have a greater clique chromatic number than the original graph. Another
difference is that even a 2-clique colorable graph can contain an arbitrarily large
clique. It is known that the 2-clique coloring problem is NP-complete, even under
different constraints [3, 20]. Many families of graphs are 3-clique colorable, for ex-
ample, comparability graphs, co-comparability graphs, circular arc graphs and the
k-powers of cycles [7, 8, 9, 13, 12]. In [3], Bacsó et al. proved that almost all perfect
graphs are 3-clique colorable and conjectured that all perfect graphs are 3-clique
colorable. This conjecture was recently disproved by Charbit et al. [10], who showed
that there exist perfect graphs with arbitrarily large clique chromatic number. Pre-
viously known families of graphs having unbounded clique chromatic number are,
for example, EPT graphs, triangle-free graphs, and line graphs [3, 9, 22]. It has
been proved that chordal graphs, and in particular interval graphs, are 2-clique
colorable [23].

In [9], EPT-Helly graphs are called UEH graphs and it is proved that, even
though the clique chromatic number is unbounded for EPT graphs, there is a
bound for the clique chromatic number of UEH graphs.

Theorem 1.3 ([9]). If G is an UEH graph, then χC(G) ≤ 3.

Since triangle-free EPT graphs are EPT-Helly graphs (the existence of a claw
clique in a representation would imply the existence of a triangle), we have the
following corollary.

Corollary 1.4. Let G be a triangle-free EPT graph. Then χC(G) ≤ 3.

Motivated by the applications of coloring EPT graphs, and the difficulty (and
unboundedness) of this problem in general, we begin to study the topic by con-
sidering restrictions to the EPT representations, mostly based on the maximum
degree, in search for bounds in these restricted cases. The paper is organized as
follows.

Section 2 contains the necessary definitions and preliminary results. In Sec-
tion 3, we show that [4, 2, 2]-star graphs, [5, 2, 2]-star graphs different from C5,
and diamond-free EPT-star graphs different from an odd cycle are all 2-clique col-
orable. Moreover, we deduce that the graphs in [16, 2, 2]-star are 3-clique colorable.
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In Section 4, we prove that C5 and the prism graph are the only minimal graphs
in [5, 2, 2] − [4, 2, 2], and we prove that [5, 2, 2] graphs are 3-clique colorable. In
Section 5, we show that 3 is still a tight bound for the clique chromatic number
of [4, 2, 2] graphs, and we introduce some restrictions on the host tree to obtain
2-clique colorable subclasses. Finally, in Section 6 we present conclusions and some
open questions.

2. Preliminaries

The graphs considered in this work are simple and finite. Many of the definitions
and notations that we use are considered standard in graph theory (see [6, 21]),
and they will be used without a previous definition.

For a graph G = (V, E), V is the set of vertices and E is the set of edges. If
|V (G)| = 1, G is called a trivial graph. The open neighborhood of a vertex v, denoted
by NG(v), is the set of vertices which are adjacent to v. Its closed neighborhood,
denoted by NG[v], is the set NG(v) ∪ {v}. A vertex v is isolated when NG(v) = ∅,
and it is universal when NG[v] = V (G). The degree of v, denoted by dG(v), is
the cardinality of NG(v). To simplify, when there is no confusion we omit the
subscript G and simply write N(v), N [v] or d(v). Two vertices u, v ∈ V (G) are
called true twins (or simply twins) if N [u] = N [v], and they are called false twins
if N(u) = N(v) and u is not adjacent to v in G.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If G is a
graph and X is a nonempty subset of vertices of G, the subgraph of G induced
by X is the subgraph H such that V (H) = X and E(H) is the set of edges of G
that have both endpoints in X, and it is denoted by G[X]. We say that H is an
induced subgraph of G when H = G[X] for some subset X of vertices of G.

A graph is complete if all its vertices are pairwise adjacent. We denote by Kn

the complete graph with n vertices. In an abuse of notation, we say that a set
of vertices of G is complete when they induce a complete subgraph. A clique is a
maximal complete set, that is, it is a complete set contained in no other complete
set of the graph. We call C (G) the family of cliques of G. In the literature, it is
more usual to define a clique without the maximality condition. The reader must
be aware that, for the purposes of this paper, whenever we refer to a clique we
assume that it is maximal.

The diamond is the graph obtained by removing one edge from K4.
A path P is a nonempty sequence v0, v1, . . . , vk of different vertices of G such

that, for all i, 1 ≤ i ≤ k, vi−1 and vi are adjacent in G. We say that P is a path
between v0 and vk. These two vertices are called the endpoints of P . The edges
of P are the ones between its consecutive vertices. We denote the set of edges of
P by E(P ). The number k of edges in the path is called the length of P . When
it is more convenient, we will express a path P as the sequence e1, e2, . . . , ek of its
edges, where, for 1 ≤ i ≤ k, ei = vi−1vi. Two paths P1 and P2 share an edge e if
both P1 and P2 have e as an edge. In this case, we say that P1 and P2 have edge
intersection, or that P1 edge-intersects P2.
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A cycle C is a nonempty sequence v0, v1, . . . , vk, where v0 and vk are the only
equal vertices and such that, for all i, 1 ≤ i ≤ k, vi−1 and vi are adjacent in G. We
also refer to k as the length of C. A cycle is even or odd when its length is even or
odd, respectively. A chord of a cycle is an edge connecting nonconsecutive vertices
of the cycle. An induced cycle of a graph is a cycle that has no chords. We denote
the induced cycle of n vertices by Cn.

A graph G is connected if, for every pair of different vertices of G, there exists a
path between them. A connected component of G is a maximal connected subgraph
of G. A graph G is disconnected if it is not connected. The graphs in this paper
are assumed to be connected, unless stated otherwise. Thus, when the graph is
nontrivial, its cliques have size at least 2.

A tree is a connected graph that has no cycles. A connected subgraph of a tree
is called a subtree. A vertex of degree one in a tree is called a leaf. We say that
a tree has degree h when the maximum degree of its vertices is h. An edge of the
tree T is a pending edge if it is incident on a leaf of T . A vertex v of a tree that
is not a leaf is an external vertex if all the edges incident on it, with the possible
exception of one, are pending edges.

