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THE RECONSTRUCTION PROBLEM FOR A MULTIVALUED
LINEAR OPERATOR’S PROPERTIES

NIHEL FEKI AND MAHER MNIF

Abstract. The reconstruction problem for a multivalued linear operator (lin-
ear relation) T is viewed as the exploration of some properties of T from those
of a restriction of T on an invariant linear subspace.

1. Introduction

Let X be a complex Banach space, M is a subspace of X and let T be a
bounded and closed multivalued linear operator (linear relation) on X. We say
that M is T -invariant (resp., weakly invariant under T ) if T (M) ⊂ M (resp.,
for all x ∈ M , Tx ∩ M ̸= ∅). The restriction TM of T on M is defined by
G(TM ) = G(T ) ∩ (M × M), where G(T ) stands for the graph of T . This paper
aims at exhibiting the usefulness of the restriction TM as an instrument to study
the properties of T . In this paper, the following statements will be established
under some supplementary conditions on M and T .

(i) TM and T̃M are invertible if and only if T is invertible, where T̃M stands for
the linear relation induced by T on X/M .

(ii) TM and T̃M are Drazin invertible if and only if T is Drazin invertible and
either asc(T̃M ) < ∞ or des(TM ) < ∞ where asc(·) and des(·) stand for the ascent
and the descent, respectively.

(iii) For all λ ̸= 0, R(λ − T ) is closed in X if and only if R(λ − TM ) is closed
in M and λ− T is bounded below if and only if λ− TM is bounded below, where
R(T ) stands for the range of T .

(iv) For λ ̸= 0, if λ − T is relatively regular in X then λ − TM is relatively
regular in M and the converse is also true whenever M is dense in X. Some of
these statements extend some of the results given in [4, 9, 10] in the context of
linear operators.

The paper is organized as follows: Section 2 contains basic notions and some
auxiliary results which will be used in the following sections. Essentially, we give
some inequalities between the ascent and the descent of T as well as those of the
linear relations TM and T̃M . In Section 3, the statements (i) and (ii) are studied.
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Section 4 is devoted to prove the statements (iii). Finally, in Section 5 the statement
(iv) is proved.

2. Preliminary results

We begin by recalling some basics from the theory of linear relations in normed
linear spaces. We adhere to the notations and terminology of the monograph [7].

Let X, Y and Z be complex normed linear spaces. A linear relation T from X to
Y is a mapping from a subspace D(T ) = {x ∈ X : Tx ̸= ∅}, called the domain of T ,
into the collection of nonempty subsets of Y satisfying T (αx1+βx2) = αTx1+βTx2
for all non zero scalars α, β and vectors x1, x2 ∈ D(T ). We denote by LR(X,Y )
the class of all linear relations everywhere defined from X into Y and we write
LR(X) := LR(X,X).

If T maps the points of its domain to singletons, then T is said to be an operator,
that is equivalent to T (0) = {0}. The class of linear bounded operators is denoted
by L(X,Y ) and we write L(X) := L(X,X).

A linear relation T ∈ LR(X,Y ) is uniquely determined by its graph defined by
G(T ) := {(x, y) ∈ X × Y : x ∈ D(T ), y ∈ Tx}. The inverse of T is the linear
relation T−1 defined by G(T−1) := {(y, x) ∈ Y × X : (x, y) ∈ G(T )}. The linear
subspaces N(T ) := T−1(0) = {x ∈ D(T ) : 0 ∈ Tx} and R(T ) := T (D(T )) :=
{y : (x, y) ∈ G(T ) for some x ∈ D(T )} are called the nullspace (or the kernel) and
the range space of T respectively. We say that T is injective if N(T ) = {0} and
surjective (or onto) if R(T ) = Y . If T is injective and surjective, then T is said to
be bijective.

For T, S ∈ LR(X,Y ) and λ ∈ C, the linear relations T + S, λT are respectively
defined by G(T + S) := {(x, y + z) ∈ X × Y : (x, y) ∈ G(T ) and (x, z) ∈ G(S)}
and G(λT ) := {(x, λy) ∈ X × Y : (x, y) ∈ G(T )}. For T ∈ LR(X) and λ ∈ C,
the linear relation T − λI is defined by G(T − λI) := {(x, y − λx) ∈ X × X :
(x, y) ∈ G(T )}. For T ∈ LR(X,Y ) and S ∈ LR(Y, Z), the product linear relation
ST ∈ LR(X,Z) is defined by G(ST ) := {(x, z) ∈ X×Z : (x, y) ∈ G(T ) and (y, z) ∈
G(S) for some y ∈ Y }. For a given closed subspace E of X, let QX

E or simply QE

denote the quotient map with domain X onto X/E. We shall denote Q
T (0) by QT

for a given linear relation T ∈ LR(X,Y ). It is easy to see that QTT is an operator,
and thus we can define ∥Tx∥ := ∥QTTx∥, x ∈ D(T ), and ∥T∥ := ∥QTT∥. We
say that T is continuous if ∥T∥ < ∞, bounded if it is continuous and everywhere
defined, open if its inverse is continuous, and bounded below if it is injective and
open. The class of bounded relations will be denoted by BR(X,Y ). A linear
relation T is said to be closed if its graph is a closed subspace of X × Y . It is well
known that T−1 is closed if and only if T is closed if and only if QTT is a closed
operator and T (0) is a closed subspace. If T is closed, then N(T ) is closed. It is
also known that if X and Y are Banach spaces and T is closed with D(T ) = X,
then T is bounded. This suggests the following notation:

BCR(X,Y ) := {T ∈ LR(X,Y ) : T is closed and everywhere defined}.
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RECONSTRUCTION PROBLEM FOR A MULTIVALUED LINEAR OPERATOR 147

An everywhere defined closed linear relation in a Banach space X is said to be
invertible if T−1 is a bounded operator, or equivalenty, if T is injective and onto.

Let T be a closed linear relation. The resolvent set of T is defined by
ρ(T ) := {λ ∈ C : T − λI is injective and onto}

and σ(T ) = C \ ρ(T ) is called the spectrum of T . For T ∈ LR(X), the kernels and
the ranges of the iterates Tn, n ∈ N, form two increasing and decreasing chains,
respectively, i.e., the chain of kernels

N(T 0) = {0} ⊂ N(T ) ⊂ N(T 2) ⊂ · · ·
and the chain of ranges

R(T 0) = X ⊃ R(T ) ⊃ R(T 2) ⊃ · · ·
The ascent and the descent of T are defined, respectively, by

asc(T ) := min{k ∈ N : N(T k) = N(T k+1)},
des(T ) := min{k ∈ N : R(T k) = R(T k+1)}.

