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AN IMPROVED LOPSIDED SHIFT-SPLITTING
PRECONDITIONER FOR THREE-BY-THREE BLOCK

SADDLE POINT PROBLEMS

JUN LI AND XIANGTUAN XIONG

Abstract. We consider an improved lopsided shift-splitting (ILSS) precon-
ditioner for solving three-by-three block saddle point problems. This method
enhances the work of Zhang et al. [Comput. Appl. Math. 41 (2022), 261].
We prove that the iteration method produced by the ILSS preconditioner is
unconditionally convergent. Additionally, we show that all eigenvalues of the
ILSS preconditioned matrix are real, with non-unit eigenvalues located in a
positive interval. Numerical experiments demonstrate the effectiveness of the
ILSS preconditioner.

1. Introduction

In this paper, we focus on the following three-by-three block system of linear
equations:

Âu =

A BT 0
B 0 CT

0 C 0

 x
y
z

 =

f
g
h

 ≡ b̂, (1.1)

where A ∈ Rn×n is symmetric positive definite, B ∈ Rm×n and C ∈ Rp×m are
of full row rank, f ∈ Rn, g ∈ Rm and h ∈ Rp are given vectors. With the above
conditions, the coefficient matrix of the linear system (1.1) is non-singular [9, 10, 8].
The linear system (1.1) arises in many scientific computing and engineering applica-
tions such as solving quadratic programs [6], least squares problems [11], the Picard
iteration method for a class of mixed finite element scheme for stationary magneto-
hydrodynamics models [7], the finite element method to solve the time-dependent
Maxwell equations having discontinuous coefficients in polyhedral domains with
Lipschitz boundary [5, 13] and so on.
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132 JUN LI AND XIANGTUAN XIONG

It is obvious that (1.1) can equivalently be rewritten in the following form:

Au =

 A BT 0
−B 0 −CT

0 C 0

 x
y
z

 =

 f
−g
h

 ≡ b, (1.2)

which facilitates the possibility to apply classical iteration solution methods. To
solve (1.2), many numerical methods have been considered. Huang et al. [10]
proposed an exact block diagonal preconditioner, which has the following structure:

PBD =

A 0 0
0 S 0
0 0 CS−1CT

 , (1.3)

where S = BA−1BT . The inexact versions of the block preconditioner were also
studied. Then, Cao [4] established the shift splitting (SS) and the relaxed shift
splitting (RSS) preconditioner:

PSS = 1
2

αI + A BT 0
−B αI −CT

0 C αI

 , PRSS = 1
2

 A BT 0
−B αI −CT

0 C αI

 . (1.4)

Besides, a generalized shift-splitting (GSS) preconditioner was considered in [15]
on the basis of the SS preconditioner. Furthermore, Zhang et al. [18] proposed a
lopsided shift-splitting (LSS) preconditioner for the saddle point problems (1.2):

PLSS = 1
2

αI + A BT 0
0 αI −CT

0 C βI

 . (1.5)

They also proved that the LSS prconditioner is superior to the SS, RSS and GSS
preconditioners by numerical results.

To further enhance the preconditioning effect of the block diagonal precondi-
tioner (1.3), Xie et al. [17] considered three efficient block preconditioners:

P1 =

A 0 0
B −S CT

0 0 −CS−1CT

 , P2 =

A 0 0
B −S CT

0 0 CS−1CT

 ,

P3 =

A BT 0
B −S 0
0 0 −CS−1CT

 (1.6)

for the linear system (1.1). They showed that the above three preconditioners can
significantly improve the convergence speed of the GMRES method, and precon-
ditioner P3 outperforms the other two preconditioners in terms of both required
CPU time and number of iterations for convergence. Later, Aslani et al. [3] pre-
sented a new matrix splitting and deduced a preconditioner for solving the saddle
point system (1.2). Abdolmaleki et al. [1] proposed a block three-by-three diagonal
preconditioner for (1.2). Wang et al. [16] considered an exact parameterized block
SPD preconditioner and its inexact version for the saddle point problems (1.2).
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AN IMPROVED LOPSIDED SHIFT-SPLITTING PRECONDITIONER 133

The alternating positive semi-definite splitting iteration methods and correspond-
ing preconditioners were also proposed for solving three-by-three block saddle point
problems [2, 14].