The star of size n, denoted by Sn, is the complete bipartite graph K1,n, that is,
it is a tree with n + 1 vertices such that one of them is universal and the other n
are leaves. The star of size 3, K1,3, is known as a claw graph.

A graph is chordal if it has no induced cycles Cn, with n ≥ 4.
A vertex v of G is simplicial if NG[v] is a clique. Then we have:

Theorem 2.1 ([11]). Let G be a chordal graph. Then G has a simplicial vertex.
If G is not complete, then it has two nonadjacent simplicial vertices.

As a consequence of this theorem, we can infer that a graph is chordal if and
only if every induced subgraph of it has a simplicial vertex.

A graph G is weakly chordal if, for every n ≥ 5, G has neither Cn nor its
complement as an induced subgraph.

3. Clique coloring EPT-star graphs

In this section, we give some results related to the clique coloring of EPT-star
graphs. To start, we show that it is easy to 2-clique-color [4, 2, 2]-star graphs.

Proposition 3.1. Let G be a [4, 2, 2]-star graph. Then χc(G) ≤ 2.

Proof. If G has no induced C4, then G is chordal and it is 2-clique colorable [23].
If G has an induced C4, we color its vertices alternately with colors 0 and 1. We
have that every extension of this coloring using the same colors 0 and 1 is a clique
coloring, because every clique of G, being an edge clique or claw clique, contains
an edge of the induced C4, so it contains a vertex with color 0 and a vertex with
color 1. Hence, G is 2-clique colorable. □

We do not have the same bound for [5, 2, 2]-star graphs because C5 is in the
class and its clique-chromatic number is 3.

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)



84 P. DE CARIA, M. P. MAZZOLENI, AND M. G. PAYO VIDAL

To find the values of h for which an upper bound of 3 stays true, we can connect
this question to line graphs and Ramsey theory.

Recall that, given a graph G, the line graph L(G) of G has E(G) as vertex set
such that two different edges of G are adjacent in L(G) if and only if they share at
least one endpoint.

Golumbic and Jamison proved in [17] that EPT-star graphs are just the line
graphs of multigraphs (graphs that admit loops and multiple edges).

To establish the equality, given a multigraph G, one can take a star whose leaves
are just the vertices of G. To build an EPT-star representation of L(G), an edge
of G with endpoints u and v is represented by the path in the star connecting
them, while a loop of G on the vertex v is represented by the path of the star that
consists solely of the edge incident on v.

Conversely, given an EPT-star representation for a graph G, we can apply the
inverse procedure to obtain a multigraph H such that L(H) = G.

For an example of the construction, refer to Figure 1.

Figure 1. Example of the construction of an EPT-star represen-
tation of L(G).

We denote by Rk(3) the minimum number n such that every k-edge coloring
of Kn has a monochromatic triangle. The following result concerning the clique
chromatic number of line graphs is derived from the work in [2, 4].

Proposition 3.2 ([4]). Let G be a graph, G ̸= C5, such that χ(G) = M . Then
M < Rk(3) implies that χC(L(G)) ≤ k. Conversely, for the case of complete
graphs, we have that χc(L(KM )) is the minimum number k such that M < Rk(3).

By the previous discussion, we know that every [5, 2, 2]-star graph is the line
graph of a multigraph with at most five vertices. Additionally, we have R2(3) = 6,
which leads to the following conclusion.

Proposition 3.3. Let G be a [5, 2, 2]-star graph, G ̸= C5. Then χc(G) ≤ 2.

Furthermore, it is known that the Ramsey number R3(3) is equal to 17, so
Proposition 3.2 now yields the following conclusion.

Proposition 3.4. Every graph in [16, 2, 2]-star is 3-clique colorable. Additionally,
L(K17) is a [17, 2, 2]-star graph whose clique chromatic number is 4.
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Now we focus on finding conditions that make an EPT-star graph 2-clique col-
orable and that do not depend on the maximum degree of the host tree.

We include the following simple result as a proposition since it will be used
frequently in proofs.

Proposition 3.5. Let G be a graph, v, w ∈ V (G), v ̸= w, such that N [v] ⊆ N [w]
and k ≥ 2. If G − v is k-clique colorable, then G is also k-clique colorable.

Proof. Consider a clique coloring of G − v using colors 1, 2, . . . , k. Extend this
coloring by giving v a color different from that of w.

Consider now a clique C of G. If v ̸∈ C, then C is a clique of G − v and hence
is not monochromatic. If v ∈ C, then the condition N [v] ⊆ N [w] implies that w is
also in C. Since v and w have different colors, C is not monochromatic. Therefore,
the coloring of G is a k-clique coloring. □

Particular cases of this proposition are when v is a simplicial vertex or v has a
twin vertex. When one looks at the representation rather than the graph, particular
cases are when the representation has two identical paths, or when it has a path
of length one. The reason for this is that vertices whose paths are of length 1 are
simplicial vertices and vertices with equal paths are twins.

Lemma 3.6. If G is a graph that contains as a subgraph a tree T such that, for
all C ∈ C (G) (with at least two vertices), T has an edge contained in C, then
χc(G) ≤ 2.

Proof. We know that χ(T ) ≤ 2. Any extension of a proper 2-coloring of T (using
those two colors only) provides a clique coloring of G. In fact, every clique C of G
with at least two vertices contains an edge e of T whose endpoints have different
color. □

The following result can be derived from [9, Theorem 2.2]. As no proof of it is
given there, we include a proof that is adjusted to our needs.

Lemma 3.7. Let G be an EPT-Helly-star graph. If G ̸= C2n+1, n > 1, then
χc(G) ≤ 2.

Proof. The result is trivial if G has just one vertex, so we assume that G has at
least two vertices. If G is an even cycle, then the usual proper 2-coloring of it is
also a clique coloring. We will prove this result for the case where G is not a cycle
of length at least four using Lemma 3.6.

