NEW CHARACTERIZATION OF (b,c)-INVERSES THROUGH POLARITY

BTISSAM LAGHMAM AND HASSANE ZGUITTI

ABSTRACT. Given any ring R with unity 1 and any $a,b,c\in R$, a is called (b,c)-polar if there exist two idempotents $p,q\in R$ such that $p\in bRca, q\in abRc$, pb=b, cq=c, cap=ca and qab=ab. These p and q are shown to be unique whenever they exist. The existence of $a^{\parallel(b,c)}$, the (b,c)-inverse of a, is shown to be equivalent to a being (b,c)-polar, and hence $a^{\parallel(b,c)}$ is itself unique and expressed in terms of p and q. Generalizing results of Koliha–Patrício and Song–Zhu–Mosić, further connections between the (b,c)-polar and (b,c)-invertible properties are found. Applying these results to bounded linear operators on a Banach space, we also generalize some known results in this setting.

1. Introduction

Throughout this paper, R will denote an associative ring with unity 1. An element $a \in R$ is regular if $a \in aRa$, i.e., a = axa for some $x \in R$. Any such x is called an inner inverse of a. An inner inverse of a will be denoted by a^- . We denote the set of all inner invertible elements in R by R^- , while the group of units in R is denoted by R^{-1} and the set of all left invertible (resp. right invertible) elements in R by R_l^{-1} (resp. R_r^{-1}). For any $a \in R$ we define the commutant and double commutant of a respectively by

$$comm(a) = \{x \in R : ax = xa\}$$
$$comm^{2}(a) = \{x \in R : xy = yx, \text{ for all } y \in comm(a)\}.$$

An element a is quasinilpotent if $1 + xa \in R^{-1}$ for all $x \in \text{comm}(a)$ [6]. Let R^{nil} and R^{qnil} denote, respectively, the set of all nilpotent and quasinilpotent elements in R.

Following Drazin [3], an element $a \in R$ is said to be *Drazin invertible* if there exists $x \in R$ such that

$$x \in \text{comm}(a), \quad xax = x, \quad \text{and} \quad a^{k+1}x = a^k$$

 $^{2020\} Mathematics\ Subject\ Classification.$ Primary 16U90; Secondary 15A09, 16W10, 16U60, 47A05.

Key words and phrases. (b,c)-inverse, inverse along an element, Drazin inverse, polarity along an element, polar element.

for some nonnegative integer k. The element x is unique if it exists and is called the $Drazin\ inverse$ of a and is denoted by a^D . The smallest nonnegative integer k satisfying the above conditions is called the $Drazin\ index$ of a, and denoted by ind(a). The set of all Drazin invertible elements in R is denoted by R^D . If $ind(a) \leq 1$, then x is called the $group\ inverse$ of a, denoted by a^{\sharp} . We denote the set of all group invertible elements in R by R^{\sharp} .

Koliha and Patrício [8] extended the notion of Drazin inverse to that of generalized Drazin inverse: an element $a \in R$ is generalized Drazin invertible if there exists $b \in R$ such that

$$b \in \text{comm}^2(a), \quad ab^2 = b, \quad \text{and} \quad a^2b - a \in R^{\text{qnil}}.$$
 (1.1)

Any element $b \in R$ satisfying the conditions in (1.1) is unique and is called the $g\text{-}Drazin\ inverse$ of a, denoted by a^{gD} . The set of all g-Drazin invertible elements in R is denoted by R^{gD} . Koliha and Patrício gave a characterization for (generalized) Drazin invertibility via idempotents by introducing the notion of polar and quasipolar elements. An element $a \in R$ is quasipolar (resp. polar) if there exists an idempotent $p \in R$ such that

$$p \in \text{comm}^2(a), \quad a + p \in R^{-1}, \quad \text{and} \quad ap \in R^{\text{qnil}} \text{ (resp. } ap \in R^{\text{nil}}).$$

The idempotent p is unique and is called the *spectral idempotent* of a, denoted by a^{π} . It is proved that a is generalized Drazin invertible if and only if it is quasipolar, and that a is Drazin invertible if and only if a is polar. In this case, $a^{gD} = (a+p)^{-1}(1-p)$.

Based on this approach, Wang and Chen [14] introduced the notion of pseudopolarity. An element $a \in R$ is said to be pseudopolar if there exists an idempotent $p \in R$ such that

$$p \in \text{comm}^2(a), \quad a+p \in R^{-1}, \quad \text{and} \quad ap \in R^{\text{rad}},$$

where $R^{\rm rad}$ denotes the Jacobson radical of R. Also, the idempotent p is unique if it exists. They also introduced the notion of pseudo Drazin invertibility, which lies between Drazin invertibility and generalized Drazin invertibility: an element a is $pseudo\ Drazin\ invertible$ if there exists $b \in R$ such that

$$b \in \text{comm}^2(a)$$
, $bab = b$, and $a^k - a^{k+1}b \in R^{\text{rad}}$

for some nonnegative integer k. Such an element is unique if it exists and is called the *pseudo Drazin inverse* of a. Moreover, a is pseudo Drazin invertible if and only if a is pseudopolar [14].

Mary [10] introduced a generalized inverse using Green's relations. An element $a \in R$ will be said to be invertible along $d \in R$ if there exists $y \in R$ such that

$$yad = d = day$$
, $yR \subseteq dR$, $Ry \subseteq Rd$.

Such a y is unique if it exists and called the inverse of a along d, denoted by $a^{\parallel d}$. Moreover, if a is invertible along d then d is regular. The set of all elements in R that are invertible along d is denoted by $R^{\parallel d}$.