In this paper, in order to improve the preconditioning effect of the LSS precon-
ditioner, we propose an improved LSS (ILSS) preconditioner for solving the linear
system (1.2). In the solving process of the residual equations, the coefficient matri-
ces of the linear subsystems corresponding to the ILSS preconditioner are simpler
than that of the linear subsystems corresponding to the LSS preconditioner, so it
has an advantage in solving time. Theoretically, we show the unconditional con-
vergence of the iteration method produced by the ILSS preconditioner, and the
eigenvalue distribution of the ILSS preconditioned matrix will also be discussed.
Numerical experiments reveal that the ILSS preconditioner is easy to implement
and takes less time compared with some existing preconditioners.

2. The improved lopsided shift-splitting preconditioner

The main purpose of this section is to establish a new preconditioner and discuss
the convergence of the iteration method it produces.

Firstly, let us recall the lopsided shift-splitting (LSS) preconditioner. Zhang
et al. [18] proposed in 2022 the LSS preconditioner (1.5) for solving the problems
(1.2). When it is used to accelerate Krylov subspace methods (such as the GMRES
method), the following generalized residual equation needs to be solved:

PLSSz = r, (2.1)

where r = (r1; r2; r3) and z = (z1; z2; z3) are a given residual vector and the current
vector, respectively, and r1, z1 ∈ Rn, r2, z2 ∈ Rm, r3, z3 ∈ Rp. Thus we have
the following algorithmic implementation to solve the linear system (2.1) in actual
computation.

LSS algorithm. For a given residual vector r = [rT
1 , rT

2 , rT
3 ]T , the current vector

z = [zT
1 , zT

2 , zT
3 ]T . (2.1) can be computed according to the following procedures:

(1) Solve (βI + 1
α CCT )z3 = 2r3 − 2

α Cr2.
(2) Solve z2 = 1

α (CT z3 + 2r2).
(3) Solve (αI + A)z1 = 2r1 − BT z2.

We see from the above algorithm that only two subsystems need to be solved. In
order to further improve the preconditioning effect of the LSS preconditioner, we
can simplify the coefficient matrices βI + 1

α CCT and αI +A in the above algorithm
as CCT and A, respectively, and an extra preconditioner is produced:

P = 1
2

A 0 0
0 αI −CT

0 C 0

 .

Because the per-factor 1
2 has no effect on the preconditioned linear system in actual

computations, it will be neglected and an improved LSS (ILSS) preconditioner is
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established:

PILSS =

A 0 0
0 αI −CT

0 C 0

 .

Therefore, for the preconditioner PILSS, we can describe the implementing process
as the following algorithm:

ILSS algorithm. For a given residual vector r = [rT
1 , rT

2 , rT
3 ]T , the current vec-

tor z = [zT
1 , zT

2 , zT
3 ]T , residual equation corresponding to PILSS can be computed

according to the following procedures:
(1) Solve Az1 = r1.
(2) Solve CCT z3 = αr3 − Cr2.
(3) Solve z2 = 1

α (CT z3 + r2).

By comparing the LSS and ILSS algorithms, we see that the preconditioner
PILSS consumes less computational cost than the preconditioner PLSS. Due to the
symmetric positive definiteness of the coefficient matrices in linear subsystems,
we can choose the Cholesky decomposition or the PCG method to solve linear
subsystems at each step for the ILSS algorithm.