Let G be the family that contains every connected spanning subgraph of G
such that, for all C ∈ C (G), we have that the subgraph has an edge contained
in C. Among the subgraphs in G with the minimum amount of edges, we take H
without cycles or, if that is not possible, with the minimum girth. Note that every
vertex v of G is contained in at most two cliques because, for some EPT-Helly-star
representation of G, every clique is an edge clique, and the path Pv has at most
two edges. Additionally, if u is adjacent to v and they are not twins, then Pu ̸= Pv,
and the intersection of these paths consists of a single edge, and hence there is a
unique clique containing the edge uv.
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Let us see that H is a tree. Suppose, on the contrary, that H has some cycle,
and let C be one of minimum length in H. Let e1 and e2 be any two consecutive
edges of the cycle with vertices x1, v and x2, v, respectively.

We prove that x1 and x2 are not adjacent in G. Suppose, on the contrary, that
they are adjacent. We cannot have both a clique containing e1 but not containing x2
and a clique containing e2 and not containing x1, because together with a clique
containing {x1, x2, v}, we would get the contradiction that v is contained in at least
three cliques. Therefore, every clique containing e1 also contains e2, or every clique
containing e2 also contains e1. In the first case, we conclude that H − e1 is in G.
In the second case, we conclude that H − e2 is in G. Both cases contradict the
minimality of H. Therefore, x1 and x2 are not adjacent. Particularly, C cannot be
a triangle.

As G is different from Cn, n ≥ 4, it has an edge e3 that is not in C. We now
check that e3 can be chosen so that it is a chord of C or it is an edge of H with
one of its endpoints in C. If C has no chord in G, then every edge of G not in C
has at least one endpoint not in C. Let w be a vertex of G not in C. Since H is
connected, it contains one path from w to a vertex of C. If among these paths we
consider one of minimum length, then the final edge of the path has one endpoint
in C and the other endpoint not in C.

Call v one of the endpoints of e3 in C, and define e1, e2, x1 and x2 as before.
Let C1 and C2 be the cliques containing e1 and e2, respectively. Since v1 and v2
are not adjacent, these cliques are different and are the only cliques containing v.
Furthermore, C1 is the only clique containing e1, and C2 is the only clique contain-
ing e2.

Let C3 be a clique containing e3. By the previous paragraph, it follows that
C3 = C1 or C3 = C2. Suppose without loss of generality that C3 = C1.

If e3 is a chord of the cycle, then it cannot be an edge of H. Since C3 = C1,
H + e3 − e1 is in G, and its girth is less than that of H, which is a contradiction.

If e3 is not a chord and is in H, then H − e1 is in G, which contradicts the
minimality of H.

Therefore, H cannot have a cycle. Since it is connected, it is a tree. The final
conclusion now comes from Lemma 3.6. □

Thus, we have the following corollary about diamond-free graphs.

Corollary 3.8. Let G be an EPT-star graph. If G is not an odd cycle and it is
diamond-free, then χc(G) ≤ 2.

Proof. It is enough to show that G is EPT-Helly. This is trivial when G has at
most 3 vertices.

Assume now that G has more vertices, and consider an EPT-star representation
of it.

If this representation has a claw clique C and no vertex outside C, then G is
complete, and hence EPT-Helly.

If there exists a vertex v not in C, we can choose v so that it is adjacent to at
least one vertex of C. As a consequence, the path Pv contains only one edge of
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the claw associated to C. Let u1, u2 and u3 be three vertices of C with different
paths in the representation. Thus, v, u1, u2 and u3 induce a diamond, which is a
contradiction.

Therefore, G is EPT-Helly. By Lemma 3.7, G is 2-clique colorable. □

It is possible to extend Lemma 3.7 to EPT-star graphs that have claw cliques
in their representations under special conditions.

Theorem 3.9. Let G be an EPT-star graph and G ̸= C2n+1, n > 1, with a repre-
sentation such that its claw cliques (if any) are pairwise disjoint. Then χc(G) ≤ 2.

Proof. By Proposition 3.5, it is enough to prove it for graphs with star representa-
tions that do not have identical paths or paths of length 1. Thus, every claw clique
consists of exactly three paths.

If G is EPT-Helly, then G is 2-clique colorable. Otherwise, let C1, . . . , Cn be
the claw cliques of the EPT representation of G. We construct a subgraph G′

as follows: as G is connected, there is a vertex u that is adjacent to all but one
vertex v1 of C1. We first remove v1 from G. For 2 ≤ i ≤ n, remove one vertex
in Ci different from u. As a result of this construction, G′ is an EPT-Helly-star
graph which contains a triangle (consisting of u and the remaining vertices of C1),
and hence G′ ̸= Cn, n ≥ 4 (see Figure 2).

Figure 2. Construction of G′. The dotted paths correspond to
the vertices that are removed.

Let e be an edge of the host tree of G such that the paths of the representation
that contain e form an edge clique of G. We prove that the paths corresponding
to vertices of G′ that contain e form an edge clique of G′.

Suppose first that the representation has exactly two paths that contain e. If
there is a claw clique that contains one of those paths, then it should contain both,
contradicting that we have an edge clique. Thus, such a claw clique cannot exist
and the edge clique of G is also an edge clique of G′.

If there are at least three paths containing e, then the representation of G′ keeps
the paths that are not in any claw clique and at least one path per claw clique such
that the claw contains e. This ensures that the representation of G′ has at least
two paths containing e, which determine an edge clique of G′.
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By the proof of Lemma 3.7, there is a spanning tree T of G′ such that, for every
clique C of G′, there exists an edge of T contained in C. For each claw clique
Ci of G, we add vi to T and we make it adjacent to another vertex in Ci. The
additions ensure that we get a tree T ′ such that for every claw clique C there is an
edge of T ′ contained in C. The same was true for edge cliques and T , so it is true
for T ′ as well. By Lemma 3.6, G is 2-clique colorable. □

4. Clique coloring [5, 2, 2] graphs

In this section, we prove that the graphs belonging to the class [5, 2, 2] are 3-
clique colorable. To do it, it is helpful to find what type of graphs are [5, 2, 2] and
are not in [4, 2, 2].

Definition 4.1 ([1]). Let n1, n2 and n3 be positive integers. A general prism
Fn1,n2,n3 consists of two triangles {a1, a2, a3} and {b1, b2, b3}, and three disjoint
chordless paths Q1, Q2 and Q3 such that, for 1 ≤ i ≤ 3, Qi is an aibi-path of
length ni.

The prism graph is the general prism graph F1,1,1 (see Figure 3). General prisms
are all EPT graphs, and we have the following results concerning the degrees of
the trees that can be used to represent them.

