PRINCIPALITY BY REDUCED IDEALS IN PURE CUBIC NUMBER FIELDS

JAMAL BENAMARA AND MOHAMMED TALBI

ABSTRACT. This paper describes a method for determining the list of reduced ideals of any pure cubic number field, which we can use for testing the principality of these fields and give a generator for a principal ideal.

1. INTRODUCTION

The notion of a reduced ideal can be used to compute the regulator and the class number of a number field, see [3, 10]. Besides, it can be used in cryptography as in [4, 12] where the authors sketched the first Diffie-Hellman protocol which does not require a group structure, namely on the set of reduced principal ideals of a real quadratic field. Most of the work on reduced ideals is realized on quadratic fields, see for example [8]. In [7] (respectively [2]), the authors describe a method for finding all reduced ideals of the ring of integers of a monogenic pure cubic field (respectively of a special order of any pure cubic field). In this paper, we give a complete overview on the reduced ideals in any pure cubic number field and we provide a method which allows us to determine the set of reduced ideals. In addition, we develop the notion of a minimum of an ideal and its relation with the reduced ideal to study the principality of the ring of integers. Then, we give a procedure to find a generator of a principal ideal. Finally, we illustrate the results by two examples to improve the readability and the flow paper.

Throughout this paper, we consider a pure cubic number field $K = \mathbb{Q}(\sqrt[3]{D})$, where D > 1 is a cube-free integer. We may assume with no loss of generality that $D = rs^2$, where r and s are square-free and (r, s) = 1. It is well known (see for example [1, 6]) that if $D \not\equiv \pm 1 \pmod{9}$, then the ring of integers \mathcal{O}_K has a basis $[1, \theta, \delta = \theta^2/s]$, where $\theta = \sqrt[3]{D}$ and the discriminant of K is $\Delta_K = -27r^2s^2$. In this case, K is called a pure cubic field of the first kind. If $D \equiv \pm 1 \pmod{9}$, then $\mathcal{O}_K = [1, \theta, \delta = (1 + r\theta + \theta^2)/3]$, $\Delta_K = -3r^2s^2$ and K is called a pure cubic field of the second kind. When there exists $\vartheta \in \mathcal{O}_K$ such that $\mathcal{O}_K = \mathbb{Z}[\vartheta]$, we say that

²⁰²⁰ Mathematics Subject Classification. Primary 11Y40; Secondary 13F10, 11H06, 11R16, 13A15.

Key words and phrases. cubic field, reduced ideal, minimum of an ideal, principality.

K is monogenic (for example, when D is square-free (s = 1) and $D \not\equiv \pm 1 \pmod{9}$, $\mathcal{O}_K = \mathbb{Z}[\theta]$); in this case, we find the results as in [7].

We also recall that an order \mathcal{O} of K is a sub-ring of K which as a \mathbb{Z} -module is finitely generated and of maximal rank $[K : \mathbb{Q}] = 3$, see [11]. This is equivalent to say that $\mathcal{O} \subset \mathcal{O}_K$ and $[\mathcal{O}_K : \mathcal{O}] < \infty$ (for example $\mathcal{O} = \mathbb{Z}[\theta]$); in this case, we find the results as in [2].

In general, we denote by λ' and λ'' the conjugate roots of any $\lambda \in K$. Therefore the norm of λ is $\mathcal{N}(\lambda) = \lambda \lambda' \lambda''$ and we know that $\theta' = \theta \zeta$ and $\theta'' = \theta \zeta^2$, where $\zeta = \exp(2i\pi/3)$. Note: in a field $\mathbb{Q}(\sqrt[3]{D})$,

$$\mathcal{N}(x+y\sqrt[3]{D}+z\sqrt[3]{D^2}) = x^3 + y^3D + z^3D^2 - 3xyzD.$$

And by the Dirichlet theorem, we know that the units group \mathcal{U}_K of K is of rank one and we denote by ε_0 the fundamental unit of K.

2. Arithmetic of ideals in pure cubic fields

We will be treating ideals as special kinds of \mathbb{Z} -modules. We recall that I is an ideal of \mathcal{O}_K if $I \subset \mathcal{O}_K$ and for all $\alpha, \beta \in I$ and $\lambda \in \mathcal{O}_K$ we have $\alpha + \beta \in I$ and $\lambda \alpha \in I$.

Proposition 2.1. Let K be a pure cubic number field and $\mathcal{O} = [1, \phi, \psi]$ be an order of K. Then every non-zero ideal I of \mathcal{O} has a representation

$$I = [a, b + c\phi, d + e\phi + f\psi],$$

where $a, b, c, d, e, f \in \mathbb{Z}$, $0 \le b < a$, $0 \le d < a$, $0 \le e < c$ and 0 < f. This basis will be called the HNF basis (Hermite normal form) of I. In addition, the integer a is the smallest positive element of $I \cap \mathbb{Z}$ and the norm of I is N(I) = acf. The integer a is called the length of I and we denote it by $\ell(I)$.

Proof. Every ideal of \mathcal{O} is a sub- \mathbb{Z} -module of \mathcal{O} . The rest follows by [5, Theorem 4.7.3] and [5, Proposition 4.7.4].

Theorem 2.2 (Uniqueness of the coefficients). Let $\mathcal{O} = [1, \phi, \psi]$ be an order of K. Let I_1 and I_2 be two ideals of \mathcal{O} with HNF basis $[a_1, b_1 + c_1\phi, d_1 + e_1\phi + f_1\psi]$ and $[a_2, b_2 + c_2\phi, d_2 + e_2\phi + f_2\psi]$ successively. Then I = J if and only if $a_1 = a_2$, $b_1 = b_2$, $c_1 = c_2$, $d_1 = d_2$, $e_1 = e_2$ and $f_1 = f_2$.

Proof. If $I_1 = I_2$, then $I_1 \subseteq I_2$, hence a_1 , $b_1 + c_1\phi$ and $d_1 + e_1\phi + f_1\psi \in I_2$, which means that $a_2 \mid a_1, c_2 \mid c_1, f_2 \mid f_1, b_1c_2 \equiv b_2c_1 \pmod{a_2c_2}, e_1f_2 \equiv e_2f_1 \pmod{c_2f_2}$ and $d_1c_2f_2 + b_2f_1e_2 \equiv b_2e_1f_2 + c_2d_2f_1 \pmod{a_2c_2f_2}$. On the other hand, we have $I_2 \subseteq I_1$, then $a_2, b_2 + c_2\phi$ and $d_2 + e_2\phi + f_2\psi \in I_1$, which means that $a_1 \mid a_2, c_1 \mid c_2, f_1 \mid f_2, b_2c_1 \equiv b_1c_2 \pmod{a_1c_1}, e_2f_1 \equiv e_1f_2 \pmod{c_1f_1}$ and $d_2c_1f_1 + b_1f_2e_1 \equiv b_1e_2f_1 + c_1d_1f_2 \pmod{a_1c_1f_1}$. Directly, we get $a_1 = a_2, c_1 = c_2$ and $f_1 = f_2$, therefore $b_1 \equiv b_2 \pmod{a_1}$, and since $0 \leq b_1 < a_1$ and $0 \leq b_2 < a_1$, we get $b_1 = b_2$. In the same way we get $e_1 = e_2$ and $d_1 = d_2$.