The singular chain manifold Rc(T ) of T is defined as

Rc(T ) :=
( ∞⋃

n=1
N(Tn)

)
∩

( ∞⋃
n=1

Tn(0)
)
.

Definition 2.1 ([15, Section 1]). For T ∈ LR(X), a subspace M of X is called
weakly invariant under T if for all x ∈ M , Tx ∩M ̸= ∅, and is called nontrivial if
{0} ≠ M ̸= X and M ̸= T (0).

Let T be a linear relation and let M be a closed subspace of X. We say that T
and M satisfy the condition (H) if we have

(H) :


• T ∈ BCR(X)
•M is a closed weakly invariant subspace under T

satisfying the condition (c): x ∈ M if and only if Tx ∩M ̸= ∅,
•M + T (0) is closed.

In the rest of this section, we suppose that T and M satisfy the condition (H).
We denote by TM the relation defined by

G(TM ) = G(T ) ∩ (M ×M). (2.1)
It is clear that TM ∈ BCR(M) and if, in addition, Rc(T ) = {0} then Rc(TM ) = {0}.
Now, we denote by T̃M the linear relation induced by T on X/M and defined by

T̃M : X/M −→ X/M

x 7−→ T̃Mx = {y : y ∈ Tx}.
(2.2)

The linear relation T̃M is well defined. We claim that T̃M is a closed relation.
Indeed, let (xn, yn) ∈ G(T̃M ) be such that (xn, yn) −−−−−→

n→+∞
(x, y). Therefore,

for all n ∈ N, there exists αn, βn and γn in M such that xn − αn −−−−−→
n→+∞

x,
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yn − γn −−−−−→
n→+∞

y and yn − βn ∈ T (xn −αn). Let z ∈ Tx. We have, yn − βn − z ∈
T (xn −αn −x). So, ∥T (xn −αn −x)∥ = d(yn −βn − z, T (0)) ⩽ ∥T∥ ∥xn −αn −x∥.
Thus, there exists α′

n ∈ T (0) such that lim
n→+∞

yn − βn − z − α′
n = 0. Hence,

lim
n→+∞

yn − γn − yn + βn + z + α′
n = y. Therefore, y − z = lim

n→+∞
βn − γn + α′

n.
Since M + T (0) is closed, we have y − z ∈ M + T (0), and so y ∈ M + Tx. Thus,
there exists m ∈ M such that y −m ∈ Tx. This implies that (x, y) ∈ G(T̃M ) and
T̃M is closed as claimed. Now, as T̃M is everywhere defined, it is bounded.

Remark 2.2. We note that if T and M satisfy the condition (c) then for all n ⩾ 1,
Tn and M still satisfy the same condition.

Indeed, we prove that for n ≥ 1, Tnx ∩M ̸= ∅ ⇔ x ∈ M . Let n ⩾ 1. Suppose
that Tnx ∩M ̸= ∅ ⇔ x ∈ M , and let us show that Tn+1x ∩M ̸= ∅ ⇔ x ∈ M .

For the first implication, let y ∈ Tn+1x∩M . Then there exists z ∈ X such that
(x, z) ∈ G(Tn) and (z, y) ∈ G(T ). We have y ∈ Tz ∩M , then by the condition (c)
we get z ∈ M . So, z ∈ Tnx ∩ M and x ∈ M . For the reverse implication, let
x ∈ M . Then we have Tnx ∩M ̸= ∅. Let y ∈ Tnx ∩M . Thus, Tnx = y + Tn(0).
So, T (Tnx) = Ty+Tn+1(0). As y ∈ M , we have Ty ∩M ̸= ∅, so Ty ⊂ M +T (0).
Therefore, Tn+1x ⊂ M + Tn+1(0). Let z ∈ Tn+1x. Then, there exists αm ∈ M
and α0 ∈ Tn+1(0) such that z = αm + α0. So, αm = z − α0 ∈ Tn+1(x) ∩ M .
Therefore, Tn+1x ∩M ̸= ∅.

In the rest of this section, we will focus on some relations between the ascent
and the descent of T and those of the linear relations TM and T̃M .

Lemma 2.3. Let T and M satisfy the condition (H) and let TM , T̃M be defined
as in (2.1) and (2.2). Then, we have

(1) R(T̃M ) = R(T ) +M

M
.

(2) T̃n
M = (T̃M )n and R((T̃M )n) = R(Tn) +M

M
for all n ⩾ 1.

(3) N((TM )n) = N(Tn) ∩M , R((TM )n) = R(Tn) ∩M and (TM )n = (Tn)M for
all n ≥ 1.

Proof. (1) For the first inclusion, let y ∈ R(T̃M ). Then there exists x ∈ X/M

such that y ∈ T̃M (x). Hence there exists z ∈ X such that y = z and z ∈ Tx. So
y ∈ R(T ) + M . Thus, y ∈ R(T )+M

M . For the reverse inclusion, let y ∈ R(T )+M
M .

Then there exists z ∈ R(T ) and m ∈ M such that y = z + m. So, there exists
x ∈ X such that y = z +m ∈ Tx+m. Hence y −m ∈ Tx. Thus y −m ∈ T̃M (x).
As y −m = y, we have y ∈ R(T̃M ).

(2) We proceed by induction. For n = 1 there is nothing to prove. Let n ⩾ 1
and suppose that (̃Tn)M = (T̃M )n. We prove that ˜(Tn+1)M = (T̃M )n+1. Let
(x, y) ∈ G( ˜(Tn+1)M ). Thus, x = x1 +mx and y = y1 +my with mx,my ∈ M and
y1 ∈ Tn+1x1. So there exists z ∈ X such that (x1, z) ∈ G(Tn) and (z, y1) ∈ G(T ).
Hence, (x1, z) ∈ G((̃Tn)M ) and (z, y1) ∈ G(T̃M ). Then, (x1, z) ∈ G(T̃M

n
) and
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RECONSTRUCTION PROBLEM FOR A MULTIVALUED LINEAR OPERATOR 149

(z, y1) ∈ G(T̃M ). So, (x, y) = (x1, y1) ∈ G((T̃M )n+1). For the reverse inclusion, let
(x, y) ∈ G((T̃M )n+1). Then, there exists z ∈ X/M such that (x, z) ∈ G((T̃M )n) and
(z, y) ∈ G(T̃M ). Then, (x, z) ∈ G((̃Tn)M ) and (z, y) ∈ G(T̃M ). So, z = z1 + mz,
x = x1 +mx such that mz,mx ∈ M and z1 ∈ Tnx1 and z = z′

1 +m′
z, y = y1 +my

such that m′
z,my ∈ M and y1 ∈ Tz′

1. On the other hand, z1 − z′
1 = m′

z −mz ∈ M .
So, z′

1 = z1 +α with α ∈ M and Tz′
1 = Tz1 +Tα. As α ∈ M , we have Tα∩M ̸= ∅,

so Tα = m + T (0) where m ∈ M , so Tz′
1 = Tz1 + m. Therefore, y1 − m ∈ Tz1.