Recently, to give a new characterization of the invertibility along an element via idempotent elements, Song, Zhu and Mosić [13] provided a definition for the concept of the polarity along an element in R. Let $a, d \in R$; we say that a is polar along d if there exists some $p \in R$ such that

$$p = p^2 \in \text{comm}(da), \quad pd = d, \quad \text{and} \quad 1 + da - p \in R^{-1},$$

which is equivalent to

$$p = p^2 \in \text{comm}(da), \quad pd = d, \quad \text{and} \quad p \in daRda.$$

In this case, p is unique and is denoted by $a^{d\pi}$. It is also proved that a is invertible along d if and only if a is polar along d. In this case, the inverse of a along d is given by $a^{\parallel d} = (1 + da - p)^{-1}d$, and p is also established via $p = a^{\parallel d}a$. Also, a is invertible along d if and only if a is dually polar along d. Recall that a is dually polar along d if there exists some $q \in R$ such that

$$q = q^2 \in \text{comm}(ad), \quad dq = d, \quad \text{and} \quad 1 + ad - q \in R^{-1},$$

which is equivalent to

$$q = q^2 \in \text{comm}(ad), \quad dq = d, \quad \text{and} \quad q \in adRad.$$

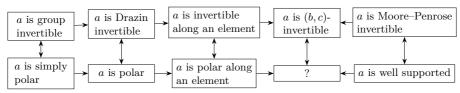
In this case, q is unique and is denoted by $a_{d\pi}$.

In 2012, Drazin [4] introduced a class of outer inverses that extend inverses along elements, and thus extend both Drazin inverses and Moore–Penrose inverses. For any $a, b, c \in R$, a is said to be (b, c)-invertible if there exists $y \in R$ such that

$$y \in bR \cap Rc$$
, $yab = b$, $cay = c$.

If such a y exists, it is unique and is called the (b,c)-inverse of a, denoted by $a^{\parallel(b,c)}$. Also, if a is (b,c)-invertible, then b, c and cab are regular. The set of all (b,c)-invertible elements in R is denoted by $R^{\parallel(b,c)}$. In the case where b=e and c=f such that e and f are idempotents, we say that a is (e,f)-Bott-Duffin invertible if a is (e,f)-invertible [4]. Moreover, the inverse along an element is a special case of the more general class of (b,c)-inverses that occurs when b=c; consequently, we have $a^{\parallel d}=a^{\parallel(d,d)}$ and $a^D=a^{\parallel(a^k,a^k)}$, where k is the index of a, and in particular $a^{\sharp}=a^{\parallel(a,a)}$.

The approach of introducing new generalized inverses via polarities was used also in [5, 9]. So it is natural to ask whether there exists a kind of polarity that extends polarity and polarity along an element, and also characterizes (b, c)-invertibility (see also [5]). More precisely, the motivation for this paper arises from the following incomplete diagram of the related concepts:



We introduce in this paper the notion of (b, c)-polarity (Definition 2.1). We show that when b = c, (b, b)-polarity coincides with polarity along b, which then extends polarity along an element. Moreover, we show that an element a is (b, c)-polar if and only if a is (b, c)-invertible. We give then a new characterization of (b, c)-invertible

elements. In Section 3, we introduce the concept of dually (b,c)-polar elements as an extension of dually polar along an element introduced in [13]. Among other things, we show that a is dually (b,c)-polar if and only if a is (c,b)-invertible. The last section is devoted to illustrating (b,c)-polarity in the context of bounded linear operators.

2. The
$$(b, c)$$
-polarity

We start by introducing the concept of (b, c)-polarity.

Definition 2.1. Let $a, b, c \in R$; we say that a is (b, c)-polar if there exist $p, q \in R$ such that

- $(1) p^2 = p \in bRca;$
- $(2) \ q^2 = q \in abRc;$
- (3) pb = b, cq = c;
- (4) cap = ca, qab = ab.

Any idempotent p (resp. q) satisfying the above conditions is called a *left* (b, c)spectral idempotent of a (resp. a right (b, c)-spectral idempotent of a).

In the following, we show the uniqueness of the left and right (b, c)-spectral idempotents of a (b, c)-polar element.

Theorem 2.2. Let $a, b, c \in R$ such that a is (b, c)-polar. Then a has a unique left (b, c)-spectral idempotent and a unique right (b, c)-spectral idempotent.

Proof. Suppose that p and p' are two left (b,c)-spectral idempotents of a, and q and q' are two right (b,c)-spectral idempotents of a. As $p \in bRca$, we have p = btca for some $t \in R$. It follows that

$$p - p'p = btca - p'btca = (b - p'b)tca = 0$$
 (since $b = pb = p'b$).

So we obtain

$$p = p'p$$
.

Similarly, p' - pp' = 0, and we get

$$p' = pp'$$
.

On the other hand, we have cap = ca = cap', so p - pp' = btca - btcap' = btca - btca = 0. Hence p = pp' and thus p = p'.

Similarly, we show that
$$q = q'$$
.

If a is (b, c)-polar then we denote the left (b, c)-spectral idempotent p by $a_l^{(b,c)\pi}$ and the right (b, c)-spectral idempotent q by $a_r^{(b,c)\pi}$.

Example 2.3. Let $R = \mathcal{M}_2(\mathbb{Z})$, and $a, b, c \in R$ be given by

$$a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

Then a is (b, c)-polar with

$$p = a_l^{(b,c)\pi} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad q = a_r^{(b,c)\pi} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Indeed, with a quick check we obtain

(i)
$$p^2 = p$$
, $q^2 = q$.
(ii) $p = b \begin{pmatrix} 0 & 0 \\ -2 & 1 \end{pmatrix} ca$ and $q = ab \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} c$.

- (iii) pb = b, cq = c.
- (iv) cap = ca, qab = ab.

Here we show that the (b,c)-polarity is an extension of the polarity along an element.

Proposition 2.4. Let a and $b \in R$. Then a is (b,b)-polar if and only if a is polar along b.

Proof. If a is (b,b)-polar then we have

$$p = p^2 \in bRba$$
, $q = q^2 \in abRb$, $pb = b = bq$, and $bap = ba = pba$,

which implies $p=p^2\in \mathrm{comm}(ba)$ and pb=b. Also, since p=bxba for some $x\in R$, we obtain $p=bqxba\in babRbxba\subseteq baRba$. Hence, a is polar along b by [13, Theorem 2.4].

Conversely, if a is polar along b then there exists a unique $p = p^2 \in R$ such that $p \in \text{comm}(ba), \ pb = b \ \text{and} \ p \in baRba$. Then we have

$$\begin{cases} p \in baRba \subseteq bRba \\ pb = b \\ bap = pba = ba. \end{cases}$$
 (2.1)

On the other hand, we have that a is polar along b if and only if a is dually polar along b. Then there exists a unique $q=q^2\in R$ such that $q\in \mathrm{comm}(ab),\ bq=b,$ and $q\in abRab$. So

$$\begin{cases} q \in abRab \subseteq abRb \\ bq = b \\ qab = abq = ab. \end{cases}$$
 (2.2)

Now, from (2.1) and (2.2), we can see that a is (b, b)-polar.