In fact, A admits the following splitting:

A = PILSS − QILSS =

A 0 0
0 αI −CT

0 C 0

 −

 0 −BT 0
B αI 0
0 0 0

 ,

which results in a matrix splitting iteration method, called the ILSS iteration
method, for solving the linear system (1.2).

ILSS iteration method. Let α > 0 be a given parameter and (xT
0 , yT

0 , zT
0 )T

be the initial guess vector. For k = 0, 1, 2, . . . until a certain stopping criterion is
satisfied, computeA 0 0

0 αI −CT

0 C 0

 xk+1
yk+1
zk+1

 =

 0 −BT 0
B αI 0
0 0 0

 xk

yk

zk

 +

 f
−g
h

 .

It is easy to rewrite the ILSS iteration method in the following fixed-point form:xk+1
yk+1
zk+1

 = Γα

xk

yk

zk

 + Υ, (2.2)

where

Γα =

A 0 0
0 αI −CT

0 C 0

−1  0 −BT 0
B αI 0
0 0 0
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AN IMPROVED LOPSIDED SHIFT-SPLITTING PRECONDITIONER 135

is the iteration matrix and

Υ =

A 0 0
0 αI −CT

0 C 0

−1  f
−g
h

 .

It is well known that the fixed-point iteration method (2.2) converges to the exact
solution x∗ = A−1b for arbitrary initial guess if the spectral radius ρ(Γα) is less
than 1.

Next, we will discuss the convergence of the ILSS iteration method.

Theorem 2.1. Assume that A ∈ Rn×n is a symmetric positive definite (SPD)
matrix, B ∈ Rm×n and C ∈ Rp×m are of full row rank, and α is a given positive
constant. Then the ILSS iteration method is unconditionally convergent.

Proof. Let λ be an eigenvalue of the iteration matrix Γα and [u; v; w] be the cor-
responding eigenvector. If λ = 0, the ILSS iteration method is convergent. Next,
we consider the case of λ ̸= 0. It follows, according to the relationships between
eigenvalues and eigenvectors, that 0 −BT 0

B αI 0
0 0 0

 u
v
w

 = λ

A 0 0
0 αI −CT

0 C 0

 u
v
w

 . (2.3)

Eq.(2.3) can equivalently be reformulated into
λAu + BT v = 0,

Bu + α(1 − λ)v + λCT w = 0,

Cv = 0.

(2.4)

It is obvious that both u and v are not zero vectors, otherwise (u; v; w) = (0; 0; 0),
which is a contradiction. For simplicity, we can assume that ∥v∥ = 1.

If λ = 1, 
Au + BT v = 0,

Bu + CT w = 0,

Cv = 0.

(2.5)

Multiplying the second equation in (2.5) from the left by v∗, combining with the
first and third equations in (2.5) gives u∗Au = 0, i.e., u = 0; furthermore, it follows
that v = 0 and w = 0, a contradiction. Thus λ ̸= 1.

Similarly, multiplying the second equation in (2.4) from the left by v∗, combining
with the first and third equations in (2.4), we have

−λ̄u∗Au + α(1 − λ) = 0,

i.e.,
αλ + u∗Auλ̄ = α,
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where λ̄ denotes the conjugate number of λ. Because the matrix A is symmetric
positive definite and α is a positive constant, λ̄ = λ. Thus it holds that

λ = α

α + u∗Au
< 1.

In this case, the ILSS iteration method is convergent.
In conclusion, the ILSS iteration method is unconditionally convergent. □

3. Spectral properties of the preconditioned matrix

In this section, we derive the eigenvalue distribution of the preconditioned matrix
P −1

ILSSA.

Theorem 3.1. Assume that the conditions in Theorem 2.1 are satisfied. Then all
the eigenvalues of the preconditioned matrix P −1

ILSSA are real numbers and

sp
(
P −1

ILSSA
)

⊆
(

0,
a

α + a

]
∪ {1},

where sp(·) represents the spectrum of the corresponding matrix, and λmin(A) ≤
a ≤ λmax(A).