Figure 3. Prism graph and its EPT representation.

Lemma 4.2 ([1]). The general prism Fn1,n2,n3 is an [h, 2, 2] graph for h = n1 +
n2 + n3 + 2.

Theorem 4.3 ([1]). Let h = n1 + n2 + n3 + 1. The general prism Fn1,n2,n3 is
{Cn : n > h}-free and it is not an [h, 2, 2] graph.

Remark 4.4. By Lemma 4.2 and Theorem 4.3, we know that the prism graph is
in [5, 2, 2] − [4, 2, 2]. That is, it belongs to the class [5, 2, 2] but not to the class
[4, 2, 2].

We now find all the minimal graphs that are in [5, 2, 2] − [4, 2, 2].

Theorem 4.5. The graph C5 and the prism graph are the only minimal graphs
that are in [5, 2, 2] − [4, 2, 2].

Proof. The graph C5 is in [5, 2, 2] − [4, 2, 2]. It is minimal because if we remove
any vertex of C5, the resulting graph is a path, and paths are [4, 2, 2] graphs. By
the previous results, we also know that the prism is in [5, 2, 2] − [4, 2, 2]. It is also
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a minimal graph not in [4, 2, 2] because if a single vertex is removed, the resulting
graph consists of an induced cycle of length four plus a fifth vertex that is adjacent
to just two adjacent vertices of the cycle. This graph can be represented by adding
to the representation of C4 on a star of size 4 a path that consists of a single edge
of the star.

Now suppose that G is a [5, 2, 2] graph with no induced C5 and no induced
prism. We will prove that G is also [4, 2, 2]. Consider a (5, 2, 2)-representation of G
with a host tree T with the minimum amount of vertices of degree 5. We will prove
that T has actually no vertex of degree five.

Suppose, on the contrary, that T has a vertex x of degree 5. Call Tx to the
subtree of T which is the star of size 5 around x. Call P ′ to the subfamily of paths
in P that contain two edges of Tx. Given two edges e1 and e2 of Tx, we say that
e1 is P ′-dominated by e2 if every path in P ′ that contains e1 also contains e2.
We show by contradiction that such domination relationship cannot take place.
Let the endpoints of e1 and e2 different from x be y1 and y2, respectively. If e1 is
P ′-dominated by e2, we create a new (5, 2, 2)-representation for G in the following
way:

We remove the edge e1 from T , subdivide the edge e2 (thus creating a new
vertex z) and we make y1 adjacent to z to obtain a new tree T ′. For every path P
in P, P changes according to the following rules:

If it contains e1, we replace x with z in the sequence of vertices of the path.
If it contains e2 and not e1, then we replace e2 with its subdivision.
In any other case, P does not change.
This is also a representation for G, because two paths of P share the edge e1 if

and only if their corresponding modified paths share the edge y1z; and two paths
of P share the edge e2 if and only if the modified paths share the edge zy2. In this
representation, the degree of x in the host tree is 4, the degrees of y1 and y2 are
the same as in T and the degree of z is 3. Thus, we have one less vertex of degree 5
than in T , which contradicts the way that T was chosen. As a consequence, no
edge of Tx can be P ′-dominated by another.

Let G′ be the subgraph of G induced by the paths of P ′. We consider two cases.

Case 1: G′ has an induced C4.
Consider an induced C4 in G′. Let e be the only edge of Tx that is not used by

the paths in P ′ that induce the C4, and let y be the endpoint of e different from x.
As e is not P ′-dominated by another edge, there are two other edges e′ and e′′

in Tx such that P ′ has a path P1 containing e and e′ and a path P2 containing e
and e′′.

If e′ and e′′ are both contained in one of the paths that induce the C4, then G′

has an induced C5, which is a contradiction. Otherwise, the paths in the pie
corresponding to the C4, P1, and P2 induce a prism, another contradiction.

Case 2: G′ has no induced C4.
G′ is a chordal graph. Then, it has a simplicial vertex. Let P be the path in P ′

corresponding to that vertex. If the paths of P ′ that edge-intersect P form an
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edge clique, let e be an edge of Tx contained in all these paths, and let e′ be the
other edge of P in Tx. It follows that e′ is P ′-dominated by e, which is impossible.

As a consequence of the previous paragraph, the paths of P ′ that edge-intersect
P form a claw clique. Let e1, e2, and e3 be the edges of Tx in the claw, in such
a way that P contains e1 and e2. Let e4 and e5 be the other edges of Tx. By the
simpliciality, every path in P ′ that contains e4 or e5 cannot contain e1 or e2. We
take advantage of this fact to build a new representation for G as follows:

Using a similar notation as before, we call yi the endpoint of ei that is different
from x for 1 ≤ i ≤ 5.

In T , we subdivide e3 (creating a new vertex z), we remove the edges e4 and e5,
and we add the edges y4z and y5z to obtain a new tree.

Every path P in P changes according to the following rules:
If it contains e4 or e5, then x is replaced with z.
If it contains e3 but not e4 or e5, then e3 is replaced with its subdivision.
Every other path stays the same.
Arguing like before, this procedure results in a new representation for G with a

host tree that has one less vertex of degree 5 than T , which results in a contradic-
tion.

As every case led to a contradiction, we conclude that T is necessarily a tree
with maximum degree four, and hence G is [4, 2, 2]. □

A close examination of Theorem 4.5 reveals that it can be derived from the
following result, which is proved using the same arguments:
Proposition 4.6. Let G be a [5, 2, 2] graph with (5, 2, 2)-representation ⟨P, T ⟩
and x be a vertex of T . If x has degree 5 and the subgraph of G induced by the
paths in P that contain x has no induced C5 and no induced prism, then there exists
another (5, 2, 2)-representation for G whose host tree has less vertices of degree 5
than T .

Now, we prove that [5, 2, 2] graphs are 3-colorable. To do it, we indicate how to
deal with induced C5’s and induced prisms.
Theorem 4.7. Let G be a [5, 2, 2] graph. Then χC(G) ≤ 3.
Proof. We do it by induction on the number of vertices. The property is trivial for
graphs with at most 3 vertices. Suppose that the property holds for every graph
with at most k vertices and let G have k + 1 vertices.