Thus, (x1, y1 −m) ∈ G(Tn+1). Hence, (x, y) = (x1, y1 −m) ∈ G( ˜(Tn+1)M ).
The equality R((T̃M )n) = R(T n)+M

M follows immediately from part (1).
(3) A straightforward calculation shows that N((TM )n) = N(Tn) ∩ M and

R((TM )n) = R(Tn) ∩ M for all n ≥ 1. To prove the last equality, using [3, 2.02],
it is sufficient to show that (TM )n ⊆ (Tn)M for all n ≥ 1. To do this, it suffices to
reason by induction. □

In a similar way we show the following:

Lemma 2.4. Let T and M satisfy the condition (H) and let TM , T̃M be defined
as in (2.1) and (2.2). Then, we have

(1) N(T̃M ) = N(T ) +M

M
.

(2) N((T̃M )n) = N(Tn) +M

M
for all n ⩾ 1.

Proposition 2.5. Let T and M satisfy the condition (H) and let TM , T̃M be
defined as in (2.1) and (2.2). Then

asc(TM ) ⩽ asc(T ) and des(T̃M ) ⩽ des(T ).

Proof. Let n ⩾ asc(T ). We prove that N((TM )n+1) = N((TM )n). Let x ∈
N((TM )n+1). Then part (3) of Lemma 2.3 implies that x ∈ N(Tn+1) ∩ M . Since
n ⩾ asc(T ) and x ∈ N(Tn+1), we have x ∈ N(Tn). Therefore x ∈ N(Tn) ∩M . By
part (3) of Lemma 2.3, we get x ∈ N((TM )n). This proves that asc(TM ) ⩽ asc(T ).

Let n ⩾ des(T ). We claim that R((T̃M )n+1) = R((T̃M )n). Let y ∈ R((T̃M )n).
Then part (2) of Lemma 2.3 implies that y ∈ R(T n)+M

M . Since n ⩾ des(T ), we have
R(Tn+1) = R(Tn). Thus, y ∈ R(T n+1)+M

M . Using the part (2) of Lemma 2.3, we
get y ∈ R((T̃M )n+1).

Therefore, des(T̃M ) ⩽ des(T ). □

Proposition 2.6. Let T and M satisfy the condition (H) and let TM , T̃M be
defined as in (2.1) and (2.2). Then,

(1) asc(T ) ⩽ asc(TM ) + asc(T̃M ),
(2) des(T ) ⩽ des(TM ) + des(T̃M ).

Proof. (1) Let n ⩾ asc(TM ) + asc(T̃M ). We have that n ⩾ asc(TM ) and n ⩾
asc(T̃M ). So, N((TM )n) = N((TM )n+1) and N((T̃M )n) = N((T̃M )n+1). Hence, by
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Lemmas 2.3 and 2.4, N(Tn)∩M = N(Tn+1)∩M and N(T n)+M
M = N(T n+1)+M

M . We
claim that N(Tn+1) = N(Tn). Suppose, on the contrary, that N(Tn) ⊊ N(Tn+1).
Then, there exists x ∈ N(Tn+1) such that x /∈ N(Tn). On the other hand, we have
x ∈ N(T n+1)+M

M = N(T n)+M
M . So, there exists x′ ∈ N(Tn) + M such that x = x′.

Thus x−x′ ∈ M and hence x ∈ N(Tn) +M . Therefore, there exists α ∈ N(Tn) ⊂
N(Tn+1) such that x−α ∈ M . Hence x−α ∈ N(Tn+1)∩M . Therefore, x ∈ N(Tn)
which is absurd. Thus, N(Tn+1) = N(Tn) and so asc(T ) ⩽ asc(TM ) + asc(T̃M ).

(2) The result can be proved by similar arguments. □

3. Reconstruction of the invertibility and the Drazin invertibility
properties

The main intent of this section is to provide proofs of the statements (i) and
(ii) announced in Section 1. To do this, we begin by recalling some definitions and
properties of Drazin invertible linear relations.

Definition 3.1 ([12]). Let T ∈ BCR(X). T is said to be Drazin invertible of
degree k ∈ N if there exists a bounded operator TD ∈ L(X) such that

(i) TTD = TDT + T (0);
(ii) TDTTD = TD; and
(iii) T k+1TD = T k + T k+1(0).

TD is called the Drazin inverse of T .

Notice that if Rc(T ) = {0}, then T is Drazin invertible of degree 0 if and only
if T is invertible.

Lemma 3.2 ([12, Lemma 3.2]). Let T ∈ BCR(X) be Drazin invertible and TDbe
a Drazin inverse of T . Then

(i) TDT is an operator.
(ii) For all k ∈ N, (TD)kT k = TDT = (TDT )k.

Lemma 3.3 ([12, Theorem 3.3]). Let T ∈ BCR(X) be such that ρ(T ) ̸= ∅. The
following statements are equivalent:

(i) T is Drazin invertible;
(ii) asc(T ) and des(T ) are finite;
(iii) There exist two closed subspaces M and N of X such that X = M ⊕ N

and T = TM ⊕ TN where TM is an invertible linear relation and TN is a
bounded nilpotent operator.

Definition 3.4 ([14, Definition 2, Lemma 3]). Let T ∈ BCR(X). We say that T
is a generalized Drazin invertible linear relation if there exists B ∈ L(X) such that

TB = BT + T (0), BTB = B, T − TBT = N1 + T (0),

with T 2(0) ⊆ N(N1) and N1 being a bounded quasinilpotent operator. We say
that B is a generalized Drazin inverse of T .
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Proposition 3.5 ([14, Theorem 19]). Let T ∈ BCR(X) be such that Rc(T ) = {0}.
Then T is generalized Drazin invertible if and only if 0 is an isolated point of the
spectrum of T .

The following theorem provides the equivalence between the invertibilities of T
and those of TM and T̃M .

Theorem 3.6. Let T and M satisfy the condition (H) and let TM and T̃M be
defined as in (2.1) and (2.2). Then, we have

TM and T̃M are invertible ⇐⇒ T is invertible.

Proof. For the direct implication, assume that TM and T̃M are invertible. First, we
prove that T is surjective. Let y ∈ X. Since T̃M is surjective, there exists x ∈ X

such that y ∈ T̃Mx. Hence, there exists z ∈ X such that y = z and z ∈ Tx. So,
y − z ∈ M . Then, y = z +m for some m ∈ M . Hence, y ∈ Tx+m. Since m ∈ M
and TM is surjective, there exists x′ ∈ M ⊂ X such that m ∈ Tx′. Therefore,
y ∈ Tx+ Tx′ = T (x+ x′).