Proof. Let θ be the eigenvalue of the preconditioned matrix P −1
ILSSA. Since P −1

ILSSA =
I − P −1

ILSSQILSS, it holds from Theorem 2.1 that

θ = 1 − λ = 1 − α

α + u∗Au
= u∗Au

α + u∗Au
. (3.1)

If λ = 0, the eigenvalue of P −1
ILSSA is 1. It is obvious from (3.1) that θ is a real

number if λ ̸= 0. Let a = u∗Au; we have

0 < θ ≤ a

α + a
.

This completes the proof. □

Corollary 3.2. Assume that the conditions in Theorem 2.1 hold. Then the eigen-
values of the ILSS preconditioned matrix P −1

ILSSA are either clustered at 1 if the
parameter α is close to 0+ or clustered at points 0 and 1 if α → +∞.

Proof. The conclusion is obvious by the expression of (3.1). □

As a matter of fact, the convergence rate of the preconditioned Krylov subspace
method is determined not only by the eigenvalue distribution of the preconditioned
matrix but also by its eigenvector distribution. The eigenvector distribution of the
preconditioned matrix P −1

ILSSA is presented in the following theorem.

Theorem 3.3. Assume that the conditions of Theorem 2.1 hold. Then, the pre-
conditioned matrix P −1

ILSSA has n + i linearly independent eigenvectors, where 0 ≤
i ≤ m + p. These eigenvectors are classified as follows:

(1) There exist n eigenvectors of the form [uℓ; 0; wℓ] for ℓ = 1, 2, . . . , n, cor-
responding to the eigenvalue 1. Here, wℓ (ℓ = 1, 2, . . . , n) are arbitrary
linearly independent vectors, and uℓ ∈ N(B), where N(·) denotes the null
space of the corresponding matrix.
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(2) There exist i (0 ≤ i ≤ m + p) eigenvectors of the form [uℓ; vℓ; wℓ] for
1 ≤ ℓ ≤ i, corresponding to the eigenvalues θℓ ̸= 1. Here, vℓ is a nonzero
vector in N(C), while

uℓ = 1
θℓ − 1A−1BT vℓ

and
wℓ = 1

(θℓ − 1)2 (CCT )−1CBA−1BT vℓ.

The proof of the above theorem is similar to that of [12, Theorem 2], and thus
we omit it. Additionally, we provide a precise elaboration on the degree of the
minimal polynomial of the ILSS preconditioned matrix P −1

ILSSA.

Theorem 3.4. Assume that the conditions of Theorem 2.1 hold. Then the dimen-
sion of the Krylov subspace K(P −1

ILSSA, b) is at most m + p + 1.

4. Numerical experiments

In this section, we give two examples which demonstrate the effectiveness of the
proposed preconditioner. In our implementations, the initial guess is chosen to be
the zero vector, the exact solution is the vector with all its element being ones
and b = A · 1. The iteration is terminated if the current iteration satisfies RES =
∥b − Au(k)∥2/∥b∥2 ≤ 10−6 or if the prescribed iteration number kmax = 1500 is
exceeded. Besides, the relative errors of the computed approximations, denoted as
ERR, i.e.,

ERR = ∥uk − u∗∥2

∥u∗∥2
are reported with u∗ the initially known exact solution. All experiments were per-
formed in MATLAB R2017a on a Windows 10 system with an Intel Core processor
and 8 GB of RAM.

To compare with the ILSS preconditioner, we also tested the BD precondi-
tioner (1.3), SS preconditioner (1.4), LSS preconditioner (1.5), and block precon-
ditioner P3 (1.6) for solving the three-by-three block saddle point problems (1.2).
When preconditioners are applied to the GMRES method, the coefficient matrices
of the corresponding linear subsystems are SPD. Therefore, we can use sparse
Cholesky decomposition to solve them. All of them are used as the left precon-
ditioned GMRES iteration method to solve the three-by-three block saddle point
problems.