Suppose, without loss of generality, that G is connected. Let ⟨P, T ⟩ be a (5, 2, 2)-
representation of G such that the number of vertices of degree 5 in T is minimum.
Additionally, among the possible host trees with minimum amount of vertices of
degree 5, choose T to have the minimum number of edges.

If there are vertices x and y such that N [x] ⊆ N [y], then we can apply the
induction hypothesis on G − x and apply Proposition 3.5 to obtain the desired
conclusion. Suppose from now on that there are no vertices like this. This implies
that there are neither simplicial nor twin vertices.

If T is a star, then, by Proposition 3.3 and the fact that C5 is 3-clique colorable,
we infer that G is 3-clique colorable.
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Otherwise, consider an external vertex w in T . Let v be the neighbour of w that
is not a leaf, and let e = vw. Consider T ′ and T ′′ the subtrees of T such that T ′

is induced by v, w and all the vertices of T that are not neighbours of w, and T ′′

be the star induced by w and its neighbours in T . Let P ′ and P ′′ be the subsets
of P such that P is in P ′ if and only if P has an edge in T ′, and P is in P ′′ if
and only if P has an edge in T ′′. Let G′ and G′′ be the edge intersection graphs of
P ′ and P ′′, respectively.

By the minimality of T , P ′′ must have a path P that does not contain the
edge e. All paths of the representation have length at least two by the absence of
simplicial vertices. For that reason, T ′′ cannot be a star of size 2. Neither can the
size of the star be 3, because, otherwise, P would correspond to a simplicial vertex
of G. Thus, T ′′ is a star of size at least 4.

Suppose initially that T ′′ is a star of size exactly 4. Let u1, u2, and u3 be the
leaves of T adjacent to w. Consider the path P in the previous paragraph, and
suppose without loss of generality that P is the path u1wu2. Similarly, let P ′ be
a path in P that contains the edge wu3 and does not contain the edge vw, and
suppose without loss of generality that P ′ is the path u1wu3. Let x and y be the
vertices of G corresponding to P and P ′, respectively.

Since N [x] is not contained in N [y], there exists a vertex x′ that is adjacent to x
but not to y. Similarly, there exists a vertex y′ that is adjacent to y but not to x.
This is only possible if the paths Px′ and Py′ contain the edge e, so x′ and y′ are
adjacent vertices of G′, and xyy′x′x is an induced C4 in G′′.

By the induction hypothesis, G′ is 3-clique colorable. Consider a clique coloring
of G′ using colors 0, 1 and 2. To extend it to G, we consider two cases.

If x′ and y′ have different colors, suppose 0 and 1, we assign color 0 to y, color 1
to x and any color to every other vertex not yet colored, if any. As in the proof of
Proposition 3.1, it follows that no clique of G′′ is monochromatic.

If x′ and y′ have the same color, say 0, we assign color 1 to x, color 2 to y and
any color in {1, 2} to every other vertex not yet colored, if any. This coloring works
because every clique of G′′ contains an edge of the induced C4, {x′, y′} is contained
in a larger clique of G (otherwise, they would not have received the same color in
the clique coloring of G′), and hence every clique of G′′ containing {x′, y′} that is
also a clique of G contains a vertex of color 1 or 2.

Suppose from now on that dT (w) = 5. We now consider three cases:

Case 1: G′′ has no induced C5 and no induced prism.
This is impossible. By Proposition 4.6, it would be possible to build a new

representation where the host tree has fewer vertices of degree 5, contradicting the
minimality condition imposed on T .

Case 2: G′′ has an induced C5.
Consider an induced C5 consisting of the vertices a1, a2, a3, a4 and a5 (in that

order), and suppose without loss of generality that Pa1 and Pa2 are the paths
in P[e]. Take a color different from that of a1 and a2 and assign it to both a3
and a5. If there exists a vertex a6 in P[e] and adjacent to a4, color a4 with a color
different from those of a3, a5 and a6. If such a vertex does not exist, then just
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color a4 with a color different from that of a3 and a5. As a result of this, every
pair of adjacent vertices in the cycle (with the possible exception of a1 and a2)
receive different colors. Thus, every edge clique of G′′ different from P[e] is not
monochromatic. If P[e] is a clique, then it is a clique of G′ and hence is not
monochromatic.

For any vertex x of G′′ not colored yet, we give it a color according to two cases.
If the vertices of the cycle adjacent to x were colored using one or two colors,

give x a color different from them.
Otherwise, consider its corresponding path Px contained in T ′′. By the absence

of twin vertices, Px must be different from every path representing a vertex of
the cycle. There exist two claws in T ′′ such that the corresponding claw clique
contains Px and exactly one path from the cycle. Let u1 and u2 be the vertices of
the cycle in these two claw cliques. Color x with a color different from that of u1
and u2.

Now we prove that this way to color also ensures that every clique of G′′ that is
a claw clique is not monochromatic.

Suppose that the claw clique contains the edge a1a2. If a1 and a2 have different
colors, then it is clearly not monochromatic. If a1 and a2 have the same color,
consider the vertex x in the clique such that Px does not contain e. The vertices
of the cycle adjacent to x are a1, a2, a3 and a5, which in this case are colored with
two colors. It follows from the coloring rules that x has a color different from that
of all these vertices and hence the clique is not monochromatic.

If the clique contains any other edge of the cycle, then it is not monochromatic,
because the edges of the cycle different from a1a2 are not monochromatic.

If the claw clique does not contain an edge of the cycle, then it contains exactly
one vertex of the cycle. If the edge e is a part of the claw of T ′′ and a4 is in the
clique, then it is not monochromatic by the way a4 was colored. For every other
claw clique containing just one vertex of the cycle, take a vertex x of it that is
neither in the cycle nor in P[e]. By the two cases that define how x was colored,
the clique is not monochromatic.

Therefore, in this extended coloring the cliques of G′ and the cliques of G′′ are
not monochromatic, so we have a 3-clique coloring of G.