Sometimes we write $I = [a, \alpha, \beta]$ with $\alpha = b + c\phi$ and $\beta = d + e\phi + f\psi$.

Definition 2.3. Let $\mathcal{O} = [1, \phi, \psi]$ be an order of K. We will say that an ideal I of \mathcal{O} is primitive if there is no integer n > 1 such that $I \subset n\mathcal{O}$.

The ideal $I = [a, b + c\phi, d + e\phi + f\psi]$ is primitive if gcd(a, b, c, d, e, f) = 1.

Theorem 2.4 (Criterion for ideal equality). If $I = [a, \alpha, \beta]$ is a primitive ideal of \mathcal{O}_K , then $I = [a, ma \pm \alpha, na + p\alpha \pm \beta]$ for any $m, n, p \in \mathbb{Z}$.

Proof. We have

and

$$\begin{pmatrix} a \\ ma \pm \alpha \\ na + p\alpha \pm \beta \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ m & \pm 1 & 0 \\ n & p & \pm 1 \end{pmatrix} \begin{pmatrix} a \\ \alpha \\ \beta \end{pmatrix}$$
$$M = \begin{pmatrix} 1 & 0 & 0 \\ m & \pm 1 & 0 \\ n & p & \pm 1 \end{pmatrix}$$

is in $GL_3(\mathbb{Z})$, the group of all 3×3 matrices with integer entries and determinant equal to ± 1 .

Note that the converse of Proposition 2.1 is false. Indeed, if we consider $\mathcal{O} = \mathbb{Z}[\theta] = [1, \theta, \theta^2]$, the sub- \mathbb{Z} -module $I = [6, 5 + 3\theta, 4 + 2\theta + 5\theta^2]$ is not an ideal of \mathcal{O} because $6\theta \notin I$. For the converse to be true, we need more conditions on the coefficients a, b, c, d, e and f.

Theorem 2.5. Let K be a pure cubic field of the first kind. Then, a sub- \mathbb{Z} -module I of \mathcal{O}_K with HNF basis $[a, b + c\theta, d + e\theta + f\delta]$ is an ideal of \mathcal{O}_K if and only if the following conditions are satisfied.

- (1) $a \equiv b \equiv cs \equiv d \equiv es \equiv 0 \pmod{f}$.
- (2) $a \equiv b \equiv 0 \pmod{c}$.
- (3) $ea \equiv eb \equiv df e^2 s \equiv f^2 r de \equiv 0 \pmod{cf}$.
- (4) $bces b^2f c^2ds \equiv c^2frs + b^2e bcd \equiv cf^2rs bdf + be^2s cdes \equiv cefrs bf^2r + bde cd^2 \equiv 0 \pmod{acf}.$

Proof. Let $I = \left[a, b + c\theta, d + e\theta + f\frac{\theta^2}{s}\right]$ be a sub-Z-module of \mathcal{O}_K . We know that I is an ideal of \mathcal{O}_K if and only if for all $\alpha \in I$ and $\beta \in \mathcal{O}_K$ we have $\alpha\beta \in I$. For this, let $\alpha \in \mathcal{O}_K$ and $\beta \in I$; then $\alpha = x + y\theta + z\frac{\theta^2}{s}$ and $\beta = x'a + y'(b + c\theta) + z'\left(d + e\theta + f\frac{\theta^2}{s}\right)$ with $x, y, z, x', y', z' \in \mathbb{Z}$. Therefore, $\alpha\beta = x\beta + y\theta\beta + \frac{z\theta^2}{s}\beta$ $= x\beta + yx'a\theta + yy'(b\theta + c\theta^2) + yz'\left(d\theta + e\theta^2 + \frac{Df}{s}\right) + zx'\frac{a\theta^2}{s} + zy'\left(\frac{b\theta^2}{s} + \frac{cD}{s}\right) + zz'\left(\frac{d\theta^2}{s} + \frac{eD}{s} + \frac{Df\theta}{s^2}\right),$

hence $\alpha\beta \in I$ if and only if the elements $a\theta$, $b\theta + c\theta^2$, $d\theta + e\theta^2 + \frac{Df}{s}$, $a\frac{\theta^2}{s}$, $b\frac{\theta^2}{s} + cD/s$ and $d\frac{\theta^2}{s} + eD/s + Df\frac{\theta}{s^2}$ belong to I. But we have

$$a\theta \in I \iff a\theta = x''a + y''(b + c\theta) + z''\left(d + e\theta + f\frac{\theta^2}{s}\right) \quad \text{with } x'', y'', z'' \in \mathbb{Z}$$

$$\begin{cases} ax'' + by'' + dz'' = 0 & \left(ax'' + by'' = 0\right) & \left(cx'' = -b\right) & \left(cx'' = -b$$

$$\iff \begin{cases} ax^{*} + by^{*} + az^{*} = 0\\ cy'' + ez'' = a\\ z''f = 0 \end{cases} \iff \begin{cases} ax^{*} + by^{*} = 0\\ cy'' = a\\ z'' = 0 \end{cases} \iff \begin{cases} c \mid a\\ c \mid b. \end{cases}$$

It is easy to verify in the same way that we also have the following equivalences:

$$\begin{aligned} a\frac{\theta^2}{s} \in I &\iff \begin{cases} cf \mid be - dc \\ cf \mid ea \\ f \mid a \end{cases} \\ b\theta + c\theta^2 \in I &\iff \begin{cases} acf \mid bces - b^2 f - c^2 ds \\ cf \mid bf - ces \\ f \mid cs \end{cases} \\ b\frac{\theta^2}{s} + \frac{D}{s} \in I &\iff \begin{cases} acf \mid c^2 frs + b^2 e - bcd \\ cf \mid eb \\ f \mid b \end{cases} \\ d\theta + e\theta^2 + \frac{Df}{s} \in I &\iff \begin{cases} acf \mid cf^2 rs - be^2 s + bdf - cdes \\ cf \mid df - e^2 s \\ f \mid es \end{cases} \end{aligned}$$

and

$$d\frac{\theta^2}{s} + \frac{eD}{s} + Df\frac{\theta^2}{s} \in I \iff \begin{cases} acf \mid cefrs - bf^2r + bde - cd^2 \\ cf \mid f^2r - de \\ f \mid d. \end{cases}$$

Theorem 2.6. Let K be a pure cubic field of the second kind. Then, a sub- \mathbb{Z} -module I of \mathcal{O}_K with HNF basis $[a, b + c\theta, d + e\theta + f\delta]$ is an ideal of \mathcal{O}_K if and only if the following conditions are satisfied.