Next assume that 0 ∈ Tx. Then, 0 ∈ T̃Mx. Since T̃M is injective, we have x = 0̄.
Then x ∈ M . Since TM is invertible and 0 ∈ TMx, we have x = 0. This proves
that T is invertible.

The reverse implication follows immediately from Lemmas 2.3 and 2.4. □

As a consequence of Theorem 3.6, we get the following lemma.
Lemma 3.7. Let T and M satisfy the condition (H). Then we have:

(i) σ(T ) ⊂ σ(TM ) ∪ σ(T̃M );
(ii) σ(TM ) ⊂ σ(T ) ∪ σ(T̃M );
(iii) σ(T̃M ) ⊂ σ(T ) ∪ σ(TM ).

Remark 3.8. By Lemma 3.7, we deduce that σ(T ) = (σ(TM ) ∪σ(T̃M )) \V where
V ⊂ σ(TM ) ∩ σ(T̃M ).
Corollary 3.9. Let T and M satisfy the condition (H). Then the following prop-
erties hold:

(i) If λ ∈ (σ(TM ) ∪ σ(T̃M )) \ σ(T ), then λ ∈ σ(TM ) ∩ σ(T̃M );
(ii) If λ ∈ (σ(T ) ∪ σ(T̃M )) \ σ(TM ), then λ ∈ σ(T ) ∩ σ(T̃M );
(iii) If λ ∈ (σ(T ) ∪ σ(TM )) \ σ(T̃M ), then λ ∈ σ(T ) ∩ σ(TM ).
We now give the first theorem connecting the Drazin invertibility of T with that

of TM (resp., T̃M ) in the case where T̃M (resp., TM ) is invertible.

Theorem 3.10. Let T and M satisfy the condition (H) and let TM and T̃M be
defined as in (2.1) and (2.2). If T̃M (resp., TM ) is invertible, then

(i) asc(TM ) = asc(T ) and des(TM ) = des(T ) (resp., asc(T̃M ) = asc(T ) and
des(T̃M ) = des(T )).

(ii) If moreover ρ(T ) ̸= ∅ then T is Drazin invertible if and only if TM (resp.,
T̃M ) is Drazin invertible.
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Proof. (i) Consider the case where T̃M is an invertible relation. Then, asc(T̃M ) =
des(T̃M ) = 0 and by Propositions 2.5 and 2.6 we have asc(T ) = asc(TM ) and
des(T ) ⩽ des(TM ).

Now, let n ⩾ des(T ). We prove that R((TM )n) = R((TM )n+1). Let y ∈
R((TM )n), then y ∈ R(Tn) ∩ M . Since n ⩾ des(T ), we get R(Tn) = R(Tn+1).
Therefore, y ∈ R(Tn+1) ∩ M . Hence, by part (3) of Lemma 2.3 we have y ∈
R((TM )n+1).

Next, we consider the case where TM is an invertible relation. Then, asc(TM ) =
des(TM ) = 0 and by Propositions 2.5 and 2.6 we have des(T ) = des(T̃M ) and
asc(T ) ⩽ asc(T̃M ).

Now, let n ⩾ asc(T ). Pick x ∈ N((T̃M )n+1). Then x ∈ N(T n+1)+M
M . Since

n ⩾ asc(T ), we get N(Tn) = N(Tn+1). Therefore, x ∈ N(T n)+M
M = N((T̃M )n).

This shows that asc(T̃M ) ⩽ asc(T ).
(ii) This is immediate from part (i) and Lemma 3.3. □

Definition 3.11 ([5, Definition 2.1]). A closed subspace M of X is said to be
strongly invariant under a relation T ∈ BCR(X) with nonempty resolvent set ρ(T )
if for all λ ∈ ρ(T ) we have (λ− T )−1(M) ⊂ M .

Remark 3.12 ([5]). Note that if M is a closed subspace of X that is strongly
invariant under T ∈ BCR(X), then it is also weakly invariant under T . The
converse is not always true even for bounded operators.

Remark 3.13. If M is a closed subspace of X strongly invariant under T ∈
BCR(X), then for all λ ∈ ρ(T ) we have that (λ−T ) and M satisfy the condition (c).
That is, for λ ∈ ρ(T ), we have

x ∈ M ⇐⇒ (λ− T )x ∩M ̸= ∅.

Notation. Let T and M satisfy the condition (H). If M is strongly invariant
under T , then we say that T and M satisfy the condition (H′).

Example 3.14. As an example, we can see that if T ∈ BCR(X) is semi regular
(that is, R(T ) is closed and for all n, m ∈ N, we have N(Tn) ⊂ R(Tm), see [1])
and M = R∞(T ) :=

⋂
n∈NR(Tn), then T and M satisfy the condition (H′).

Lemma 3.15. Let T and M satisfy the condition (H′). Then, for all λ ∈ C we
have

(λ− T )M = λ− TM and ˜(λ− T )M = λ− T̃M .

Proof. We have

G((λ− T )M ) = G(λ− T ) ∩ (M ×M)
= {(x, λx− y) : (x, y) ∈ G(T ) ∩ (M ×M)}
= G(λ− TM ).
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We claim that ˜(λ− T )M = λ − T̃M . Indeed, let (x, y) ∈ G( ˜(λ− T )M ). Thus,
x = x1 + mx and y = y1 + my with mx,my ∈ M and y1 ∈ (λ − T )x1. There-
fore, (x1,−y1 + λx1) ∈ G(T ). Hence, (x,−y + λx) = (x1,−y1 + λx1) ∈ G(T̃M ).
Therefore, (x, y) ∈ G(λ− T̃M ).

For the reverse inclusion, let (x, y) ∈ G(λ − T̃M ). Then, y ∈ (λ − T̃M )x. So,
−y + λx ∈ T̃Mx. Hence, there exists z ∈ X such that −y + λx = z and z ∈ Tx.
Thus, z = −y + λx + m with m ∈ M . Therefore, y + m ∈ (λ − T )x. Hence,
(x, y) = (x, y +m) ∈ G( ˜(λ− T )M ). □

Lemma 3.16. Let T and M satisfy the condition (H′). Then,

ρ(T ) ⊂ ρ(TM ) ∩ ρ(T̃M ).

Proof. It readily follows from Theorem 3.6 and Lemma 3.15. □

Lemma 3.17. Let T and M satisfy the condition (H′). Then,
(i) If 0 /∈ accσ(TM ) ∪ accσ(T ) then 0 /∈ accσ(T̃M );
(ii) If 0 /∈ accσ(T̃M ) ∪ accσ(T ) then 0 /∈ accσ(TM ).