Lemma 2.5. Let $a, b, c \in R$. If a is (b, c)-polar, then a, c, and cab are regular.

Proof. Suppose that a is (b,c)-polar. We have $b=a_l^{(b,c)\pi}b\in bRcab\subseteq bRb$, and also $c=ca_r^{(b,c)\pi}\in cabRc\subseteq cRc$ and $cab=ca_r^{(b,c)\pi}aa_l^{(b,c)\pi}b\in cabRcabRcab\subseteq cabRcab$. This means that b,c and cab are regular and admit inner inverses denoted respectively by b^-,c^- and $(cab)^-$.

The following theorem shows the equivalence between the (b,c)-polarity and the (b, c)-invertibility.

Theorem 2.6. Let $a,b,c \in R$. Then a is (b,c)-polar if and only if a is (b,c)invertible. In this case, we have

- (iii) $a^{\parallel(b,c)} = (1+p-bb^-)_l^{-1}b(cab)^-c = b(cab)^-c(1+q-c^-c)_r^{-1}$. Here $(1+cab)_l^{-1}$ $(p-bb^-)_1^{-1}$ is a left inverse of $1+p-bb^-$, and $(1+q-c^-c)_r^{-1}$ is a right

Proof. Suppose that a is (b,c)-polar. To prove that a is (b,c)-invertible, it suffices to prove that $b \in Rcab$ and $c \in cabR$ by [1, Lemma 1]. We have

$$a_l^{(b,c)\pi} \in bRca, \quad a_r^{(b,c)\pi} \in abRc, \quad ca_r^{(b,c)\pi} = c, \quad \text{and} \quad a_l^{(b,c)\pi}b = b.$$

It follows that

$$a_l^{(b,c)\pi}b \in bRcab \implies b \in bRcab \subseteq Rcab,$$

and

$$ca_r^{(b,c)\pi} \in cabRc \implies c \in cabRc \subseteq cabR.$$

So a is (b, c)-invertible.

By Lemma 2.5, we know that b, c and cab are regular with b^-, c^- and $(cab)^-$ as inner inverses of b, c and cab, respectively. Moreover, we have that $1+a_1^{(b,c)\pi}-bb^-$ is left invertible and $1+a_r^{(b,c)\pi}-c^-c$ is right invertible. Indeed, since $a_l^{(b,c)\pi}\in bRca\subseteq$ bR, $a_l^{(b,c)\pi} = bt$ for some $t \in R$ and we write $a_l^{(b,c)\pi} = bt = bb^-bt = bb^-a_l^{(b,c)\pi}$. So

$$(bb^{-} + 1 - a_l^{(b,c)\pi})(1 + a_l^{(b,c)\pi} - bb^{-}) = 1,$$

which means that $1 + a_l^{(b,c)\pi} - bb^-$ is left invertible, and we denote a left inverse of $1 + a_l^{(b,c)\pi} - bb^-$ by $(1 + a_l^{(b,c)\pi} - bb^-)_l^{-1}$. Similarly for $1 + a_r^{(b,c)\pi} - c^-c$, as $a_r^{(b,c)\pi} \in abRc \subseteq Rc$ we write $a_r^{(b,c)\pi} = xc$ for some $x \in R$, so $a_r^{(b,c)\pi} = xc$ $xcc^-c = a_r^{(b,c)\pi}c^-c$, which implies

$$(1 + a_r^{(b,c)\pi} - c^- c)(c^- c + 1 - a_r^{(b,c)\pi}) = 1.$$

Hence $1 + a_r^{(b,c)\pi} - c^-c$ is right invertible, and we denote a right inverse of $1 + a_r^{(b,c)\pi} - c^-c$ by $(1 + a_r^{(b,c)\pi} - c^-c)_r^{-1}$.

Now set $y = (1 + a_l^{(b,c)\pi} - bb^-)_l^{-1} b(cab)^- c = b(cab)^- c (1 + a_r^{(b,c)\pi} - c^- c)_r^{-1}$. Then yab = b, cay = c and $y \in bR \cap Rc$. Therefore, y is the (b, c)-inverse of a.

Conversely, suppose that a is (b,c)-invertible with y as the (b,c)-inverse of a. Set p = ya and q = ay. Then p is the left (b, c)-spectral idempotent of a, and q is the right (b, c)-spectral idempotent of a. Indeed, we have

$$p^2 = yaya = ya = p$$
 and $q^2 = ayay = ay = q$.

On the other hand, as y is the (b, c)-inverse of a, we have $y \in bR \cap Rc$. Thus

$$p = ya \in bRa \subseteq bR$$
 and $p = ya \in Rca$, so $p = p^2 \in bRca$,

and

$$q = ay \in abR$$
 and $q = ay \in aRc \subseteq Rc$, so $q = q^2 \in abRc$.

We have pb = yab = b, cq = cay = c, cap = caya = ca, and qab = ayab = ab. Finally, a is (b, c)-polar.

Combining Proposition 2.4 and Theorem 2.6, we retrieve the main result of [13].

Corollary 2.7. Let $a, b \in R$. Then a is polar along b if and only if a is invertible along b if and only if a is (b, b)-invertible if and only if a is (b, b)-polar.

Definition 2.8. Given $a, e, f \in R$, we say a is (e, f)-Bott-Duffin polar if a is (e, f)-polar and e and f are idempotents.

Proposition 2.9. Let $a, b, c \in R$. If a is (b, c)-polar then a is (e, f)-Bott-Duffin polar with $e = a_t^{(b,c)\pi}$ and $f = a_r^{(b,c)\pi}$.

Proof. Set
$$a_l^{(e,f)} = a_l^{(b,c)}$$
 and $a_r^{(e,f)} = a_r^{(b,c)}$. Then we obtain the result.

Corollary 2.10. Let $a, e, f \in R$. Then a is (e, f)-Bott-Duffin polar if and only if a is (e, f)-Bott-Duffin invertible.