Case 3: G′′ has an induced prism.
The representation of the induced prism in T ′′ is like the one of Figure 3. In this

representation of the prism, there are two edges of the host tree that are contained
in three paths (let us call them edges of type 1), and three edges of the host tree
that are contained in two paths (let us call them edges of type 2). Every other path
of length 2 in P ′′ and not in P ′ (if any) should contain the two edges of type 1,
because any other possibility leads to the creation of an induced C5 in G′′ or the
presence of identical paths. A path like that would edge-intersect every other path
in P ′′. As a consequence, G′′ is a prism, the prism plus a universal vertex, or a
graph obtained from any of these two graphs by adding twin vertices (twin vertices
should have paths that contain the edge e), which implies that G′′ has as many
cliques as its induced prism (every clique of the prism is contained in exactly one
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clique of G′′). We can infer from this that every 3-coloring of G′′ extending that
of G′ where the cliques of the prism, with the possible exception of the one that is
contained in P[e] (like in Case 2, if this is a clique it is not monochromatic after
coloring G′), are not monochromatic leads to a 3-clique coloring of G. It is always
possible to extend the coloring of G′ in that way as seen in Figures 4 and 5. In
case the edge e is of type 2, the vertices that were already colored (in black) are
adjacent and not in the same triangle. By symmetry, it is enough to consider just
one of these edges. It is also enough to consider a case where those two vertices
have the same color and a case where they have different colors. Otherwise, when
the edge e is of type 1, the vertices that were already colored (in black) are in
one triangle of the prism. By symmetry, it is enough to consider just one of these
triangles. It is also enough to consider one case where the vertices of that triangle
all have the same color, one where just two have the same color and one where
they all have different colors. Therefore, G is 3-clique colorable. □

Figure 4. Extension of the coloring of G′ when the edge e is of type 2.

Figure 5. Extension of the coloring of G′ when the edge e is of type 1.

5. Clique coloring subclasses of [4, 2, 2] graphs

Given that [5, 2, 2] graphs are 3-clique colorable, we first show that this bound
on the clique chromatic number cannot be reduced for [4, 2, 2] graphs. In Figure 6,
we give some examples of graphs which are in this class, are not 2-clique colorable,
and are minimal with this property (that is, if we delete any of their vertices they
become 2-clique colorable).
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Figure 6. Examples of [4, 2, 2] graphs which are not 2-clique colorable.

If in the first graph of Figure 6 we 2-clique color the central claw clique, with
colors 0 and 1, and we consider the C4 which contains the vertices that received
the same color (suppose without loss of generality that it is 0), we see that one
of the cliques contained in it will be monochromatic. Therefore, this graph is not
2-clique colorable, but it is 3-clique colorable.

For the second graph of Figure 6, the existence of a 2-clique coloring of it would
force adjacent vertices contained in a C4 not forming a full clique to have different
color. However, that would make the triangle in the middle be monochromatic. As
a result of this contradiction, we conclude that the graph is not 2-clique colorable.
It is easy to find a 3-clique coloring for it.

The purpose of this section is to find a restriction on the host tree that makes
[4, 2, 2] graphs 2-clique colorable.

Call Tn (n ≥ 1) the tree consisting of a path with n + 2 vertices such that every
inner vertex of the path is adjacent to two vertices outside the path that are leaves.

Proposition 5.1. Let G be an EPT graph that has a representation with Tn as a
host tree for some n. Then χC(G) ≤ 2.

Proof. Assume that n is minimum such that G can be represented with Tn as a
host tree. The case n = 1 corresponds to a [4, 2, 2]-star graph, which is proven,
so we assume in this proof that n ≥ 2. We prove the property by induction on
the amount of vertices of the graph. The case where G has at most two vertices
is trivial. Suppose now that the proposition is true for every graph with at most
k vertices and let G have k + 1 vertices.
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If G has two vertices v and w such that N [v] ⊆ N [w], then a 2-clique coloring
of G − v can be extended to G by applying Proposition 3.5.

From now on, we assume that G does not have a vertex that contains the
neighborhood of another. This condition implies that no path in the representation
consists of a single edge and that there are not identical paths.

If G has a clique C of size two whose removal disconnects the graph into com-
ponents G1, . . . , Gk, we apply the induction hypothesis to get a 2-clique coloring
of G[V (Gi) ∪ C] for each 1 ≤ i ≤ k. As C has size two, the vertices of C have a
different color in every coloring. We can suppose without loss of generality that
the vertices of C receive the same color every time (if that is not the case, then
switching colors fixes it). Thus, we can combine the colorings to entirely 2-clique
color G.

Suppose that we have the host tree drawn such that the path of n + 2 vertices
is horizontal and x1, x2, . . . , xn are its inner vertices from left to right. We call this
path H. Let e1, e2, . . . , en+1 be the edges of H also from left to right. For 1 ≤ i ≤ n,
let ui and li be the edges incident on xi that are not in the path (we assume that
they are drawn vertically), Si be the star of Tn centered at xi, and Ci be the family
of cliques of G that are either edge cliques or claw cliques for some edge or claw
of Si, respectively. Additionally, the horizontal path Hi is the one consisting of the
edges ei and ei+1, while the vertical path Vi is the one consisting of the edges ui

and li. Given an inner vertex xi, we say that a path of the representation is to the
left of xi (or to the left of Vi) if it is not contained in Vi, and it does not contain
any vertex to the right of xi in the drawing of Tn. Similarly, we say that the path
is to the right of xi (or to the right of Vi) if it is not contained in Vi and it does
not contain any vertex to the left of xi in the drawing of Tn.

We will not work with the vertices of G, but directly with the paths that repre-
sent them. We will usually refer to them as paths of G.

Consider now the case where, for some i between 1 and n, G has neither a path
containing ei and ui nor a path containing ei+1 and li, but does contain Vi. As a
consequence of this assumption, there is no claw clique containing Vi. Then both
edge cliques P[li] and P[ui] exist; otherwise, Vi would correspond to a simplicial
vertex of G. As as consequence of this, G must have a path P1 containing ei and li
and one path P2 containing ei+1 and ui. Consider all the paths of G, except for
P1, P2 and Vi, plus a path P obtained from the merger of P1 − li and P2 − ui.
Apply the induction hypothesis to 2-clique color these paths. To obtain a 2-clique
coloring of all the paths of G, keep the color of the paths of G that already have
one, give P1 and P2 the same color as P , and give Vi the other color.

The case where, for some i between 1 and n, G has neither a path containing ei

and li nor a path containing ei+1 and ui, but does contain Vi, is analogous.