Proof. (i) If we suppose that 0 ∈ accσ(T̃M ), then by Lemma 3.7 (i) we get that
0 ∈ σ(T )∪σ(TM ). Therefore, there exists a sequence (λn)n∈N ⊂ σ(T )∪σ(TM ) such
that λn ̸= λn′ for all n ̸= n′ and λn −−−−−→

n→+∞
0. Thus, A = {n ∈ N : λn ∈ σ(T )} or

B = {n ∈ N : λn ∈ σ(TM )} is infinite. If we suppose that A is infinite then, we can
extract a subsequence ρ1(n) such that (λρ1(n))n∈N ∈ σ(T ) : λρ1(n) ̸= λρ1(n′) for all
n ̸= n′ and λρ1(n) −−−−−→

n→+∞
0. Therefore, 0 ∈ accσ(T ). However, this contradicts

the fact that 0 /∈ accσ(T ). If we suppose that B is infinite then, in a similar way
we show that 0 ∈ accσ(TM ). However this contradicts the fact that 0 /∈ accσ(TM ).
So 0 /∈ accσ(T̃M )

(ii) The result can be proved by similar arguments. □

Remark 3.18. Let T and M satisfy the condition (H′). Then,

σ(T ) = σ(TM ) ∪ σ(T̃M ).

Indeed, by Lemma 3.16, ρ(T ) ⊂ ρ(TM ) ∩ ρ(T̃M ). Hence σ(TM ) ∪ σ(T̃M ) ⊂ σ(T ).
On the other hand, by Lemma 3.7, σ(T ) ⊂ σ(TM ) ∪ σ(T̃M ).

In the following theorem we characterize the Drazin invertibility of T using those
of TM and T̃M .

Theorem 3.19. Let T and M satisfy the condition (H′) and ρ(T ) ̸= ∅. Then,
the following assertions are equivalent:

(1) TM and T̃M are Drazin invertible;
(2) T is Drazin invertible and des(TM ) < ∞;
(3) T is Drazin invertible and asc(T̃M ) < ∞.
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Proof. Assume that (1) holds. Then, by Lemmas 3.16 and 3.3, we have that
asc(TM ), asc(T̃M ), des(TM ) and des(T̃M ) are all finite. By Propositions 2.5 and 2.6,
it follows that asc(T ) and des(T ) are finite. Furthermore, from the hypothesis
ρ(T ) ̸= ∅ and Lemma 3.3, it follows that T is Drazin invertible. This verifies that
(1) =⇒ (2) and (1) =⇒ (3).

(2) =⇒ (3): We need to show that asc(T̃M ) < ∞. By Proposition 2.5, we have
asc(TM ) < ∞. Then, asc(TM ) and des(TM ) are both finite. On the other hand,
since ρ(T ) ̸= ∅, by Lemma 3.16 we get ρ(TM ) ̸= ∅. It follows from Lemma 3.3
that TM is Drazin invertible. On the other hand, by [6, Lemma 2.6] we have
Rc(TM ) = {0}. Then, using Proposition 3.5 we get that 0 /∈ accσ(TM ) ∪ accσ(T ).
So, by Lemma 3.17, 0 /∈ accσ(T̃M ). Then it follows by Proposition 3.5, that T̃M

is generalized Drazin invertible. We claim that T̃M is Drazin invertible. Indeed,
as T̃M is generalized Drazin invertible, by [14, Theorem 28], there exist two closed
subspaces M1 and M2 of X/M such that X/M = M1 ⊕M2 and T̃M = T̃M 1 ⊕ T̃M 2
where T̃M 1 is an invertible linear relation and T̃M 2 is a bounded quasinilpotent
operator. On the other hand, we have des(T̃M ) ⩽ des(T ) < ∞. Therefore,
des(T̃M ) = des(T̃M 2) < ∞. Using [16], we get that T̃M 2 is a bounded nilpo-
tent operator. Then, it follows from Lemma 3.3 that T̃M is Drazin invertible and
therefore, asc(T̃M ) < ∞.

(3) =⇒ (1): Since ρ(T ) ̸= ∅ and T is Drazin invertible, by Lemma 3.3, asc(T )
and des(T ) are both finite. Suppose that asc(T̃M ) < ∞. This, taken together
with the fact that des(T̃M ) ⩽ des(T ) < ∞, and the use of Lemma 3.3 and
Lemma 3.16, implies that T̃M is Drazin invertible. On the other hand, we infer from
[6, Lemma 2.6] and Proposition 3.5 that 0 /∈ accσ(T̃M ). So, 0 /∈ accσ(TM ). Then,
it follows from Proposition 3.5 that TM is generalized Drazin invertible. Now, in a
similar way as in the proof of the precedent implication we show that TM is Drazin
invertible. □

4. Reconstruction of the closed range property

We need a larger class of invariant subspaces than that of closed subspaces.
Specially, we consider throughout this section the class of those subspaces which
are paraclosed. Fundamental results concerning paraclosed subspaces can be found
in [2, 8, 11].

Definition 4.1 ([2, Definition 3.1]). Let X be a Banach space. A subspace M
of X is said to be paraclosed if M has a structure of its own, which makes the
inclusion of M ↪→ X a continuous mapping.

Clearly, every closed subspace is paraclosed, but the class of paraclosed subspaces
is strictly larger.

Remark 4.2. A subspace M of X is paraclosed if and only if there is a Banach
space norm ∥ · ∥M and a constant k > 0 such that ∥m∥X ⩽ k∥m∥M for all m ∈ M .
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We gather in the following lemma some useful results that are a direct conse-
quence of [8, Proposition 3.9].

Lemma 4.3. Let X be a Banach space and let M be a paraclosed subspace of X.
Let also N be a closed subspace of X. Then,

(i) M ∩N is a closed subspace of M ;
(ii) if moreover N ⊂ M , then M/N is a paraclosed subspace of X/N .

Let T ∈ BCR(X) and let M be a paraclosed subspace of X. We say that M is
T -invariant if T (M) ⊂ M . Denote by TM the restriction of T to M . This section
explores the questions:

• If the range of T is closed in X, then under what conditions it the same
for TM in M?

• If the range of TM is closed in M , then under what conditions it the same
for T in X?

Proposition 4.4. Let S ∈ BCR(X) and let M be an S-invariant paraclosed sub-
space of X. The following statements are equivalent:

(a) S−1(M) = M +N(S);
(b) R(SM ) = R(S) ∩M .

When (b) holds and R(S) is closed, we also get that R(SM ) is closed in M .