3. The dual
$$(b, c)$$
-polarity

Definition 3.1. Let a, b and $c \in R$. We say that a is dually (b, c)-polar if there exist $r, s \in R$ such that

- (1) $r^2 = r \in acRb$;
- (2) $s^2 = s \in cRba$;
- (3) br = b and sc = c;
- (4) rac = ac and bas = ba.

Any idempotent r (resp. s) satisfying the above conditions is called a *dual right* (b, c)-spectral idempotent of a (resp. a *dual left* (b, c)-spectral idempotent of a).

Theorem 3.2. Let $a, b, c \in R$ such that a is dually (b, c)-polar. Then a has a unique dual right (b, c)-spectral idempotent and a unique dual left (b, c)-spectral idempotent.

Proof. Suppose that r and r' are two dual right (b,c)-spectral idempotents of a. Then we have

$$r - r'r = actb - r'actb = actb - actb = 0$$

for some $t \in R$. Then r = r'r. Also.

$$r' - rr' = acxb - racxb = acxb - acxb = 0$$

for some $x \in R$. Hence r' = rr'. Consequently, we have

$$r'r - r' = acxbr - acxb = acx(br - b) = 0,$$

so r'r = r'. Therefore we get r' = r.

By the same way we prove the uniqueness of the dual left (b,c)-spectral idempotent of a.

We denote the dual right (b,c)-spectral idempotent of a by $r=a^r_{(b,c)\pi}$ and the dual left (b,c)-spectral idempotent of a by $s=a^l_{(b,c)\pi}$.

Lemma 3.3. Let $a, b, c \in R$. If a is dually (b, c)-polar then b, c and bac are regular.

Proof. It is similar to the proof of Lemma 2.5.

Theorem 3.4. Let $a,b,c \in R$. Then a is dually (b,c)-polar if and only if a is (c,b)-invertible. In this case, we have

- (i) $r = a_{(b,c)\pi}^r = aa^{\parallel(c,b)}$.
- (ii) $s = a_{(b,c)\pi}^{\tilde{l}(c,b)} = a^{\parallel(c,b)}a$.

(iii)
$$a^{\parallel(c,b)} = (1 + a^l_{(b,c)\pi} - cc^-)^{-1}_l c(bac)^- b = c(bac)^- b(1 + a^r_{(b,c)\pi} - b^- b)^{-1}_r$$
.

Proof. Suppose that a is dually (b,c)-polar. Then there exist $r,s\in R$ such that

$$br = b$$
 and $r \in acRb$,
 $sc = c$ and $s \in cRba$.

Then $br \in bacRb$, which implies that $b \in bacRb \subseteq bacR$. Also, $sc \in cRbac$, which means that $c \in cRbac \subseteq Rbac$. Thus a is (c, b)-invertible.

To obtain the formulas for the (c, b)-inverse of a, we follow the same procedure as in the proof of Theorem 2.6.

Conversely, suppose that a is (c, b)-invertible. Then we set $r = aa^{\parallel(c,b)}$ and $s = a^{\parallel(c,b)}a$. Following the same procedure as in the proof of Theorem 2.6, we obtain that a is dually (b, c)-polar with r (resp. s) its dual right (b, c)-spectral idempotent (resp. dual left (b, c)-spectral idempotent).

It may be that a is dually (b,c)-polar but not (b,c)-polar, as shown by the following example.

Example 3.5. Let $R = \mathcal{M}_2(\mathbb{Z})$, and $a, b, c \in R$ be given by

$$a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Then a is dually (b,c)-polar with $r=a^r_{(b,c)\pi}=s=a^l_{(b,c)\pi}=a$. Indeed, with a quick check we obtain

- $r^2 = r$:
- $r = ac\begin{pmatrix} x_1 & x_2 \\ x_3 & 1 \end{pmatrix} b$, where x_1 , x_2 and x_3 are arbitrary elements of \mathbb{Z} ;
- $s^2 = s$; $s = c \begin{pmatrix} t_1 & t_2 \\ t_3 & 1 \end{pmatrix} ba$, where t_1 , t_2 and t_3 are arbitrary elements of \mathbb{Z} ;
- br = b and sc = c;
- rac = ac and bas = ba.

Notice that in this example, a is not (b, c)-polar because a is not (b, c)-invertible since ab = 0.

Corollary 3.6. Let $a, b, c \in R$. Then a is (b, c)-polar if and only if a is dually (c, b)-polar.

Proof. This follows from Theorems 2.6 and 3.4.

Theorem 3.7. Let $a, b, c \in R$. If a is both (b, c) and (c, b)-invertible such that $aba \in \text{comm}(c)$ and $aca \in \text{comm}(b)$, then we have

- (1) $a_l^{(b,c)\pi} = a_{(b,c)\pi}^r$.
- (2) $a_r^{(b,c)\pi} = a_{(b,c)\pi}^{l}$.
- (3) $a^{\parallel(b,c)} = ba(caba + 1 (aba)^{c\pi})^{-1}c = (baca + 1 (aca)^{c\pi})^{-1}bac.$
- (4) $a^{\parallel(c,b)} = (caba + 1 (aba)^{c\pi})^{-1}cab = ca(baca + 1 (aca)^{b\pi})^{-1}b.$

Proof. To prove this, we first write the formulas for $a^{\parallel(b,c)}$ and $a^{\parallel(c,b)}$. We have $a \in R^{\parallel(b,c)} \cap R^{\parallel(c,b)}$. By [12, Theorem 1] we get

$$a^{\parallel(b,c)} = ba(aba)^{\parallel c} = (aca)^{\parallel b}ac \tag{3.1}$$

and

$$a^{\parallel(c,b)} = (aba)^{\parallel c} ab = ca(aca)^{\parallel b}.$$
 (3.2)

So we obtain

$$\begin{split} &a_l^{(b,c)\pi} = a^{\parallel(b,c)}a = (aca)^{\parallel b}aca;\\ &a_r^{(b,c)\pi} = aa^{\parallel(b,c)} = aba(aba)^{\parallel c};\\ &a_{(b,c)\pi}^r = aa^{\parallel(c,b)} = aca(aca)^{\parallel b};\\ &a_{(b,c)\pi}^l = a^{\parallel(c,b)}a = (aba)^{\parallel c}aba. \end{split}$$

As $aba \in \text{comm}(c)$ and $aca \in \text{comm}(b)$, we have $(aba)^{\parallel c}aba = aba(aba)^{\parallel c}$ and $aca(aca)^{\parallel b} = (aca)^{\parallel b}aca$ by [10, Theorem 10], and it follows that

$$a_l^{(b,c)\pi} = a_{(b,c)\pi}^r$$
 and $a_r^{(b,c)\pi} = a_{(b,c)\pi}^l$.