Suppose now (assuming that n > 2) that, for some i between 2 and n − 1, we
have that G does not have a path that contains Hi.

If the vertical path Vi is in the representation, we apply the induction hypothesis
to 2-clique color Vi and the paths to the left of it, and to separately 2-clique color Vi

and the paths to the right of it. If Vi received the same color in both, we combine
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them to get a coloring of G. Otherwise, we switch one of the colorings before we
do the combination.

The only way for this coloring not to be a 2-clique coloring is that one of P[ui]
or P[li] is a clique, it has paths to both sides of Vi, and it is monochromatic.
Suppose without loss of generality that P[ui] is a monochromatic clique, with all
its paths (including Vi) receiving color 0. We obtain a new coloring by switching
the colors of the paths to the right of Vi, keeping the color that Vi has. Now P[ui]
is not monochromatic and neither are the cliques entirely to the left or entirely to
the right of Vi. Another clique that is not monochromatic (if it exists) is the claw
clique associated to the claw with edges ei, li and ui, since its paths did not change
the color with respect to the previous coloring. Furthermore, if the claw clique with
associated claw having edges ei+1, li and ui exists, then it is not monochromatic
because Vi has color 0 and there is now a path containing ui and ei+1 with color 1.

Finally, suppose that P[li] is a clique. Then it contains paths to both sides
of Vi (otherwise, it would be contained in a claw clique) and hence there exists the
claw clique associated to the claw with edges ei, li and ui. This claw clique is not
monochromatic and, by our assumption, there exists a path containing ei and li
with color 1. Since Vi has color 0, P[li] is not monochromatic.

Now suppose that there is not a path in the representation containing Hi and
that Vi is not in the representation, either. If the paths of G that intersect Si induce
a chordal graph, then only one of P[ui], P[li] is an edge clique. Suppose without
loss of generality that P[ui] is an edge clique. Apply the induction hypothesis twice
to 2-clique color the paths of the representation to the left of xi and to 2-clique
color the paths of the representation to the right of xi. Combine these two colorings
(possibly switching one of them to ensure that P[ui] is not monochromatic) to
obtain a 2-clique coloring of G.

Now suppose that Si has a pie of size 4 that does not include Vi. By the
minimality of n, there exists at least one path of G that does not contain xi and is to
the left of it (the same with right instead of left). Apply the induction hypothesis to
2-clique color the paths of G to the left of xi and the paths ei+1ui and ei+1li (these
two do not necessarily have to be present in the original representation). Consider
the restriction of this coloring to the paths to the left of xi. By the construction,
and forced by the paths ei+1ui and ei+1li, there are one path containing ui, ei and
one path containing li, ei that receive different colors.

Now apply the induction hypothesis to 2-clique color the paths of G to the right
of xi and the paths eiui and eili. Reasoning like before, the restriction of this
coloring to the paths to the right of xi has one path containing ui, ei+1 and one
path containing li, ei+1 that receive different colors. Combining the two restricted
colorings (possibly switching one of them to ensure that P[ui] and P[li] are not
monochromatic), we obtain a 2-clique coloring of G.

Now consider the case i = 1. By the minimality of n, G has a path that contains
e1, l1 or u1. Among those paths, at least one must contain e2 as well if G is
connected. If necessary, we can rearrange the edges to have a path that contains
e1 and e2. Similarly, we can have a path of G that contains en and en+1.
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Assume from now on that, for every 1 ≤ i ≤ n, G has a path that contains Hi.
To complete the proof, we will construct a set Q such that (1) Q is a clique cover
of G and (2) no clique of G is fully contained in Q, unless we fall on some case that
we have already considered. If Q satisfies both conditions, a 2-clique coloring of G
is obtained by giving color 0 to the elements of Q and color 1 to the elements not
in Q.

The construction of Q is as follows:
Step 1: Let P1 be a path of G that contains e1 and e2 with the additional require-
ment that it reaches as far to the right as possible (this is determined by looking
at the vertices of H that the path contains).
Step 2 (iteration step): While Pj does not contain en+1, we do the following to
choose the path Pj+1 of G.

When Pj ends to the right at one horizontal edge ei: Let Pj+1 be a path of G
containing Hi and extending as far to the right as possible.

When Pj ends to the right at one vertical edge ui: If Pj edge-intersects every
path edge-intersecting Si and i = n, go to step 3. If Pj edge-intersects every path
intersecting Si and i < n, let Pj+1 be a path of G containing Hi+1 and extending
as far to the right as possible. If Pj does not edge-intersect every path edge-
intersecting Si, choose a path of G containing li and ei+1 and extending as far to
the right as possible. If such a path does not exist, choose a path containing ei+1
and not containing ei, ui and extending as far to the right as possible (from now
on we will refer to this as the rightmost condition).

When Pj ends to the right at one vertical edge li: It is symmetric with the
previous case. We can exchange ui and li in the argument.
Step 3: Let Q consist of the paths chosen in the previous two steps. For every
1 ≤ i ≤ n, if Q does not cover Ci, then add Vi to Q.

Let us prove that Q is a clique cover of G.
P1 contains H1. If P1 is not enough to cover C1, it means that there is a path

of G in S1 that does not edge-intersect P1, which can only be V1. If necessary, V1
is added to Q in step 3, and P1 and V1 do cover C1.

Consider now i > 1. If there is a path in Q that contains Hi, then we can
conclude that Q covers Ci reasoning like in the previous paragraph. Otherwise, the
construction implies that there is a path Pj in Q that contains the edges ei and ui

or that contains ei and li. We only consider the first possibility, as the other one
is similar.

If Pj is not enough to cover Ci, consider Pj+1. If Pj+1 contains ei+1 and li,
then Pj and Pj+1 clearly cover Ci. Otherwise, Pj+1 is a path containing ei+1 and
containing none of ei, ui, li. If there is a clique C in Ci that is not covered by
Pj and Pj+1, then C is P[li] or C is a claw clique where the claw has the edges
ei, ei+1, li or li, ui, ei+1. If C is P[li], then it should have a path that does not
edge-intersect Pj . As G does not have paths of a single edge, that path must have
the edge ei+1. Thus C has a path that contains li and ei+1. This is also true if
C is one of the claw cliques, which contradicts the choice of Pj+1 according to the
details of step 2. Therefore, Pj and Pj+1 cover the cliques in Ci.
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Now we prove that Q does not fully contain any clique of G (unless we have a
case that was already considered).