Proof. Suppose that (a) holds. The inclusion R(SM ) ⊆ R(S) ∩M always holds (as
long as M is S-invariant). For the reverse inclusion, suppose that y ∈ R(S) ∩ M .
So, there exists an element x ∈ X such that y ∈ Sx. Then x ∈ S−1(M). The
statement (a) implies that, x = z1 + z2 where z1 ∈ M and z2 ∈ N(S). Then
y ∈ Sz1, so y ∈ R(SM ). Now suppose that (b) holds. Let y ∈ S−1(M). Then,
there exists m1 ∈ M such that m1 ∈ Sy. So m1 ∈ R(S) ∩ M . Then, m1 ∈ Sm2
where m2 ∈ M . Then Sy = m1 +S(0) = Sm2. Therefore, y = m2 + (y−m2) with
(y−m2) ∈ N(S). On the other hand, it is clear that M +N(S) ⊂ S−1(M). Thus,
(a) holds.

Assume now that (b) holds and that R(S) is closed. Then, by Lemma 4.3,
R(S) ∩M = R(SM ) is closed in M . □

Let n ∈ N∗. We denote in the remainder of this paper:

Pn = {(M,T ) : T ∈ BCR(X), T 2(0) = T (0), M is a paraclosed subspace of X,
M is T -invariant, and Tnx ⊂ M for all x ∈ X}

and
P =

⋃
n∈N∗

Pn.

Proposition 4.5. Let (M,T ) ∈ P. Fix n ≥ 1, such that (M,T ) ∈ Pn. Then for
all λ ̸= 0, (λ− T )−1(M) = M . Moreover, we have:

for all λ ̸= 0, if R(λ− T ) is closed in X then R(λ− TM ) is closed in M . (4.1)
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Proof. Fix λ ̸= 0. Let m ∈ M . Since M is T -invariant, there exists y ∈ M such
that y ∈ Tm. Then, λm − y ∈ (λ − T )m. So m ∈ (λ − T )−1(λm − y). Hence,
m ∈ (λ−T )−1(M). For the reverse inclusion, set S = λ−1T . Let y ∈ (I−S)−1(M).
Thus, (I − S)y ⊂ M . Now as by [7] and [3, Theorem 2.3] we have (I − Sn) =
(I − S)(I + S + · · · + Sn−1), we get (I − Sn)y = (I + S + · · · + Sn−1)(I − S)y ⊂
(I + S + · · · + Sn−1)(M) ⊂ M . Since Sny ⊂ M , we get y ∈ M . This proves that
(λ− T )−1(M) = (I − S)−1(M) = M .

Let x ∈ N(λ − T ). Then, x ∈ 1
λTx and for n we have x ∈ 1

λn (Tnx). This
implies that x ∈ M . So N(λ−T ) ⊂ M . Therefore, the assertion (4.1) follows from
Proposition 4.4. □

Proposition 4.6. Let (M,S) ∈ P1. If λ ̸= 0 and R(λ− SM ) is closed in M , then
R(λ− S) is closed in X.

Proof. We may assume that λ = 1, so our hypothesis is that Z ≡ R(I − SM )
is closed in M . For convenience, set N = N(I − SM ) and also we note that
N = N(I − S) (this follows from the fact that, for all x ∈ X, Sx ⊂ M).

Now we complete the proof that R(I − S) is closed by showing that the linear
map

ψ : R(I − S) −→ X/N

y 7−→ {z : z ∈ (I − S)−1y}
is continuous and closed.

We have ψ(0) = {z : z ∈ (I − S)−10} = {0̄}. Therefore, ψ is a linear operator.
Let yn ∈ R(I−S) such that yn

X−−−−−→
n→+∞

0. We claim that ψyn
X/N−−−−−→

n→+∞
0̄. Indeed,

let zn ∈ (I − S)−1yn. We have ψyn = zn. Let tn ∈ Szn ∩ M . Then, there exists
αn ∈ S(0) such that zn − yn = tn + αn.

Therefore,
ψyn = zn = zn − tn − αn + tn + αn = yn + tn + αn.

We have ∥yn∥X/N = d(yn, N) ⩽ ∥yn∥X . Hence, lim
n→+∞

∥yn∥X/N = 0.

We claim that tn + αn
X/N−−−−−→

n→+∞
0. Indeed, we have tn +αn ∈ Szn +S(0) = Szn.

Now, let us define the relation
̂I − SM : M/N → Z

by
̂(I − SM )(m+N) = (I − SM )m for all m ∈ M.

It is clear that ̂I − SM is bijective. On the other hand, as I − S is a bounded
relation, for all m ∈ M and α ∈ N we have

∥ ̂I − SM (m)∥Z = ∥(I − S)(m+ α)∥ ⩽ ∥(I − S)∥ ∥m+ α∥ ⩽ ∥(I − S)∥ ∥m∥M/N .

So, ̂I − SM is a bounded and closed invertible linear relation. We have
̂I − SM (tn + αn) = (I − SM )(tn + αn) ⊂ (I − SM )Szn ⊂ S(I − S)zn ⊂ Syn.
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Let βn ∈ ̂I − SM (tn + αn) ⊂ Syn. So,

∥ ̂I − SM (tn + αn)∥Z = dZ(βn, S(0)) = inf
α∈S(0)

∥βn − α∥Z

= dX(βn, S(0)) = ∥Syn∥ ⩽ ∥S∥ ∥yn∥ −−−−−→
n→+∞

0.

On the other hand, tn + αn = ( ̂I − SM )−1( ̂I − SM )(tn + αn). Then,∥∥tn + αn

∥∥
M/N

⩽
∥∥∥ ̂(I − SM )

−1∥∥∥
B(Z,M/N)

∥∥∥ ̂(I − SM )(tn + αn)
∥∥∥

Z
−−−−−→
n→+∞

0.

Thus, ∥tn + αn∥M/N → 0 and therefore, by Lemma 4.3 (ii), also in X/N . So, ψ is
continuous.

On the other hand, we note that for all x ∈ X,ψ(I − S)x = x. Let us consider
the bounded quotient map operator Q : X → X/N defined by Qx = x. We have
ψ(I − S) = Q. Hence, ψ = Q(I − S)−1. As S ∈ BCR(X), we have that I − S is
closed, and then (I−S)−1 is also closed. Thus, Q(I−S)−1 = Q(I−S)−1(0)(I−S)−1

is closed. Then, ψ is closed. As ψ is continuous and closed, R(I −S) is closed. □

Lemma 4.7. Let T ∈ BCR(X) be such that T 2(0) = T (0) and let M be a para-
closed T -invariant subspace of X. Set V = T−1(M), so M ⊆ V ⊆ X. Define a
norm on V by

∥v∥V = ∥v∥X + ∥T̃ v∥M for v ∈ V ,

where T̃ : (V, ∥ · ∥X) → (M, ∥ · ∥M ) is the linear relation induced by T and

∥T̃ v∥M = dM (y, T (0)); for some y ∈ T̃ v

= inf
α∈T (0)

∥y − α∥M = ∥Q
T̃
T̃ v∥M/T (0).