- (1) c divides a and b.
- (2) f divides a, 3c, 3e, b + cr, and d + er.
- (2) *f* around at, be, be, c, r, e, and a + cr(3) *cf* divides ea, be-cd, eb+cer, $f^2 \frac{1-r^2}{3} + df - 3e^2 - 2efr$, and $f^2r \frac{s^2 - r^2}{3} - 3de - 3e^2r - ef - 2efr^2$.

$$\begin{array}{l} (4) \ acf \ divides \ bcfr + 3bce - c^2f - b^2f - 3dc^2, \ c^2fr\frac{s^2 - 1}{3} + bcf\frac{r^2 - 1}{3} + (be - cd)(b + cr), \ cf^2r\frac{s^2 - 1}{3} + bf^2\frac{r^2 - 1}{3} + (be - cd)(3e + fr) + befr - bdf - cef, \ and \\ (be - cd)(d + er) + cefr\frac{s^2 - 1}{3} + bef\frac{2r^2 + 1}{3} - cdf\frac{r^2 + 2}{3} + cf^2\frac{2rD - r^2 - 1}{9} + \\ bf^2r\frac{r^2 - s^2}{9}. \end{array}$$

Proof. The proof is similar to that of the first kind with

$$\delta = \frac{1 + r\theta + \theta^2}{3},$$

except here we must also show that

$$\frac{r^2-1}{3}, \ \frac{s^2-1}{3}, \ \frac{2r^2+1}{3}, \ \frac{r^2+2}{3}, \ \frac{r^2-s^2}{9}, \ \text{and} \ \frac{2rD-r^2-1}{9}$$

are integers. Indeed, we have $D = rs^2 \equiv \pm 1 \pmod{9}$, which is equivalent to say that $r^2 \equiv s^2 \pmod{9}$, and this means that $r^3 \equiv \pm 1 \pmod{9}$. Therefore $r \equiv \pm 1 \pmod{3}$, and it follows that $r^2 \equiv 1 \pmod{3}$ (which also means that $2r^2 + 1 \equiv 0 \pmod{3}$) and $r^2 + 2 \equiv 0 \pmod{3}$); we get also $s^2 \equiv 1 \pmod{3}$. Finally, we have $(r \pm 1)^2 \equiv 0 \pmod{9}$, and it follows that $r^2 + 1 \equiv \pm 2r \pmod{9}$. Since $2rD \equiv \pm 2r \pmod{9}$, we get $2rD - r^2 - 1 \equiv 0 \pmod{9}$.

Corollary 2.7. The number of ideals of \mathcal{O}_K with a given length is finite.

Proof. Let $I = [a, b + c\theta, d + e\theta + f\delta]$ be an ideal of \mathcal{O}_K . Given that $\ell(I) = a$, we will only have a finite number of integers b, c, d, e, and f according to the conditions of Theorems 2.5 and 2.6.

Proposition 2.8. Let I be an ideal of \mathcal{O}_K with HNF basis $[a, b + c\theta, d + e\theta + f\delta]$. Then, I is primitive if and only if gcd(c, e, f) = 1.

Proof. Let t = gcd(c, e, f). If K is of the first kind, then by Theorem 2.5(1) t divides the integers a, b and d. If K is of the second kind, then by Theorem 2.6(1) $t \mid a \text{ and } t \mid b \text{ and by Theorem 2.6(2)} t \mid d$. In both cases we have $t \mid \text{gcd}(a, b, c, d, e, f)$ and $I \subset t\mathcal{O}_K$, hence, if t > 1, then I is not primitive.

Conversely, suppose that gcd(c, e, f) = 1. Let $m \in \mathbb{N}$ be such that $I \subset m\mathcal{O}_K$. We have $d + e\theta + f\delta \in m\mathcal{O}_K$. Therefore, $m \mid f$ and $m \mid e$, and we have $b + c\theta \in m\mathcal{O}_K$. Then $m \mid c$, and it follows that m is a common divisor of c, e, and f, hence m = 1.

An important case is when we consider the special order $\mathcal{O} = \mathbb{Z}[\theta] = [1, \theta, \theta^2]$ of K, which coincides with the ring of integers \mathcal{O}_K in the case where K is of the first kind with s = 1.

Corollary 2.9. Let $\mathcal{O} = \mathbb{Z}[\theta]$ and let I be a sub- \mathbb{Z} -module of \mathcal{O} with HNF basis $[a, b + c\theta, d + e\theta + f\theta^2]$. Then I is a primitive ideal of \mathcal{O} if and only if the following conditions are satisfied.

(1)
$$f = 1$$

- (2) $a \equiv b \equiv d e^2 \equiv D de \equiv 0 \pmod{c}$.
- (2) $a \pm b \pm a$ $c \pm D$ $ac \pm b$ (mod c). (3) $bce-b^2-c^2d \equiv c^2D+b^2e-bcd \equiv cD-bd+be^2-cde \equiv ceD-bD+bde-cd^2 \equiv 0 \pmod{ac}$.

Proof. We get these conditions by Theorem 2.5 with s = 1 and r = D.

3. Reduced ideals

Let L be an algebraic number field of degree n, and \mathcal{O}_L its ring of integers and σ_i , $1 \leq i \leq n$, the real and complex \mathbb{Q} -isomorphisms of K into \mathbb{C} . We say that an ideal I of \mathcal{O}_L is reduced if I is primitive and if there is no element $\omega \neq 0$ in I such that $|\sigma_i(\omega)| < \ell(I) \quad \forall i \in \{1, 2, \ldots, n\}$ (see [5]). In the case of pure cubic number fields we have $|\omega'| = |\omega''|$, hence we can write:

Definition 3.1. We say that an ideal I of \mathcal{O}_K is reduced if it is primitive and if there is no element $\omega \neq 0$ in I such that $|\omega| < \ell(I)$ and $|\omega'| < \ell(I)$.

Lemma 3.2. Let K of the first kind and let $\omega = x + y\theta + z\delta \in \mathcal{O}_K$ $(x, y, z \in \mathbb{Z})$. If $|\omega| < \lambda_1$ and $|\omega'| < \lambda_2$ $(\lambda_1, \lambda_1 \in \mathbb{R}^+)$, then

$$|x| < \frac{\lambda_1 + 2\lambda_2}{3}, \quad |y| < \frac{\lambda_1 + 2\lambda_2}{3\theta}, \quad and \quad |z| < \frac{s(\lambda_1 + 2\lambda_2)}{3\theta^2}.$$

Proof. We have $\omega = x + y\theta + z\frac{\theta^2}{s}$, therefore $\omega' = x + y\theta\zeta + z\frac{\theta^2}{s}\zeta^2$ and $\omega'' = x + y\theta\zeta^2 + z\frac{\theta^2}{s}\zeta$. Hence $\omega + \omega' + \omega'' = 3x$, which means that $|3x| = |\omega + \omega' + \omega''| < |\omega| + |\omega'| + |\omega'| < \lambda_1 + 2\lambda_2$, hence $|x| < \frac{\lambda_1 + 2\lambda_2}{3}$. For y, we have $\omega + \omega'\zeta^2 + \omega''\zeta = 3y\theta$, therefore $|3y\theta| < |\omega| + |\omega'\zeta^2| + |\omega'\zeta| < \lambda_1 + 2\lambda_2$, hence $|y| < \frac{\lambda_1 + 2\lambda_2}{3\theta}$. For z we use the fact that $\omega + \omega'\zeta + \omega''\zeta^2 = 3z\frac{\theta^2}{s}$.