Using [13, Theorem 2.8], we obtain

$$(aba)^{\parallel c} = (caba + 1 - (aba)^{c\pi})^{-1}c$$

and

$$(aca)^{\parallel b} = (baca + 1 - (aca)^{b\pi})^{-1}b.$$

Substituting in (3.1) and (3.2), we obtain the result of items (3) and (4).

Remark 3.8. (1) We can also write $a^{\parallel(b,c)}$ and $a^{\parallel(c,b)}$ by using the result of [15, Theorem 2.6] or [12, Proposition 5] as follows:

$$a^{\parallel(b,c)} = bac(abac)^{\sharp} = ba(caba)^{\sharp}c = b(acab)^{\sharp}ac = (baca)^{\sharp}bac,$$

$$a^{\parallel(c,b)} = cab(acab)^{\sharp} = ca(baca)^{\sharp}b = c(abac)^{\sharp}ab = (caba)^{\sharp}cab.$$

(2) If a is only (c, b)-polar, this does not allow us to have the equalities in the previous theorem, because we may not have the right and left (b, c)-spectral idempotents of a, since a may not be (b, c)-polar, as shown in Example 3.5.

An involution * is a bijection $x \mapsto x^*$ on R that satisfies the following conditions for all $a, b \in R$:

- (i) $(a^*)^* = a$;
- (ii) $(ab)^* = b^*a^*$;
- (iii) $(a+b)^* = a^* + b^*$.

We say that R is a *-ring if there is an involution on R.

Proposition 3.9. Let R be a *-ring, and let $a, b, c \in R$. Then a is (b, c)-polar if and only if a^* is dually (b^*, c^*) -polar. In this case, we have

$$(a_l^{(b,c)\pi})^* = (a^*)_{(b^*,c^*)\pi}^r,$$

$$(a_r^{(b,c)\pi})^* = (a^*)_{(b^*,c^*)\pi}^l.$$

Proof. We have a that is (b,c)-polar if and only if a is (b,c)-invertible, by Theorem 2.6. Suppose that $y = a^{\parallel (b,c)}$, so $y \in bR \cap Rc$, yab = b, and cay = c. By involution we get $y^* \in c^*R \cap Rb^*$, $b^*a^*y^* = b^*$, and $y^*a^*c^* = c^*$, which means that a^* is (c^*, b^*) -invertible with inverse y^* , i.e., $y^* = (a^{\parallel(b,c)})^* = a^{*\parallel(c^*,b^*)}$. Moreover, a^* is (c^*, b^*) -invertible if and only if a^* is dually (b^*, c^*) -polar. And we have

$$(a_l^{(b,c)\pi})^* = (a^{\parallel(b,c)}a)^* = a^*(a^{\parallel(b,c)})^* = a^*a^{*\parallel(c^*,b^*)} = (a^*)^r_{(b^*,c^*)\pi},$$

$$(a_r^{(b,c)\pi})^* = (aa^{\parallel(b,c)})^* = (a^{\parallel(b,c)})^*a^* = a^{*\parallel(c^*,b^*)}a^* = (a^*)^l_{(b^*,c^*)\pi}.$$

Proposition 3.10. Let $a,b,c \in R$ such that a is (b,c)-polar and let $k \geq 1$. If $a \in \text{comm}(b) \cap \text{comm}(c)$ and ba = ca, then we have

- (1) a is polar along b and $a^{b\pi} = a_i^{(b,c)\pi}$.
- (2) a is dually polar along c and $a_{c\pi} = a_r^{(b,c)\pi}$. (3) a^k is (b^k, c^k) -polar, with $(a^k)_l^{(b^k, c^k)\pi} = a_l^{(b,c)\pi}$ and $(a^k)_r^{(b^k, c^k)\pi} = a_r^{(b,c)\pi}$.

Proof. Since a is (b,c)-polar, there exist $p=a_l^{(b,c)\pi}$ and $q=a_r^{(b,c)\pi}$ such that

$$p = p^2 \in bRca$$
, $q = q^2 \in abRc$, $pb = b$, $cq = c$, $cap = ca$, and $qab = ab$.

(1) and (2): As ba = ca = ac = ab, we have bap = ba = pba, which means that $p \in \text{comm}(ba)$ and acq = ac = qac, which means that $q \in \text{comm}(ac)$. Also, $p \in bRba \subset Rba$ and $q \in abRc = acRc \subseteq acR$. Then p = tba for some $t \in R$ and q = acx for some $x \in R$. Then

$$(ptp+1-p)(ba+1-p) = ptpba + ptp(1-p) + (1-p)ba + 1 - p$$
$$= ptba + 0 + 0 + 1 - p = p^2 + 1 - p$$
$$= 1.$$

Hence
$$(ba+1-p) \in R_l^{-1}$$
. And

$$(ac + 1 - q)(qxq + 1 - q) = acqxq + ac(1 - q) + (1 - q)qxq + 1 - q$$
$$= acxq + 0 + 0 + 1 - q$$
$$= q^{2} + 1 - q$$
$$= 1.$$

Hence $ac + 1 - q \in R_r^{-1}$.

By Jacobson's lemma and the expression of $p = a^{\parallel (b,c)}a$ and $q = aa^{\parallel (b,c)}$, we have

$$1 + ba - p \in R_l^{-1} \iff ac + 1 - q \in R_l^{-1}$$

and

$$1 + ac - q \in R_r^{-1} \iff ba + 1 - p \in R_r^{-1}.$$

Thus we obtain $ba+1-p\in R^{-1}$ and $ac+1-q\in R^{-1}$. Consequently, a is polar along b with $a^{b\pi}=p=a_l^{(b,c)\pi}$, and a is dually polar along c with $a_{c\pi}=q=a_r^{(b,c)\pi}$.