Example 4.1 ([4, 14]). Consider the three-by-three block saddle point problems
(1.2), in which

A =
(

I ⊗ T + T ⊗ I 0
0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2

,

B =
(
I ⊗ F F ⊗ I

)
∈ Rp2×2p2

C = E ⊗ F ∈ Rp2×p2
,
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138 JUN LI AND XIANGTUAN XIONG

where

T = 1
h2 tridiag(−1, 2, −1) ∈ Rp×p,

F = 1
h

tridiag(0, 1, −1) ∈ Rp×p,

E = diag(1, p + 1, . . . , p2 − p + 1),

⊗ means the Kronecker product symbol, and h = 1
p+1 .

Table 1. The CPU times of the ILSS preconditioned GMRES
method with various values of the parameter α in different dimen-
sions for Example 4.1.

p \ α 1 10−1 10−2 10−3 10−4 10−5

16 0.0195 0.0119 0.0034 0.0019 0.0015 0.0022
32 0.0284 0.0178 0.0085 0.0068 0.0061 50.7946
48 0.0526 0.0481 0.0318 0.0302 0.0376 94.4258
56 0.0372 0.0344 0.0308 0.0293 123.5037 -

Example 4.2 ([4, 14]). We consider the three-by-three saddle point problems
(1.2), in which

A = diag(2W T W + D1, D2, D3) ∈ Rn×n

is a block diagonal matrix,

B = [E, −I2p̃, I2p̃] ∈ Rm×n and C = ET ∈ Rl×m

are both full row rank matrices, where p̃ = p2, p̂ = p(p + 1); W = (wij) ∈ Rp̂×p̂

with wij = e−2((i/3)2+(j/3)2); D1 = Ip̂ is an identity matrix; Di = diag(d(i)
j ) ∈

R2p̃×2p̃, i = 2, 3, are diagonal matrices, with

d2
j =

{
1 for 1 ≤ j ≤ p̃,

10−5(j − p̃)2 for p̃ + 1 ≤ j ≤ 2p̃,

d3
j = 10−5(j + p̃)2 for 1 ≤ j ≤ 2p̃;

and

E =
(

Ê ⊗ Ip

Ip ⊗ Ê

)
, Ê =


2 −1

2 −1
. . . . . .

2 −1

 ∈ Rp×(p+1).

The experiment problems are formed by setting different values of p. For exist-
ing preconditioners, in order to make the preconditioners closer to the coefficient
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Table 2. Numerical results of preconditioned GMRES iteration
methods for Example 4.1.

Pre. I PBD P3 PSS PLSS PILSS

p = 16
(α, β) − − − (10−2, −) (10−3, 10−6) (10−4, −)
IT 865 4 3 2 3 3
RES 8.7e-07 1.5e-10 1.3e-10 7.6e-07 2.3e-09 2.0e-08
ERR 2.3e-06 4.1e-11 3.5e-11 4.9e-06 3.5e-10 1.9e-09
CPU 3.1177 0.0575 0.0213 0.0336 0.0129 0.0103
p = 32
(α, β) − − − (10−2, −) (10−3, 10−6) (10−4, −)
IT − 4 3 2 2 3
RES − 1.2e-08 1.4e-08 3.4e-07 9.6e-07 2.4e-07
ERR − 3.0e-09 3.6e-09 3.5e-06 1.1e-05 1.5e-08
CPU − 0.5097 0.3952 0.1618 0.0204 0.0186
p = 48
(α, β) − − − (10−2, −) (10−3, 10−6) (10−3, −)
IT − 4 3 2 2 3
RES − 7.7e-07 1.3e-09 2.1e-07 6.5e-07 1.0e-07
ERR − 1.8e-07 3.1e-10 2.8e-06 9.7e-06 5.1e-09
CPU − 4.7037 3.6303 0.8774 0.0315 0.0296
p = 56
(α, β) − − − (10−2, −) (10−3, 10−6) (10−3, −)
IT − 4 3 2 2 3
RES − 9.9e-08 3.2e-07 1.7e-07 5.8e-07 1.7e-07
ERR − 2.3e-08 7.5e-08 2.6e-06 9.1e-06 8.3e-09
CPU − 11.1635 9.5971 1.7265 0.0403 0.0379
p = 64
(α, β) − − (10−2, −) (10−3, 10−6) (10−2, −)
IT − 5 3 2 2 3
RES − 4.9e-07 6.6e-07 1.5e-07 5.4e-07 2.4e-08
ERR − 1.1e-07 1.5e-07 2.4e-06 8.6e-06 1.1e-09
CPU − 28.4426 25.4994 3.1639 0.0582 0.0432
p = 80
(α, β) − − − (10−2, −) (10−3, 10−6) (10−2, −)
IT − 6 5 2 2 3
RES − 2.5e-07 5.7e-10 1.3e-07 6.9e-07 5.6e-08
ERR − 5.8e-08 1.1e-10 2.2e-06 7.9e-06 2.2e-09
CPU − 54.2340 48.7028 9.4477 0.1443 0.1192