Then, we have:
(a) V is a T -invariant subspace and T (V ) ⊆ M ;
(b) ∥ · ∥V is a complete norm on V ;
(c) M is paraclosed in V , and V is paraclosed in X.

Proof. (a) Let x ∈ V . Then x ∈ T−1m for some m ∈ M . So Tx ⊂ M . Thus,
T (V ) ⊆ M ⊆ V . Therefore, V is a T -invariant subspace and T (V ) ⊆ M .

(b) First, by Lemma 4.3, M/T (0) is complete. Now, let {vn} ⊆ V be a Cauchy
sequence in the norm ∥ · ∥V . Then, for all ε > 0, there exists n0 ∈ N such that for
all n,m ⩾ n0 we have

∥vn − vm∥V = ∥vn − vm∥X + ∥Q
T̃
T̃ vn −Q

T̃
T̃ vm∥M/T (0) ⩽ ε.

So, {vn} is Cauchy in ∥ · ∥X and {Q
T̃
T̃ vn} is Cauchy in ∥ · ∥M/T (0). Then, there

exists v0 ∈ X and w0 ∈ M such that ∥vn − v0∥X −−−−−→
n→+∞

0 and ∥Q
T̃
T̃ vn −

Q
T̃
w0∥M/T (0) −−−−−→

n→+∞
0. Thus, Q

T̃
T̃ v0 = Q

T̃
T̃w0. In addition,

∥vn − vo∥V = ∥vn − vo∥X + ∥Q
T̃
T̃ vn −Q

T̃
T̃ v0∥M/T (0)

= ∥vn − vo∥X + ∥Q
T̃
T̃ vn −Q

T̃
w0∥M/T (0) −−−−−→

n→+∞
0.
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As vn
∥·∥X−−−−−→

n→+∞
v0, we have QTTvn

∥·∥X/T (0)−−−−−−→
n→+∞

QTTv0. On the other hand, we have

Q
T̃
T̃ vn

∥·∥M/T (0)−−−−−−→
n→+∞

Q
T̃
w0.

Hence QTTvn

∥·∥X/T (0)−−−−−−→
n→+∞

QTw0. Therefore, ∥vn − vo∥V −−−−−→
n→+∞

0.
(c) It is clear that there exist k1 > 0 and k2 > 0 such that ∥m∥V ⩽ k1∥m∥M for

all m ∈ M and ∥v∥X ⩽ k2∥v∥V for all v ∈ V . Then, by Definition 4.1, we have the
desired result. □

Theorem 4.8. Let n ∈ N∗ and (M,T ) ∈ Pn. Then, for all λ ̸= 0,
(1) R(λ− T ) is closed in X if and only if R(λ− TM ) is closed in M ;
(2) N(λ− T ) = N(λ− TM );
(3) λ− T is bounded below if and only if λ− TM is bounded below.

Proof. (1) For convenience, set V0 = M , Vn = X and ∥m∥0 = ∥m∥M for m ∈ M .
Let V1 = T−1(M) be equipped with the complete norm ∥v∥1 = ∥v∥X + ∥T̃ v∥0. By
Lemma 4.7, we have M ⊆ V1 ⊆ X, the embeddings are continuous, and T (V1) ⊆ V0.

Continuing inductively in this fashion, using Lemma 4.7, construct Vk, 1 ⩽ k ⩽
n− 1, with norm ∥v∥k = ∥v∥X + ∥T̃ v∥k−1, having the properties:

(a) T (Vk) ⊆ Vk−1 for 1 ⩽ k ⩽ n;
(b) (Vk, ∥v∥k) is a Banach space, 1 ⩽ k ⩽ n− 1;
(c) M = V0 ⊆ V1 ⊆ V2 ⊆ . . . ⊆ Vn−1 ⊆ Vn = X, and each of the embeddings

are continuous.
Let Tk be the restriction of T to Vk, 0 ⩽ k ⩽ n. It is clear that (Vk+1, Tk) ∈ P1

for all k ∈ {0, . . . , n−1}. It follows from Propositions 4.5 and 4.6 that for all λ ̸= 0
and 1 ⩽ k ⩽ n, R(λ− Tk−1) is closed if and only if R(λ− Tk) is closed. Therefore,
R(λ− T ) is closed if and only if R(λ− TM ) is closed. This proves (1).

(2) First note that N(λ − TM ) ⊆ N(λ − T ). Now suppose that λ ̸= 0 and let
x ∈ N(λ− T ). Then, x ∈ 1

λTx, and for n we have x ∈ 1
λn (Tnx). This implies that

x ∈ M . Therefore, N(λ− T ) = N(λ− TM ).
(3) Follows from (1) and (2). □

5. Reconstruction of the relative regularity property

This section will shed light on some definitions, auxiliary results and properties
of relatively regular linear relations that will be needed in the what follows.

Definition 5.1. A bounded linear operator S will be called a pseudo inverse of
T ∈ BCR(X) or g1-inverse of T if

TST = T and T (0) ⊂ N(S).
We then say that T is a relatively regular linear relation.

Remark 5.2 ([13, Remark 1.1]). Let T ∈ BCR(X). If T (0) is topologically com-
plemented, then it is sufficient to verify that there exists S ∈ L(X) such that
TST = T to prove that T is a relatively regular linear relation.
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Proposition 5.3 ([13, Theorem 2.2]). Let T ∈ BCR(X) be such that T (0) is
topologically complemented. Then T has a g1-inverse if and only if both the null
space N(T ) and the range space R(T ) are topologically complemented in X.

Definition 5.4 ([7, Definition I.5.1]). Let T ∈ BCR(X) and A ∈ L(X). A is called
a selection (or single valued part) of T if

T = A+ T − T.

If A is a selection of T , then we have, for all x ∈ X, Tx = Ax + T (0). So
R(T ) = R(A) + T (0).

Proposition 5.5 ([7, Proposition I.5.2]). Let T ∈ BCR(X) be such that T (0) is
topologically complemented. If P is a bounded linear projection with kernel T (0)
then PT is a selection of T . Conversely, if A is a selection of T and A(X)∩T (0) =
{0}, then any bounded linear projection P defined on X with kernel T (0) and such
that A(X) ⊂ P (X), satisfies A = PT .

Lemma 5.6. Let T ∈ BCR(X) be such that T 2(0) = T (0) and T (0) is topologically
complemented and P be a bounded projection with kernel T (0). Assume that G0
is a g1-inverse of I − T . Let A be the selection of T given by A = PT . Let
G1 = P +A+AG0T . Then G1 is a g1-inverse of I − T .