(3): Since p and q are idempotents and $a \in \text{comm}(b) \cap \text{comm}(c)$, we have

$$c^k a^k p = (ca)^k p^k = (ca)^k = c^k a^k$$

and

$$qa^kb^k = q^k(ab)^k = (ab)^k = a^kb^k.$$

On the other hand, we have $pb^k = pbb^{k-1} = bb^{k-1} = b^k$ and $c^kq = c^{k-1}cq = c^{k-1}c = c^k$.

Using (1) and (2) we have

$$ba + 1 - p \in R^{-1} \Longrightarrow (ba + 1 - p)^k \in R^{-1}$$

$$\iff (ba)^k + 1 - p \in R^{-1}$$

$$\iff p \in (ba)^k R(ba)^k \text{ by [13, Theorem 2.4]}$$

$$\iff p \in b^k a^k R(ca)^k \subset b^k Rc^k a^k.$$

Similarly,

$$ac + 1 - q \in R^{-1} \Longrightarrow (1 + ac - q)^k \in R^{-1}$$

$$\iff (ac)^k + 1 - q \in R^{-1} \iff q \in (ac)^k R(ac)^k$$

$$\iff q \in (ab)^k Ra^k c^k \subseteq a^k b^k Rc^k.$$

Finally, a^k is (b^k, c^k) -polar with $(a^k)_l^{(b^k, c^k)\pi} = p = a_l^{(b, c)\pi}$ and $(a^k)_r^{(b^k, c^k)\pi} = q = a_r^{(b, c)\pi}$.

Theorem 3.11. Let $a, b, c, d \in R$ such that a is (b, c)-polar. Then the following conditions are equivalent:

$$\begin{array}{l} (1) \ \ d \ \ is \ (b,c)\text{-polar such that} \ a_l^{(b,c)\pi} = d_l^{(b,c)\pi} \ \ and \ a_r^{(b,c)\pi} = d_r^{(b,c)\pi} \\ (2) \ \ \begin{cases} cda_l^{(b,c)\pi} = cd, \ a_l^{(b,c)\pi} \in bRcd, \ and \ a_l^{(b,c)\pi}b = b, \\ a_r^{(b,c)\pi}db = db, \ a_r^{(b,c)\pi} \in dbRc, \ and \ ca_r^{(b,c)\pi} = c. \end{cases}$$

$$(3) \ \begin{cases} cda_{l}^{(b,c)\pi} = cd, \ a_{l}^{(b,c)\pi} \in bRcd \cap bRca, \ and \ a_{l}^{(b,c)\pi}b = b, \\ a_{r}^{(b,c)\pi}db = db, \ a_{r}^{(b,c)\pi} \in abRc \cap dbRc, \ and \ ca_{r}^{(b,c)\pi} = c. \end{cases}$$

(4)
$$d$$
 is (b, c) -polar, $cda_1^{(b,c)\pi} = cd$, and $a_r^{(b,c)\pi}db = db$.

Proof. (1) \Rightarrow (2). It is clear.

 $(2) \Rightarrow (1)$. By Definition 2.1 and Theorem 2.2.

(2) \Rightarrow (3). We have $a_l^{(b,c)\pi} \in bRca$ and $a_r^{(b,c)\pi} \in abRc$, and we also have, by hypothesis, $a_l^{(b,c)\pi} \in bRcd$ and $a_r^{(b,c)\pi} \in dbRc$. Hence $a_l^{(b,c)\pi} \in bRcd \cap bRca$ and $a_r^{(b,c)\pi} \in abRc \cap dbRc$.

- $(3) \Rightarrow (2)$. It is obvious.
- $(1) \Rightarrow (4)$. It is clear.

(4) \Rightarrow (1). We prove that $a_l^{(b,c)\pi}=d_l^{(b,c)\pi}$ and $a_r^{(b,c)\pi}=d_r^{(b,c)\pi}$. First we have $d_l^{(b,c)\pi} \in bRcd, \text{ so } d_l^{(b,c)\pi} = bxcd \text{ for some } x \in R, \text{ and } a_l^{(b,c)\pi} \in bRca, \text{ so } a_l^{(b,c)\pi} = btca \text{ for some } t \in R. \text{ Moreover}, cdd_l^{(b,c)\pi} = cd = cda_l^{(b,c)\pi} \text{ and } a_l^{(b,c)\pi}b = b = d_l^{(b,c)\pi}b,$

$$d_{l}^{(b,c)\pi} - d_{l}^{(b,c)\pi} a_{l}^{(b,c)\pi} = bxcd - bxcd a_{l}^{(b,c)\pi} = bxcd - bxcd = 0.$$

Hence

$$d_I^{(b,c)\pi} = d_I^{(b,c)\pi} a_I^{(b,c)\pi}.$$

Also.

$$a_l^{(b,c)\pi} - d_l^{(b,c)\pi} a_l^{(b,c)\pi} = btca - d_l^{(b,c)\pi} btca = btca - btca = 0.$$

So

$$a_l^{(b,c)\pi} = d_l^{(b,c)\pi} a_l^{(b,c)\pi}$$

 $a_l^{(b,c)\pi}=d_l^{(b,c)\pi}a_l^{(b,c)\pi}.$ Consequently, $a_l^{(b,c)\pi}=d_l^{(b,c)\pi}.$ Similarly Similarly, we show that $d_r^{(b,c)\pi} = a_r^{(b,c)\pi}$

4. The (B, C)-polarity for bounded linear operators

Let X be a complex Banach space, and let $\mathcal{B}(X)$ denote the algebra of all bounded linear operators. Let $A \in \mathcal{B}(X)$. We denote by $\mathcal{N}(A) = \{x \in X : Ax = 0\}$ the null space of A and by $\mathcal{R}(A) = \{Ax : x \in X\}$ the range of A, and we write $I \in \mathcal{B}(X)$ for the identity operator.

Let $A, B, C \in \mathcal{B}(X)$. Then A is (B, C)-polar if there exist two projections $P, Q \in \mathcal{B}(X)$ such that

- (1) $P \in B\mathcal{B}(X)CA$;
- (2) $Q \in AB\mathcal{B}(X)C$;
- (3) PB = B, CQ = C;
- (4) CAP = CA, QAB = AB.