Suppose, to the contrary, that there exists a clique C of G contained in Q. We
consider the different types of cliques that C can be:

• C is a claw clique where the claw has edges ei, li, ui for some i: This is
impossible. By construction, Q cannot have both a path containing ei, li and a
path containing ei, ui.

• C is a claw clique where the claw has edges li, ui, ei+1 for some i: Let Pj be a
path of Q containing li, and ei+1 and Pj′ be a path of Q containing ui and ei+1.
The presence of Vi in Q implies that Q also has a path Pk containing Hi, which
precedes Pj and Pj′ in step 2 (if Pk is not the first one, then the second and the third
of the three would contradict the rightmost condition). Furthermore, Pj and Pj′

arise subsequently in step 2 when choosing paths that contain two consecutive
horizontal edges. If Pj precedes Pj′ , then the rightmost condition is contradicted
at the moment of choosing Pj (the existence of Pj′ does not make Pj an eligible
path). We get the same type of contradiction if Pj′ precedes Pj .

• C is a claw clique where the claw has edges ei, ei+1, ui for some i: By the
construction, i is different from 1 and n. Additionally, the path containing ei, ui

precedes the others in C in the construction of Q. Let Pj be the path of C con-
taining ei, ei+1, and Pj′ be one path in C containing ei+1, ui. Considering which
path precedes the other, we get the same contradiction as in the previous case.

• C is a claw clique where the claw has edges ei, ei+1, li for some i: Analogous
to the previous case.

• C = P[ui] for some i: If P[ui] does not contain Vi, then, by the construction
of Q, it consists of one path containing ei and one one path containing ei+1. It
follows that C is contained in the claw clique whose claw has the edges ei, ei+1, ui,
which is a contradiction.

If Q has a path that contains ei and ui, then, by the construction of Q, Vi is
not in it. It follows from this and the previous paragraph that C consists of Vi and
a path containing the edges ei+1 and ui, and we do not have a path containing ei

and ui in G. Furthermore, we do not have a path containing ei+1 and li, because,
otherwise, C would be contained in the claw clique whose claw contains ei+1, li,
and ui. This is one of the cases where we have already proved that G is 2-clique
colorable.

The case where C = P[li] is analogous.
• C = P[ei] for some i between 1 and n + 1: By the rightmost condition, Q has

only one path that contains e1. Looking at how step 2 ends, we conclude that Q
has one or no path that contains ei+1. Thus, n must be larger than 1, and i must
be between 2 and n. By the minimality of n, G − C is not connected. In this
context, we know that G is 2-clique colorable if C has size 2. Thus, we assume
that C has larger size.

Let Pj , Pj′ , and Pj′′ be the first three elements of C according to the order of Q.
Then, by the construction, Pj′ and Pj′′ are chosen to contain two consecutive edges
of H, such that these edges are to the right of ei or ei is the leftmost of the two.
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By the rightmost condition, the presence of Pj′′ contradicts the moment when Pj′

is chosen.
All the cases have been considered. Hence, G is 2-clique colorable. □

Tn is a graph that has all its vertices of degree four contained in a path. We now
prove that every [4, 2, 2] graph with a representation that has a host tree satisfying
this condition is 2-clique colorable.

Theorem 5.2. Let G be a graph with a (4, 2, 2)-representation such that the vertices
of degree four in the host tree are contained in a path. Then χC(G) ≤ 2.

Proof. The proof will be by induction on the number of vertices. The case where G
has at most two vertices is trivial. Suppose that the theorem is true for graphs
with at most k vertices, and let G have k + 1 vertices. Let ⟨P, T ⟩ be a (4, 2, 2)-
representation of G, where T has the vertices of degree four contained in a path.
Choose the representation so that T has the minimum number of edges under these
conditions.

If every leaf of T is adjacent to a vertex of degree four, then T is a subgraph of Tn

for some n, and by the previous proposition, G is 2-clique colorable. Otherwise,
let v be a leaf of T at maximum distance from the set of vertices of degree four. By
the definition, the vertex w adjacent to v has degree less than four, is adjacent to a
vertex w′ that is not a leaf, and every other vertex adjacent to it is a leaf. By the
minimality of T , P must have a path P that contains vw and does not contain ww′

(otherwise, G could be represented using T − vw as a host tree). If P has a path
of length one, then G has a simplicial vertex. Otherwise, P itself corresponds to
a simplicial vertex of G. In either case, G has a simplicial vertex x. As we did
in previous proofs, we can 2-clique color G − x and and apply Proposition 3.5 to
conclude that G is 2-clique colorable. □

A conclusion that one can immediately derive from Theorem 5.2 is that every
[4, 2, 2] graph with a (4, 2, 2)-representation where the host tree has at most two
vertices of degree 4 is 2-clique colorable.

6. Conclusions and open questions

Lately, the classes of intersection graphs have been heavily studied and numerous
results are known. We chose to study the classes of edge intersection graphs of a
family of paths in a tree.

We proved that if G is an [h, 2, 2]-star graph with h ≤ 16, then G is 3-clique
colorable, and we found subclasses of EPT-star graphs that are 2-clique colorable
and do not have degree restrictions. If the host tree is not a star and the graph G
belongs to [4, 2, 2] or [5, 2, 2], we proved that it is 3-clique colorable, also showing
that this bound is tight. Finally, we presented some subclasses of [4, 2, 2] which are
2-clique colorable.

For future work, we are interested in studying the graphs in the class [6, 2, 2]
to determine whether they are 3-clique colorable. If the answer is positive, we are
also interested in finding the minimum h such that the entire class [h, 2, 2] is not
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3-clique colorable. As we consider larger values of h, another goal will be to define
new subclasses of [h, 2, 2] which have smaller upper bounds for the clique-chromatic
number.

A final question to consider is to determine whether it is true that, for every h,
the least upper bound for the clique chromatic number of [h, 2, 2] graphs and the
least upper bound for the clique chromatic number of [h, 2, 2]-star graphs differ by
at most 1.
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