This lemma shows that the number of elements $\omega \in \mathcal{O}_K$ such that $|\omega| < \lambda_1$ and $|\omega'| < \lambda_2$ is finite.

Theorem 3.3. Let K be of the first kind and let I be a primitive ideal of \mathcal{O}_K given in terms of the HNF basis $\left[a, b + c\theta, d + e\theta + f\frac{\theta^2}{s}\right]$. Then I is reduced if and only if the only triple (x, y, z) of integers that satisfies the conditions

•
$$f \mid z$$
,
• $cf \mid fy - ze$,
• $acf \mid cfx - bfy + (be - cd)z$,
• $\left| x + y\theta + z\frac{\theta^2}{s} \right| < \ell(I)$,
• $\left(x - \frac{y}{2}\theta - \frac{z}{2}\frac{\theta^2}{s} \right)^2 + \frac{3}{4}\theta^2 \left(y - z\frac{\theta}{s} \right)^2 < \ell(I)^2$,
(0, 0, 0)

is (0,0,0).

Proof. For any $\alpha \in K$, let α' and α'' denote the conjugates of α ; we have $\theta' = \zeta \theta$ and $\theta'' = \zeta^2 \theta$, where $\zeta = e^{2i\pi/3}$ is a primitive cube root of unity and therefore $|\alpha'| = |\alpha''|$.

Let $I = \left[a, b + c\theta, d + e\theta + f\frac{\theta^2}{s}\right]$ be a primitive ideal of \mathcal{O}_K . If $\alpha \in I$, then $\alpha = Xa + Y(b + c\theta) + Z\left(d + e\theta + f\frac{\theta^2}{s}\right)$ with $X, Y, Z \in \mathbb{Z}$ and we can easily verify that

$$|\alpha'|^{2} = \left(aX + bY + dZ - \frac{cY + eZ}{2}\theta - \frac{fZ}{2}\frac{\theta^{2}}{s}\right)^{2} + \frac{3}{4}\theta^{2}\left(cY + eZ - fZ\frac{\theta}{s}\right)^{2}.$$

The ideal I is reduced if and only if, for all $\alpha \in I$, we have that $|\alpha| < \ell(I)$ and $|\alpha'| < \ell(I)$ implies that $\alpha = 0$. Now we have

$$\begin{cases} \alpha \in I \\ |\alpha| < \ell(I) \\ |\alpha'| < \ell(I). \end{cases}$$

if and only if

$$\begin{cases} X, Y, Z \in \mathbb{Z} \\ \left| aX + bY + dZ + (cY + eZ)\theta + fZ\frac{\theta^2}{s} \right| < \ell(I) \\ \left| \alpha' \right|^2 = \left(aX + bY + dZ - \frac{cY + eZ}{2}\theta - \frac{fZ}{2}\frac{\theta^2}{s} \right)^2 \\ + \frac{3}{4}\theta^2 \left(cY + eZ - fZ\frac{\theta}{s} \right)^2 < \ell(I)^2. \end{cases}$$

We shall use the substitution x = aX + bY + dZ, y = cY + eZ, z = fZ, having the inverse

$$X = \frac{cfx - bfy + (be - cd)z}{acf}, \quad Y = \frac{fy - ez}{cf}, \quad \text{and} \quad Z = \frac{z}{f}.$$

Therefore, we see that the ideal I is reduced if and only if (0,0,0) is the only solution of

$$\begin{cases} x, y, z \in \mathbb{Z} \\ f \mid z \\ cf \mid fy - ze \\ acf \mid cfx - bfy + (be - cd)z \\ \left| x + y\theta + z\frac{\theta^2}{s} \right| < \ell(I) \\ \left(x - \frac{y}{2}\theta - \frac{z}{2}\frac{\theta^2}{s} \right)^2 + \frac{3}{4}\theta^2 \left(y - z\frac{\theta}{s} \right)^2 < \ell(I)^2 \end{cases}$$

The theorem is proved.

We have a similar result for a pure cubic field of the second kind.

Rev. Un. Mat. Argentina, Vol. 68, No. 1 (2025)

.

Theorem 3.4. Let K be of the second kind, and let I be a primitive ideal of \mathcal{O}_K given in terms of the HNF basis $[a, b + c\theta, d + e\theta + f\delta]$. Then, I is reduced if and only if the only triple of integers (x, y, z) which satisfies the conditions

•
$$f \mid z$$
,
• $3cf \mid fy - (3e + fr)z$,
• $3acf \mid cfx - bfy + (3be + dfr - 3cd - cf)z$,
• $|x + y\theta + z\theta^2| < 3\ell(I)$,
• $\left(x - \frac{y}{2}\theta - \frac{z}{2}\theta^2\right)^2 + \frac{3}{4}\theta^2(y - z\theta)^2 < 9\ell(I)^2$,

is (0, 0, 0).

Proof. Let I be a primitive ideal of \mathcal{O}_K with HNF basis

$$\left[a, b + c\theta, d + e\theta + f\frac{1 + r\theta + \theta^2}{3}\right]$$

Let $\alpha \in I$. Then

0 1

$$\alpha = Xa + Y(b + c\theta) + Z\left(d + e\theta + f\frac{1 + r\theta + \theta^2}{3}\right)$$

for some $X, Y, Z \in \mathbb{Z}$, otherwise written,

$$\alpha = \frac{1}{3} \left(3(aX + bY + dZ) + fZ + (3(cY + eZ) + frZ)\theta + fZ\theta^2 \right).$$

After calculating α' we get

$$\begin{split} |\alpha'|^2 &= \frac{1}{9} \left(3(aX + bY + dZ) + fZ - (3(cY + eZ) + frZ)\frac{\theta}{2} - fZ\frac{\theta^2}{2} \right)^2 \\ &+ \frac{3}{4} \theta^2 (3(cY + eZ) + frZ - fZ\theta)^2. \end{split}$$

By Definition 3.1, the ideal I is reduced if and only if

$$\begin{cases} \alpha \in I \\ |\alpha| < \ell(I) \quad \Rightarrow \quad \alpha = 0 \\ |\alpha'| < \ell(I) \end{cases}$$

considering the following substitution: x = 3(aX + bY + dZ) + fZ, y = 3(cY + eZ) + frZ, z = fZ, then 3acfX = cfx - bfy + (3be + bfr - 3cd - cf)z, 3cfY = fy - (3e + rf)z and fZ = z. Hence the ideal I is reduced if and only if (0, 0, 0) is the unique solution of the following system:

$$\begin{cases} x, y, z \in \mathbb{Z}, \\ f \mid z, \\ 3cf \mid fy - (3e + fr)z, \\ 3acf \mid cfx - bfy + (3be + bfr - 3cd - cf)z, \\ \mid x + y\theta + z\theta^2 \mid < 3\ell(I), \\ \left(x - \frac{y}{2}\theta - \frac{z}{2}\theta^2\right)^2 + \frac{3}{4}\theta^2(y - z\theta)^2 < 9\ell(I)^2. \quad \Box \end{cases}$$

Theorem 3.5. Let K be of the first kind, and let I be a primitive ideal of \mathcal{O}_K . If $\ell(I) < \frac{\theta}{s}$, then I is reduced.