A closed subspace M of X is a complemented subspace of X if there exists a closed subspace N of X such that $X = M \oplus N$.

Recall that an operator $A \in \mathcal{B}(X)$ is regular if and only if $\mathcal{R}(A)$ is closed and a complemented subspace of X, and $\mathcal{N}(A)$ is a complemented subspace of X (see [11, Proposition 13.1]).

Theorem 4.1. Let $A, B, C \in \mathcal{B}(X)$ such that B, C and CAB are regular. Then the following assertions are equivalent:

- (1) A is (B, C)-invertible;
- (2) A is (B,C)-polar;
- (3) There exist projections $P, Q \in \mathcal{B}(X)$ such that
 - (i) $\mathcal{R}(P) = \mathcal{R}(B)$;
 - (ii) $\mathcal{N}(Q) = \mathcal{N}(C)$;
 - (iii) $\mathcal{R}(Q) = \mathcal{R}(AB)$;
 - (iv) $\mathcal{N}(P) = \mathcal{N}(CA)$.

Proof. (1) \Leftrightarrow (2). By Theorem 2.6.

- $(2) \Rightarrow (3).$
 - (i) From $P \in \mathcal{BB}(X)CA$ we have $\mathcal{R}(P) \subseteq \mathcal{R}(B)$. Also, from PB = B, we see that $\mathcal{R}(B) \subseteq \mathcal{R}(P)$. Hence

$$\mathcal{R}(P) = \mathcal{R}(B).$$

(ii) $CQ = C \Rightarrow \mathcal{N}(Q) \subseteq \mathcal{N}(C)$. Now let $x \in X$ such that Cx = 0. Since $Q \in AB\mathcal{B}(X)C$, we have Qx = 0 and so $\mathcal{N}(C) \subseteq \mathcal{N}(Q)$, thus

$$\mathcal{N}(Q) = \mathcal{N}(C).$$

(iii) $Q \in AB\mathcal{B}(X)C \Rightarrow \mathcal{R}(Q) \subseteq \mathcal{R}(AB)$. Also, $QAB = AB \Rightarrow \mathcal{R}(AB) \subseteq \mathcal{R}(Q)$. Hence

$$\mathcal{R}(Q) = \mathcal{R}(AB).$$

(iv) $CAP = CA \Rightarrow \mathcal{N}(P) \subseteq \mathcal{N}(CA)$, and $P \in B\mathcal{B}(X)CA \Rightarrow \mathcal{N}(CA) \subseteq \mathcal{N}(P)$. Hence

$$\mathcal{N}(P) = \mathcal{N}(CA).$$

(3) \Rightarrow (1). To show that A is (B, C)-invertible, it suffices to prove that $\mathcal{N}(B) = \mathcal{N}(CAB)$ and $\mathcal{R}(C) = \mathcal{R}(CAB)$ by virtue of [2, Theorem 4.1].

First we can see that PB = B and CQ = C. Indeed, let $x \in X$. As $Bx \in \mathcal{R}(B) = \mathcal{R}(P)$, we have P(Bx) = Bx and so PB = B.

We have Cx = C(x - Q(x)) + CQx = 0 + CQx = CQx as $x - Qx \in \mathcal{N}(Q) = \mathcal{N}(C)$. Hence C = CQ.

Obviously we have $\mathcal{R}(CAB) \subseteq \mathcal{R}(C)$. Let $y \in \mathcal{R}(C)$. Then there exists some $x \in X$ such that y = Cx. As CQ = C, we get y = CQx and we can write y = Cz for some $z = Qx \in \mathcal{R}(Q) = \mathcal{R}(AB)$, so z = ABt for some $t \in X$. Thus we obtain y = Cz = CABt, which implies that $y \in \mathcal{R}(CAB)$. Hence $\mathcal{R}(C) \subseteq \mathcal{R}(CAB)$ and consequently

$$\mathcal{R}(C) = \mathcal{R}(CAB).$$

On the other hand, we obviously have $\mathcal{N}(B) \subseteq \mathcal{N}(CAB)$. Suppose that $s \in \mathcal{N}(CAB)$. Then CABs = 0. Set z = Bs. We obtain CAz = 0, which means that $z \in \mathcal{N}(CA) = \mathcal{N}(P)$, and hence Pz = 0 = PBs. Since PB = B, we obtain Bs = 0, which gives $s \in \mathcal{N}(B)$. Hence $\mathcal{N}(CAB) \subseteq \mathcal{N}(B)$, and we conclude that

$$\mathcal{N}(B) = \mathcal{N}(CAB).$$

Therefore A is (B, C)-invertible.

Remark 4.2. Assume that A is (B, C)-invertible. Then, with respect to the decompositions $X = \mathcal{R}(P) \oplus \mathcal{N}(P)$ and $X = \mathcal{R}(Q) \oplus \mathcal{N}(Q)$, we have the following matrix representation of A:

$$A = \begin{bmatrix} QA & QA \\ (I-Q)A & (I-Q)A \end{bmatrix} : \mathcal{R}(P) \oplus \mathcal{N}(P) \longrightarrow \mathcal{R}(Q) \oplus \mathcal{N}(Q)$$
$$x_1 + x_2 \longmapsto A(x_1 + x_2).$$

Indeed, with respect to the Peirce decomposition, we have

$$A = \begin{bmatrix} QAP & QA(I-P) \\ (I-Q)AP & (I-Q)A(I-P) \end{bmatrix}.$$

Then for $x_1 \in \mathcal{R}(P)$ and $x_2 \in \mathcal{N}(P)$ we have

$$QAP : \mathcal{R}(P) \longrightarrow \mathcal{R}(Q), \quad x_1 \longmapsto QAPx_1 = QAx_1;$$

 $(I-Q)AP : \mathcal{R}(P) \longrightarrow \mathcal{N}(Q), \quad x_1 \longmapsto (I-Q)APx_1 = (I-Q)Ax_1;$
 $QA(I-P) : \mathcal{N}(P) \longrightarrow \mathcal{R}(Q), \quad x_2 \longmapsto QAx_2;$
 $(I-Q)A(I-P) : \mathcal{N}(P) \longrightarrow \mathcal{N}(Q), \quad x_2 \longmapsto (I-Q)Ax_2.$

Corollary 4.3. Let $A, B \in \mathcal{B}(X)$, with B regular. Then the following assertions are equivalent:

- (1) A is invertible along B.
- (2) A is polar along B.
- (3) There exists a projection $P \in \mathcal{B}(X)$ such that
 - (i) $\mathcal{N}(P) = \mathcal{N}(BA) = \mathcal{N}(B)$;
 - (ii) $\mathcal{R}(P) = \mathcal{R}(AB) = \mathcal{R}(B)$.
- (4) $\mathcal{R}(B)$ is closed and a complemented subspace of X, $\mathcal{R}(AB)$ is closed with $X = \mathcal{R}(AB) \oplus \mathcal{N}(B)$, and $A|_{\mathcal{R}(B)} : \mathcal{R}(B) \to \mathcal{R}(AB)$ is invertible.