Proof. To begin the proof, we note that TA = AT + T (0). Introduce the following
equation

(I − T )G1(I − T )
= (I − T )(P +A+AG0T )(I − T )
= (I − T )(P +A)(I − T ) + (I − T )AG0(I − T )T
= (I − T )(P −A) + (I − T )A(I − T ) +A(I − T )G0(I − T )T + T (0)
= P −A− TP + TA+A− TA−AT + TAT +AT −AT 2 + T (0)
= P − TP +AT 2 −AT 2 + T (0).

Now, as T 2(0) = T (0) and A = PT , we have AT 2 −AT 2 = 0. So, (I−T )G1(I−
T ) = (I − T )P = I − T . On the other hand, it is easy to see that T (0) ⊂ N(G1)
and using [7, Corollary II.3.13] we get that AG0T is bounded. Therefore, G1 is a
g1-inverse of I − T . □

Proposition 5.7. Let T ∈ BCR(X) be such that T 2(0) = T (0) and T (0) is topo-
logically complemented and P be a bounded projection with kernel T (0). Assume
that G0 is a g1-inverse of I − T . Let A be the selection of T given by A = PT .
Then for each integer m ⩾ 1, there exists a polynomial pm with pm(0) = 0 such
that

Gm = P + pm(A) +AmG0T
m is a g1-inverse of I − T .

Also, for m ⩾ 0, Gm+1 = P +A+AGmT .

Proof. Let p1(x) = x. Then G1 = P + p1(A) + AG0T is a g1-inverse for I − T
by Lemma 5.6. Now assume that for some m ⩾ 1, pm is a polynomial with
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the properties in the statement of the proposition, and that Gm = P + pm(A) +
AmG0T

m is a g1-inverse of I − T . Computing, we get
P +A+AGmT = P +A+A(P + pm(A) +AmG0T

m)T
= P +A+A2 +A2pm(A) +Am+1G0T

m+1

= P + pm+1(A) +Am+1G0T
m+1,

where pm+1(x) = x + x2 + x2pm(x). Let Gm+1 = P + pm+1(A) + Am+1G0T
m+1.

Since Gm is a g1-inverse of (I − T ), we have that Gm+1 = P + A + AGmT is a
g1-inverse of I − T by Lemma 5.6. □

Remark 5.8. Let T and R ∈ BCR(X) be such that TM = RM where M is a
dense subspace of X invariant under T and R. Then, T = R on X. Indeed, let
x ∈ X. Then, there exists (xn)n∈N ⊂ M such that (xn) −−−−−→

n→+∞
x. We have

TMxn = RMxn, then Txn = Rxn. Hence, QTTxn = QTRxn. On the other hand,
as TM = RM , we get T (0) = R(0). Therefore, QTTxn = QRRxn. Since QTT and
QRR are bounded operators, and xn −−−−−→

n→+∞
x, we have QTTx = QRRx = QTRx.

Therefore, QT (Tx−Rx) = 0. Then, Tx−Rx ⊂ T (0). Thus, Tx = Rx.

We state now the main theorem of this section.

Theorem 5.9. Let (M,T ) ∈ P be such that T (0) is topologically complemented
and P be a bounded projection with kernel T (0). Set A = PT . For λ ̸= 0, if λ− T
has a g1-inverse in L(X), then λ − TM has a g1-inverse in L(M). Conversely, if
M is dense in X and λ−TM has a g1-inverse in L(M), then λ−T has a g1-inverse
in L(X).

Proof. First, we verify that it suffices to prove the result when λ = 1. Note that
for λ ̸= 0, λ−1T ∈ P, and that (I − λ−1T ) has a g1-inverse G, so
(I−λ−1T )G(I−λ−1T ) = (I−λ−1T ) if and only if (λ−T )(λ−1G)(λ−T ) = (λ−T ).
Now, fix m ⩾ 1 such that Tmx ⊂ M for all x ∈ X. Assume that I − T has a
g1-inverse G in L(X). From Proposition 5.7 it follows that there exists a polynomial
pm such that F = P + pm(A) + AmGTm is a g1-inverse of I − T . We have
T (M) ⊂ M and Tmx ⊂ M for all x ∈ X. We claim that A(M) ⊂ M . Indeed,
A(M) = PT (M) ⊂ P (M). On the other hand, X = T (0) ⊕ R(P ), where T (0) =
N(P ). Let x ∈ M . Then, x = x0 + x1 with x0 ∈ T (0) and x1 ∈ R(P ). Then,
P (x) = x1 = x − x0 ∈ M . Hence A(M) ⊂ M . Furtheremore, Amx ∈ Tmx ⊂ M
for all x ∈ X. Hence F (M) ⊂ M .

Conversely, assume that M is dense in X and λ − TM has a g1-inverse G in
L(M).

First of all, we need to verify that TM is in BCR(M). To do this, as TM

is everywhere defined in M , by the closed graph theorem [7, Theorem III.4.2] it
is enough to prove that G(TM ) is closed in M . Let (xn, yn) ∈ G(TM ) be such
that (xn, yn) M×M−−−−−→

n→+∞
(x, y). Thus, (x, y) ∈ M and ∥(xn, yn) − (x, y)∥X×X ⩽

M∥(xn, yn) − (x, y)∥M2 −−−−−→
n→+∞

0. Thus, (xn, yn) X×X−−−−−→
n→+∞

(x, y). Now, as G(T )

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)



RECONSTRUCTION PROBLEM FOR A MULTIVALUED LINEAR OPERATOR 161

is closed in X × X, we have (x, y) ∈ G(T ). Hence, G(TM ) is closed in M × M .
On the other hand, we have M = (T (0) ⊕ R(P )) ∩ M = T (0) ⊕ R(P ) ∩ M . We
note that T (0) and R(P ) ∩M are closed in M . Let P1 be the bounded projection
in M with kernel T (0) and range R(P1) = R(P ) ∩ M . We note that P1 = PM .
Let A1 = P1TM . Then by Proposition 5.7, there exists a polynomial pm such that
F = P1 + pm(A1) +Am

1 GT
m
M ∈ L(M) is a g1-inverse of I − TM .

Let F = P + pm(A) +AmGTm. We claim that F ∈ L(X). We have P ∈ L(X),
pm(A) ∈ L(X) and we claim that Tm ∈ BR(X,M). Indeed, as Tm is everywhere
defined and Tmx ⊂ M for all x ∈ X, to conclude that Tm ∈ BCR(X,M) it suffices
to notice that G(Tm) is closed in X × M . Thus, AmGTm ∈ B(X,M). Then, as
M is continuously embedded in X, AmGTm ∈ L(X). So F ∈ L(X). Also, we have
F = FM . Hence F is an extension of F .

Note that since M is dense in X and (I − TM )F (I − TM ) = (I − TM ) on M , it
follows by Remark 5.8 that (I − T )F̄ (I − T ) = (I − T ) on X. □

References
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