matrix A, we use the parameter selection method in [4, 18]. For the ILSS pre-
conditioner, we know by Corollary 3.2 that the parameter α should be as small or
big as possible to make the spectrum of the preconditioned matrix more clustered,
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Figure 1. The eigenvalue distribution of the preconditioned ma-
trices with p = 16 for Example 4.1.

and then accelerate the convergence speed of the GMRES method. Therefore, we
list the CPU time of the preconditioned GMRES method with various α in dif-
ferent dimensions in Table 1. We find by Table 1 that when α is from 1 to 10−5,
the CPU times of the corresponding ILSS preconditioned GMRES method first
decreases and then increases. Based on this phenomenon, we choose α = 10−4

when p = 16, 32; if p = 48, 56, α = 10−3, and α = 10−2 as p = 64, 80 for Exam-
ple 4.1. For Example 4.2, we give the tested optimal parameters α for the ILSS
preconditioned GMRES method.
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Table 3. Numerical results of preconditioned GMRES iteration
methods for Example 4.2.

Pre. I PBD P3 PSS PLSS PILSS

p = 16
(α, β) − − − (10−2, −) (0.6, 10−2) (107, −)
IT 1207 6 3 4 22 40
RES 9.5e-07 7.1e-12 1.5e-11 7.4e-08 8.7e-07 8.7e-07
ERR 1.1e-05 1.9e-11 4.1e-11 1.4e-07 8.8e-06 2.3e-06
CPU 1.0345 0.4359 0.3725 0.2705 0.2587 0.2451
p = 32
(α, β) − − − (10−2, −) (0.5, 0.1) (108, −)
IT 1452 6 3 3 16 22
RES 9.8e-07 2.1e-14 4.5e-14 4.9e-07 9.2e-07 9.5e-07
ERR 4.5e-05 5.5e-13 1.2e-12 1.2e-06 2.9e-05 1.8e-05
CPU 23.6692 10.8788 8.6491 5.5974 3.9426 3.4267
p = 48
(α, β) − − − (10−2, −) (0.5, 0.1) (108, −)
IT − 6 3 3 17 16
RES − 1.5e-14 9.1e-15 5.9e-07 1.5e-07 7.5e-07
ERR − 1.8e-12 1.2e-12 1.5e-06 4.5e-05 7.3e-05
CPU − 119.0142 88.0379 55.1203 24.5532 11.0027
p = 56
(α, β) − − − (10−2, −) (0.5, 0.1) (108, −)
IT − 6 3 3 17 16
RES − 5.6e-15 3.2e-15 5.8e-07 3.2e-07 2.9e-07
ERR − 1.3e-12 7.4e-13 1.6e-06 5.5e-05 5.3e-05
CPU − 289.4107 215.7352 159.5430 61.4487 23.5894

In Tables 2 and 3, we list the number of iteration steps IT, the residuals RES,
the relative errors ERR and the corresponding CPU times of the preconditioned
GMRES iteration methods with I (i.e., no preconditioning), PBD, P3, PSS, PLSS
and PILSS with different p for Examples 4.1 and 4.2.