Proof. The equivalence between (1), (2) and (3) follows from Theorem 4.1. The equivalence between (1) and (4) is [7, Theorem 2]; however, we can give another proof by showing that (2) or (3) is equivalent to (4).

Indeed, assume that A is polar along B; then by (3) $\mathcal{R}(B) = \mathcal{R}(P)$, which is closed and complemented in X, since P is a bounded projection. Also, $\mathcal{R}(AB) = \mathcal{R}(P)$ is closed and $X = \mathcal{R}(P) \oplus \mathcal{N}(P) = \mathcal{R}(AB) \oplus \mathcal{N}(B)$.

The operator $A|_{\mathcal{R}(B)}$ is surjective by construction. So let $x \in \mathcal{R}(B)$ such that ABx = 0; then BABx = 0 and hence $Bx \in \mathcal{N}(BA) = \mathcal{N}(P)$ by (3). Thus 0 = PBx = Bx. Therefore, $A|_{\mathcal{R}(B)}$ is injective.

Conversely, assume that (4) holds. Let P be the bounded projection onto $\mathcal{R}(AB)$. Let $x \in X$ with $x = x_1 + x_2$ such that $x_1 \in \mathcal{R}(AB) = \mathcal{R}(P)$ and $x_2 \in \mathcal{N}(B) = \mathcal{N}(P)$. Then

$$BPx = Bx_1 = B(x_1 + x_2) = Bx$$
.

So BP = B. Also,

$$ABPx = ABx = ABx_1 = PABx_1 = PABx$$
.

Hence $P \in \text{comm}(AB)$.

Now, to deduce that A is dually polar along B, it remains to show that AB+I-P is invertible. We have $(AB+I-P)x=ABx_1+x_2$. Then if (AB+I-P)x=0, we get $ABx_1=0$ and $x_2=0$. Since the operator $A|_{\mathcal{R}(B)}$ is invertible, we deduce that $x_1=0$. Thus AB+I-P is injective.

Let $y = y_1 + y_2$ such that $y_1 \in \mathcal{R}(AB)$ and $y_2 \in \mathcal{N}(B)$. Then $y_1 = ABx = ABx_1$ for some $x \in X$. Set $z = x_1 + y_2$. Then $(AB + I - P)z = ABx_1 + y_2 = y$. Hence AB + I - P is surjective. Therefore A is dually polar along B, hence A is polar along B.

ACKNOWLEDGMENT

The authors are indebted to the referee for several helpful remarks and suggestions.

References

- X. CHEN and J. CHEN, The (b, c)-inverse in semigroups and rings with involution, Front. Math. China 15 no. 6 (2020), 1089–1104. DOI MR Zbl
- [2] C. Deng and R. Liu, The existence and expressions of the inverse along operators B and C, Oper. Matrices 12 no. 4 (2018), 1027–1042. DOI MR Zbl
- [3] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506–514. DOI MR Zbl
- [4] M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436 no. 7 (2012), 1909–1923. DOI MR Zbl
- [5] M. P. Drazin, Generalized inverses: Uniqueness proofs and three new classes, *Linear Algebra Appl.* 449 (2014), 402–416. DOI MR Zbl
- [6] R. Harte, On quasinilpotents in rings, Panamer. Math. J. 1 (1991), 10-16. MR Zbl
- [7] G. KANTÚN-MONTIEL and S. V. DJORDJEVIĆ, Invertibility along an operator, Oper. Matrices 11 no. 2 (2017), 347–354. DOI MR Zbl
- [8] J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 no. 1 (2002), 137–152. DOI MR Zbl
- [9] T. Li, F. Peng, and H. Zhu, Generalized inverses of elements and their polarities in rings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 no. 3 (2021), Paper No. 109. DOI MR Zbl
- [10] X. MARY, On generalized inverses and Green's relations, Linear Algebra Appl. 434 no. 8 (2011), 1836–1844. DOI MR Zbl
- [11] V. MÜLLER, Spectral theory of linear operators and spectral systems in Banach algebras, second ed., Operator Theory: Advances and Applications 139, Birkhäuser, Basel, 2007. MR Zbl
- [12] G. Shi and J. Chen, Symmetric properties of (b,c)-inverses, $Mathematics~{\bf 10}$ no. 16 (2022), Paper No. 2948. DOI
- [13] Y. Song, H. Zhu, and D. Mosić, The polarity along an element in rings, *Rocky Mountain J. Math.* 53 no. 3 (2023), 937–949. DOI MR Zbl

- [14] Z. Wang and J. Chen, Pseudo Drazin inverses in associative rings and Banach algebras, Linear Algebra Appl. 437 no. 6 (2012), 1332–1345. DOI MR Zbl
- [15] C. Wu and J. Chen, On (b,c)-inverses and (c,b)-inverses, Comm. Algebra **49** no. 10 (2021), 4313–4323. DOI MR Zbl

Btissam Laghmam

Department of Mathematics, Dhar El Mahraz Faculty of Science, Sidi Mohamed Ben Abdellah University, 30003 Fez, Morocco btissam.laghmam@usmba.ac.ma

Hassane Zguitti[™]

Department of Mathematics, Dhar El Mahraz Faculty of Science, Sidi Mohamed Ben Abdellah University, 30003 Fez, Morocco hassane.zguitti@usmba.ac.ma

Received: September 25, 2024 Accepted: January 21, 2025 Early view: January 22, 2025