Proof. Let $\left[a, b + c\theta, d + e\theta + f\frac{\theta^2}{s}\right]$ be the HNF basis of I. Let $(x, y, z) \in \mathbb{Z}^3$ be such that $f \mid z, cf \mid fy - ze, acf \mid cfx - bfy + (be - cd)z$, and

$$\begin{cases} \left| x + y\theta + z\frac{\theta^2}{s} \right| < \ell(I) \\ \left(x - \frac{y}{2}\theta - \frac{z}{2}\frac{\theta^2}{s} \right)^2 + \frac{3}{4}\theta^2 \left(y - z\frac{\theta}{s} \right)^2 < \ell(I)^2. \end{cases}$$

If we put $\omega = x + y\theta + z\frac{\theta^2}{s}$, we have $|\omega| < \ell(I)$ and $|\omega'| < \ell(I)$, hence by Lemma 3.2 we have

$$\begin{cases} |x| < \ell(I) \\ |y| < \frac{\ell(I)}{\theta} \\ |z| < \frac{s\ell(I)}{\theta^2} \end{cases}$$

If $\ell(I) < \frac{\theta}{s}$, then $|z| < \frac{s\ell(I)}{\theta^2} < \frac{s}{\theta^2}\frac{\theta}{s} = \frac{1}{\theta} < 1$, hence z = 0. For y, we have $|y| < \frac{\ell(I)}{\theta} < \frac{1}{s} \le 1$, hence y = 0. For x, we have acf | cfx - bfy + (be - cd)z, therefore $\ell(I) | x$, and $|x| < \ell(I)$, hence x = 0. Finally, we have x = y = z = 0, hence by Definition 3.1, I is reduced.

Remark 3.6. We have $\frac{\theta}{s} = \sqrt[3]{\frac{r}{s}}$. Hence, the previous theorem is especially important when $r \gg s$, as it allows us to obtain more reduced ideals with less effort.

We have a similar result for K of the second kind.

Theorem 3.7. Let K be of the second kind, and let I be a primitive ideal of \mathcal{O}_K . If $\ell(I) < \frac{\theta}{3}$, then I is reduced.

Proof. Let $\begin{bmatrix} a, b + c\theta, d + e\theta + f \frac{1 + r\theta + \theta^2}{3} \end{bmatrix}$ be the HNF basis of I. Let $(x, y, z) \in \mathbb{Z}^3$ satisfy $\begin{cases} f \mid z \\ 3cf \mid fy - (3e + fr)z \\ 3acf \mid cfx - bfy + (3be + bfr - 3cd - cf)z \\ \mid x + y\theta + z\theta^2 \mid < 3\ell(I) \\ (y \mid 0 \mid z \mid e^2)^2 + \frac{3}{2}e^2(y \mid e^2) = e^{-2\ell} e^{-2\ell} e^{-2\ell} de^{-2\ell} de^{-2$

$$\left(x - \frac{y}{2}\theta - \frac{z}{2}\theta^{2}\right)^{2} + \frac{3}{4}\theta^{2}(y - z\theta)^{2} < 9\ell(I)^{2}.$$

If we put $\omega = x + y\theta + z\theta^2$, then we have $|\omega| < 3\ell(I)$ and $|\omega'| < 3\ell(I)$, and by Lemma 3.2 (with s = 1) we have

$$\begin{cases} |x| < 3\ell(I) \\ |y| < \frac{3\ell(I)}{\theta} \\ |z| < \frac{3\ell(I)}{\theta^2}. \end{cases}$$

Now, if $\ell(I) < \frac{\theta}{3}$, then

$$\begin{cases} |x| < 3\ell(I) \\ |y| < 1 \\ |z| < 1. \end{cases}$$

Therefore, z = 0 and y = 0. For x, by hypothesis we have 3acf | cfx - bfy + (3be + bfr - 3cd - cf)z, therefore $3\ell(I) | x$ and $|x| < 3\ell(I)$. Hence, x = 0, and finally we have x = y = z = 0, so by Theorem 3.4, I is reduced.

Theorem 3.8. Let I be an ideal of \mathcal{O}_K . If I is reduced, then $\ell(I) \leq \frac{6\sqrt{3}D}{\pi}$.

Proof. Let I be an ideal of \mathcal{O}_K with HNF basis $[\ell(I), \alpha, \beta]$, where $\alpha = b + c\theta$ and $\beta = d + e\theta + f\delta$. By Definition 3.1, there is no element $\omega \in I$, $\omega \neq 0$, that satisfies $|\omega| < \ell(I)$ and $|\omega'| < \ell(I)$, and by [9, Theorem 5.3, p. 32], we have $\ell(I)^3 \leq \frac{2}{\pi} \sqrt{|\Delta_K|} N(I)$.

• K of the first kind implies that $\ell(I)^3 \leq \frac{6\sqrt{3}rs}{\pi}N(I)$, therefore

$$\ell(I)^2 \le \frac{6\sqrt{3}D}{\pi} \frac{cf}{s}.\tag{3.1}$$

If we put $g = \gcd(f, s)$, then f = gf' and s = gs' with $\gcd(f', s') = 1$. By Theorem 2.5 (1), we have f | cs and f | es. Therefore, gf' | cgs' and gf' | egs', which implies that f' | cs' and f' | es', hence f' | c and f' | e, and since I is primitive, by Proposition 2.8 we get f' = 1, thus f = g and f | s. We have also $c | a = \ell(I)$, then we get

$$\frac{cf}{s} \le a \tag{3.2}$$

From (3.1) and (3.2) we obtain the result.

• K of the second kind implies that $\ell(I)^3 \leq \frac{2\sqrt{3}rs}{\pi}N(I)$, thus

$$\ell(I)^2 \le \frac{6\sqrt{3}D}{\pi} \frac{cf}{3s}.$$
(3.3)

Reasoning as for the first kind, we get $f \mid 3s$, and therefore

$$\frac{cf}{3s} \le a. \tag{3.4}$$

 \Box

The result is obtained by (3.3) and (3.4).