From these results in Table 2, we find that the unpreconditioned GMRES
method converges very slowly and it is not convergent if p ≥ 32. Although the
PBD and P3 preconditioned GMRES method has fewer iteration steps, its CPU
time increases greatly as the problem size grows. Besides, when comparing SS,
LSS and ILSS preconditioners, it is easy to see that the iteration steps of the
SS and LSS preconditioned GMRES methods are equal, but the CPU time of SS
preconditioner increases greatly as the dimension increases. Although the itera-
tion steps of the ILSS preconditioned GMRES method are more than those of the
SS and LSS preconditioned GMRES method, the ILSS method is the least time-
consuming, which also proves that our comparison conclusion from the algorithm
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Figure 2. The eigenvalue distribution of the preconditioned ma-
trices with p = 16 for Example 4.2.

is correct. In addition, the approximate solution obtained by the GMRES method
preconditioned by PILSS is closer to the exact solution than that obtained by the
GMRES method preconditioned by PSS and PLSS. This fact can be confirmed by
the value of ERR in Table 2. From Table 3, it is easy to see that, although the
PBD, P3 and PSS preconditioned GMRES methods have the fewest iteration steps,
their CPU times increase greatly as p increases. On the contrary, the LSS and ILSS
preconditioned GMRES methods have more iteration steps, but they take less time

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)



AN IMPROVED LOPSIDED SHIFT-SPLITTING PRECONDITIONER 143

than the other three preconditioners. Besides, when comparing the LSS precondi-
tioner with the ILSS preconditioner, we find that the iteration steps of the ILSS
preconditioned GMRES method are more than those of the LSS preconditioned
GMRES method when p ≤ 32; if p > 32, it is the other way around. In each case,
the CPU time of the ILSS method is always less than that of the LSS method, and
the accuracy of the iterative solutions obtained by the two methods is essentially
the same. These facts indicate that the parameter we select is effective and that
the ILSS preconditioner is the optimal preconditioner for solving the three-by-three
block saddle point problems (1.2).

In Figures 1 and 2, we plot the eigenvalue distribution of the original coeffi-
cient matrix and the PBD, P3, PSS, PLSS and PILSS preconditioned matrices with
p = 16 for Examples 4.1 and 4.2. It is easy to observe from these figures that
all the preconditioners greatly improve the eigenvalue distribution of the original
coefficient matrix. In particular, the spectrum of the ILSS preconditioned matrix
is clustered at point 1 when α = 10−4 in Figure 1. However, the spectrum of the
ILSS preconditioned matrix is clustered at points 0 and 1 when α = 107 in Fig-
ure 2, which not only supports the validity of the theoretical result but also leads
to a fast convergence rate of the GMRES iteration method. See Tables 2 and 3 for
detailed results.

5. Conclusion and remarks

In this paper, we establish a new improved shift-splitting (ILSS) preconditioner
for the three-by-three block saddle point problems (1.2). We show the uncondi-
tional convergence of the ILSS iteration method, and that all the eigenvalues of
the preconditioned matrix P −1

ILSSA are located in a positive real interval. Numer-
ical experiments reveal that this preconditioner has great superiority in suitable
parameters compared with other tested preconditioners.

In fact, how to choose the optimal parameters for the ILSS preconditioner is
an important problem that needs to be considered. Additionally, the ILSS pre-
conditioned GMRES iteration method with inexact algorithms is also a key point
for solving the large linear system (1.2), which is a very practical and interesting
problem that requires further research.
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