Remark 3.9. We know that every ideal class contains a reduced ideal [2]. On the other hand, by the last theorem and Corollary 2.7, the number of reduced ideals of \mathcal{O}_K is finite (noted \mathfrak{r}_K), hence we have

$$h_K \leq \mathfrak{r}_K.$$

4. PRINCIPALITY

In this section, we develop the notion of a minimum of an ideal, which will help us study principality in the field under consideration.

Definition 4.1. Let *I* be a fractional ideal of \mathcal{O}_K . We say that a non-zero element $\mu \in I$ is a minimum of *I* if *I* does not contain any non-zero element α satisfying $|\alpha| < |\mu|$ and $|\alpha'| < |\mu'|$.

Corollary 4.2. Let I be a primitive ideal of \mathcal{O}_K . Then, I is reduced if and only if $\ell(I)$ is a minimum of I.

If I is an ideal of \mathcal{O}_K , then any element in I of a minimal non-zero absolute norm is a minimum of I. In particular, any unit ε of K is a minimum of \mathcal{O}_K .

If μ is a minimum of I, then it is easy to show that $\alpha \mu$ is a minimum of αI $\forall \alpha \in K^*$. In particular, $\mu \varepsilon$ is a minimum of I for any $\varepsilon \in \mathcal{U}_K$, hence the set of minimums of an ideal I is infinite; we denote it by \mathcal{M}_I .

Now, we consider the following equivalence relation in \mathcal{M}_I . For $\mu, \nu \in \mathcal{M}_I$,

 $\mu \sim \nu \iff \mu = \nu \varepsilon$ for some unity ε .

We denote by $Cl(\mathcal{M}_I)$ the set of all equivalence classes of \mathcal{M}_I . The class of $\mu \in \mathcal{M}_I$ is denoted by $[\mu]$, and we have the following result.

Theorem 4.3. If I is an ideal of \mathcal{O}_K , then $Cl(\mathcal{M}_I)$ is finite. We denote by \mathfrak{n}_I its cardinal.

Proof. Let I be an ideal of \mathcal{O}_K . If $[\mu]$ is an element of $Cl(\mathcal{M}_I)$, then there is no non-zero element $\alpha \in I$ satisfying $|\alpha| < |\mu|, |\alpha'| < |\mu'|$, and $|\alpha''| < |\mu''|$. Therefore, by [9, Theorem 5.3, p. 32], we have $|\mu| |\mu'| |\mu''| \le \frac{2}{\pi} \sqrt{|\Delta_K|} N(I)$, hence $|\mathcal{N}(\mu)| \le \frac{2}{\pi} \sqrt{|\Delta_K|} N(I)$, and up to multiplication by units, there are only finitely many elements in I whose absolute norm is majorized by the constant $\frac{2}{\pi} \sqrt{|\Delta_K|} N(I)$. Hence the result.

Definition 4.4. A system representative of classes of \mathcal{M}_I is called a cycle of minimums of I. We denote it by C_I .

In fact, we can choose a special system as follows.

Theorem 4.5. Let I be an ideal of \mathcal{O}_K and let μ be the smallest element of \mathcal{M}_I that is $\geq \ell(I)$. Then, there is one and only one cycle of minimums of I in the interval $[\mu, \mu \varepsilon_0]$. We call this cycle a fundamental cycle of minimums of I, and we denote it by C_I^F .

Proof. Let $\eta \in \mathcal{M}_I$ $(\eta > 0)$. If $\eta \ge \mu \varepsilon_0$, let k be the greatest positive integer for which we still have $\eta \ge \mu \varepsilon_0^k$ (it is clear that $k \ge 1$). Therefore, $\eta < \mu \varepsilon_0^{k+1}$, so

$$\mu \varepsilon_0^k \le \eta < \mu \varepsilon_0^{k+1}$$

hence

$$\mu \le \eta \varepsilon_0^{-k} < \mu \varepsilon_0.$$

Then we put $\nu = \eta \varepsilon_0^{-k}$.

If $\eta < \mu$, let k be the least positive integer for which we have $\mu \varepsilon_0^{-k} \leq \eta$. Therefore, $\eta < \mu \varepsilon_0^{-(k-1)}$, and then we have

$$\mu \varepsilon_0^{-k} \le \eta < \mu \varepsilon_0^{-k+1}$$

Hence,

$$\mu \le \eta \varepsilon_0^k < \mu \varepsilon_0$$

and we put $\nu = \eta \varepsilon_0^k$. Consequently, every element η of \mathcal{M}_I is associated with a minimum ν of I belonging to $[\mu, \mu \varepsilon_0[$, so, if $C'_I = \{\eta_1, \ldots, \eta_m\}$ is any cycle of the minimums of I, then $\forall i \in \{1, \ldots, m\}$ there is $\nu_i \in [\mu, \mu \varepsilon_0[$ and a unity ε_i such that $\nu_i = \varepsilon_i \eta_i$. Therefore, the cycle we want to find is $C_I = \{\nu_1, \ldots, \nu_m\}$.

Suppose that there is another cycle $C_I'' = \{\rho_1, \ldots, \rho_m\}$ of minimums of I in $[\mu, \mu \varepsilon_0[$. Then $\rho_j = \nu_i \varepsilon_0^k$ for some $i, j \in \{1, \ldots, m\}$ and $k \in \mathbb{Z}$. If $\rho_j < \nu_i$, then we will have

$$\mu \le \nu_i \varepsilon_0^k < \nu_i < \mu \varepsilon_0.$$

So by $\nu_i \varepsilon_0^k < \nu_i$ we have k < 0, and by $\mu \varepsilon_0^{-k} \le \nu_i < \mu \varepsilon_0$, we have -1 < k, a contradiction. A similar reasoning applies if $\rho_j > \nu_i$.

Corollary 4.6. Let I be a reduced ideal of \mathcal{O}_K . Then, the fundamental cycle of the minimums of I is in $[\ell(I), \ell(I)\varepsilon_0]$. In particular, the fundamental cycle of the minimums of \mathcal{O}_K is in $[1, \varepsilon_0]$.

The notion of minimum also allows us to determine the fundamental unit using any reduced ideal, namely:

Corollary 4.7. Let I be a reduced ideal of \mathcal{O}_K . If μ is the smallest minimum of I such that $\mu > \ell(I), \ \frac{\mu}{\ell(I)} \in \mathcal{O}_K$, and $\mathcal{N}\left(\frac{\mu}{\ell(I)}\right) = 1$, then $\varepsilon_0 = \frac{\mu}{\ell(I)}.$

Proof. If $\frac{\mu}{\ell(I)} \in \mathcal{O}_K$ and $\mathcal{N}\left(\frac{\mu}{\ell(I)}\right) = 1$, then $\frac{\mu}{\ell(I)} = \varepsilon_0^k$ with $k \in \mathbb{Z}$, precisely k > 0 because $\ell(I) < \mu$, hence the smallest value for μ is $\ell(I)\varepsilon_0$.

The following result will help us determine the elements of an ideal I qualified to be an element of C_I^F .

320

Theorem 4.8. Let K be a pure cubic field of the first kind and let I be a reduced ideal of \mathcal{O}_K . If $\mu = x + y\theta + z\delta \in C_I^F$ such that $\mu < \lambda$ for some $\lambda \in \mathbb{R}^+$, then

$$\begin{cases} \frac{-\ell(I)}{3} < x < \frac{\lambda + 2\ell(I)}{3} \\ \frac{-\ell(I)}{\sqrt{3}\theta} < y < \frac{\lambda + \ell(I) + \ell(I)\sqrt{3}}{3\theta} \\ \frac{-\ell(I)}{\sqrt{3}\delta} < z < \frac{\lambda + \ell(I) + \ell(I)\sqrt{3}}{3\delta}. \end{cases}$$

Proof. If $\mu = x + y\theta + z\delta$ is in C_I^F , then $\ell(I) < \mu < \lambda$ and necessarily $|\mu'| < \ell(I)$. Therefore,

$$\begin{cases} \ell(I) < x + y\theta + z\delta < \lambda\\ (x - \frac{y}{2}\theta - \frac{z}{2}\delta)^2 + \frac{3}{4}(y\theta - z\delta)^2 < \ell(I)^2, \end{cases}$$

which implies that

$$\ell(I) < x + y\theta + z\delta < \lambda, \tag{4.1}$$

$$-\ell(I) < x - \frac{y}{2}\theta - \frac{z}{2}\delta < \ell(I), \tag{4.2}$$

$$\frac{-2\ell(I)}{\sqrt{3}} < y\theta - z\delta < \frac{2\ell(I)}{\sqrt{3}}.$$
(4.3)

By (4.1) and (4.2) we get

$$\frac{-\ell(I)}{3} < x < \frac{2\ell(I) + 2}{3}.$$

By (4.1) and (4.3) we get

$$\ell(I) - \frac{2\ell(I)}{\sqrt{3}} < x + 2y\theta < \lambda + \frac{2\ell(I)}{\sqrt{3}}$$

$$\tag{4.4}$$

and

$$\ell(I) - \frac{2\ell(I)}{\sqrt{3}} < x + 2z\delta < \lambda + \frac{2\ell(I)}{\sqrt{3}}.$$
(4.5)

By (4.2) and (4.3) we get

$$-\ell(I) - \frac{\ell(I)}{\sqrt{3}} < x - y\theta < \ell(I) + \frac{\ell(I)}{\sqrt{3}}$$
(4.6)

and

$$-\ell(I) - \frac{\ell(I)}{\sqrt{3}} < x - z\delta < \ell(I) + \frac{\ell(I)}{\sqrt{3}}.$$
(4.7)

Now by (4.4) and (4.6) we get

$$\ell(I) - \frac{2\ell(I)}{\sqrt{3}} - \ell(I) - \frac{\ell(I)}{\sqrt{3}} < 3y\theta < \lambda + \ell(I) + \ell(I)\sqrt{3},$$

hence

$$\frac{-\ell(I)}{\sqrt{3}\theta} < y < \frac{\lambda + \ell(I) + \ell(I)\sqrt{3}}{3\theta}.$$

Finally, by (4.5) and (4.7) we get

$$\ell(I) - \frac{2\ell(I)}{\sqrt{3}} - \ell(I) - \frac{\ell(I)}{\sqrt{3}} < 3z\delta < \lambda + \ell(I) + \ell(I)\sqrt{3}.$$

Consequently, we have

$$\frac{-\ell(I)}{\sqrt{3}\delta} < z < \frac{\lambda + \ell(I) + \ell(I)\sqrt{3}}{3\delta}.$$

Let I be an ideal of \mathcal{O}_K and $C_I^F = \{\mu_1, \mu_2, \dots, \mu_t\}$ its fundamental cycle of minimums. By [2, Theorem 5.4], for all $i \in \{1, \dots, t\}$ the ideal $I_i = \frac{\ell(I_i)}{\mu_i}I$ is reduced, hence we get a set

$$\{I_1, I_2, \ldots, I_t\}$$

of reduced ideals in the class of I. This set is called a cycle of reduced ideals of I and denoted by \mathfrak{R}_{I} .

Theorem 4.9. The following statements hold.

- (1) The ring \mathcal{O}_K is principal if and only if every reduced ideal of \mathcal{O}_K is principal.
- (2) If I is a principal reduced ideal of \mathcal{O}_K , then there exists $\mu \in C^F_{\mathcal{O}_K}$ such that $I = \frac{\ell(I)}{\mu} \mathcal{O}_K$.
- (3) If I is a principal ideal of \mathcal{O}_K , then there exists $\eta \in C_I^F$ such that $I = (\eta)$.

Proof. (1) Suppose that every reduced ideal of \mathcal{O}_K is principal. Let J be an ideal of \mathcal{O}_K and let $C_J^F = \{\mu_1, \mu_2, \ldots, \mu_t\}$ be its fundamental cycle of minimums. Then $J_i = \frac{\ell(J_i)}{\mu_i} J$ is reduced, therefore it is principal, hence J is also principal. The converse is clear.

(2) If $C_{\mathcal{O}_K}^F = \{\mu_1 = 1, \mu_2, \dots, \mu_m\}$ is the fundamental cycle of minimums of \mathcal{O}_K , then the principal reduced ideals are $I_i = \frac{\ell(I_i)}{\mu_i} \mathcal{O}_K$, $1 \le i \le m$, hence $I = \frac{\ell(I_i)}{\mu_i} \mathcal{O}_K$ for some *i*.

(3) Let $C_I^F = \{\mu_1, \mu_2, \dots, \mu_m\}$ be the fundamental cycle of I. Since I is principal, all the reduced ideals $I_i = \frac{\ell(I_i)}{\mu_i} I$ given by C_I^F are principal, hence for some i we have $\mathcal{O}_K = \frac{\ell(\mathcal{O}_K)}{\mu_i} I$.

Remark 4.10. (1) Let I be an ideal of \mathcal{O}_K and $C_I^F = \{\mu_1, \mu_2, \ldots, \mu_m\}$ its fundamental cycle of minimums. If $\forall i \in \{1, 2, \ldots, m\}$ we have $N(I) \neq \mathcal{N}(\mu_i)$, then I is not principal.

(2) The ring \mathcal{O}_K is principal if and only if there is an ideal I of \mathcal{O}_K such that $\mathfrak{n}_I = \mathfrak{r}_K$.

5. A NUMERICAL EXAMPLE

Example 5.1. Let $K = \mathbb{Q}(\sqrt[3]{20}), \theta = \sqrt[3]{20}$, so $\delta = \frac{\theta^2}{2} = \frac{\sqrt[3]{400}}{2} = \sqrt[3]{50}$. We have ten reduced ideals $(\mathfrak{r}_K = 10)$ represented with their norms in the

following table:

Reduced ideal with HNF basis	Norm
$I_1 = \mathcal{O}_K = [1, \sqrt[3]{20}, \sqrt[3]{50}]$	1
$I_2 = [2, \sqrt[3]{20}, \sqrt[3]{50}]$	2
$I_3 = [2, \sqrt[3]{20}, 2\sqrt[3]{50}]$	4
$I_4 = [3, 3\sqrt[3]{20}, 2 + \sqrt[3]{20} + \sqrt[3]{50}]$	9
$I_5 = [3, 1 + \sqrt[3]{20}, 1 + \sqrt[3]{50}]$	3
$I_6 = [6, 3\sqrt[3]{20}, 2 + \sqrt[3]{20} + \sqrt[3]{50}]$	18
$I_7 = [6, 3\sqrt[3]{20}, 4 + 2\sqrt[3]{20} + 2\sqrt[3]{50}]$	36
$I_8 = [7, 7\sqrt[3]{20}, 1 + 5\sqrt[3]{20} + \sqrt[3]{50}]$	49
$I_9 = [7, 7\sqrt[3]{20}, 4 + 3\sqrt[3]{20} + \sqrt[3]{50}]$	49
$I_{10} = [14, 7\sqrt[3]{20}, 2 + 3\sqrt[3]{20} + 2\sqrt[3]{50}]$	196

The fundamental cycle of minimums of $I_1 = \mathcal{O}_K$ is

$$C_{I_1}^F = \left\{ \mu_1 = 1, \ \mu_2 = 3 + \sqrt[3]{20} + \sqrt[3]{50}, \ \mu_3 = 8 + 3\sqrt[3]{20} + 2\sqrt[3]{50} \right\}$$

and we can easily verify that

$$I_8 = \frac{7}{\mu_2} I_1$$
 and $I_6 = \frac{6}{\mu_3} I_1$.

Therefore, the the cycle of principal reduced ideals is

$$\mathfrak{R}_{I_1} = \left\{ (1), \left(\frac{7}{\mu_2}\right), \left(\frac{6}{\mu_3}\right) \right\};$$

hence, by Remark 4.10(2), \mathcal{O}_K is not principal.

We can verify this in another way. Indeed, if we consider the ideal $I_2 = [2, \sqrt[3]{20}, \sqrt[3]{50}] = [2, \theta, \delta]$, we get:

$$C_{I_2}^F = \{\eta_1 = 2, \, \eta_2 = 2 + \sqrt[3]{20} + \sqrt[3]{50}, \, \eta_3 = 4 + \sqrt[3]{20} + \sqrt[3]{50}, \, \eta_4 = 8 + 3\sqrt[3]{20} + 2\sqrt[3]{50}\}$$

and we have

$$\mathcal{N}(\eta_1) = 8$$
, $\mathcal{N}(\eta_2) = 18$, $\mathcal{N}(\eta_3) = 14$, $\mathcal{N}(\eta_4) = 12$.

Therefore,

 $N(I_2) = 2 \neq \mathcal{N}(\eta_i) \quad \forall i \in \{1, 2, 3, 4\};$

hence, by Remark 4.10(1), I_2 is not principal.

Example 5.2. Consider now the ideal $I = [6, 4 + \theta, 2 + \theta^2]$, which is not reduced because $\ell(I) = 6$ is not a minimum of I. The fundamental cycle of minimums of I is

$$C_I^F = \{\nu_1 = 4 + 2\theta + \theta^2, \nu_2 = 8 + 3\theta + \theta^2, \nu_3 = 4 + \theta\}$$

and we have

$$\mathcal{N}(\nu_1) = 144, \quad \mathcal{N}(\nu_2) = 12, \quad \mathcal{N}(\nu_3) = 84$$

Thus

$$\mathcal{N}(\nu_2) = 12 = N(I)$$

and since

$$\begin{pmatrix} 8+3\theta+\theta^2\\ 20+8\theta+3\theta^2\\ 30+10\theta+4\theta^2 \end{pmatrix} = \begin{pmatrix} -1 & 3 & 1\\ -3 & 8 & 3\\ -3 & 10 & 4 \end{pmatrix} \begin{pmatrix} 6\\ 4+\theta\\ 2+\theta^2 \end{pmatrix}$$

with

$$\begin{vmatrix} -1 & 3 & 1 \\ -3 & 8 & 3 \\ -3 & 10 & 4 \end{vmatrix} = 1$$

I is principal generated by $\nu_2 = 8 + 3\theta + \theta^2$.

References

- S. ALACA and K. S. WILLIAMS, Introductory algebraic number theory, Cambridge University Press, Cambridge, 2004. MR Zbl
- [2] A. AZIZI, J. BENAMARA, M. C. ISMAILI, and M. TALBI, The reduced ideals of a special order in a pure cubic number field, Arch. Math. (Brno) 56 no. 3 (2020), 171–182. DOI MR Zbl
- [3] J. BUCHMANN, On the computation of units and class numbers by a generalization of Lagrange's algorithm, J. Number Theory 26 no. 1 (1987), 8–30. DOI MR Zbl
- [4] J. BUCHMANN and H. C. WILLIAMS, A key-exchange system based on imaginary quadratic fields, J. Cryptology 1 no. 2 (1988), 107–118. DOI MR Zbl
- [5] H. COHEN, A course in computational algebraic number theory, Grad. Texts in Math. 138, Springer, Berlin, 1993. DOI MR Zbl
- [6] B. N. DELONE and D. K. FADDEEV, The theory of irrationalities of the third degree, Transl. Math. Monogr. 10, American Mathematical Society, Providence, RI, 1964. MR Zbl
- [7] G. T. JACOBS, Reduced ideals and periodic sequences in pure cubic fields, Ph.D. thesis, University of North Texas, 2015. DOI MR
- [8] R. A. MOLLIN, Quadratics, Discrete Math. Appl., CRC Press, Boca Raton, FL, 1996. MR Zbl
- J. NEUKIRCH, Algebraic number theory, Grundlehren Math. Wiss. 322, Springer, Berlin, 1999. DOI MR Zbl

- [10] J. J. PAYAN, Sur le groupe des classes d'un corps quadratique, Cours de l'institut Fourier 7 (1972), 2–30. Available at http://www.numdam.org/item?id=CIF_1972_7_20.
- [11] C. PRABPAYAK, Orders in pure cubic number fields, Grazer Math. Ber. 361, Institut für Mathematik, Karl-Franzens-Universität Graz, Graz, 2014. MR Zbl
- [12] R. SCHEIDLER, J. A. BUCHMANN, and H. C. WILLIAMS, A key-exchange protocol using real quadratic fields, J. Cryptology 7 no. 3 (1994), 171–199. DOI MR Zbl

Jamal Benamara[©] [⊠] Department of Mathematics, Faculty of Sciences, Mohammed First University, 60000 Oujda, Morocco benamarajamal@hotmail.fr

Mohammed Talbi© Regional Center of Education and Training, 60000 Oujda, Morocco talbimm@yahoo.fr

Received: January 16, 2023 Accepted: September 7, 2023 Early view: August 24, 2024