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ON THE SUM OF THE EIGENVALUES OF THE DISTANCE
LAPLACIAN MATRIX OF GRAPHS WITH DIAMETER

THREE AND FOUR

UMMER MUSHTAQ, SHARIEFUDDIN PIRZADA, AND SALEEM KHAN

Abstract. We study an inequality proposed by Zhou et al. (2025) relating the
distance Laplacian eigenvalues of a connected graph to its Wiener index. For
a connected graph G on n vertices, let Ur(G) denote the sum of the r largest
distance Laplacian eigenvalues, and let W (G) be the Wiener index of G. Zhou
et al. conjectured that, for all r = 2, . . . , n, one has Ur(G) ≤ W (G) +

(
r+2

3

)
.

We prove this inequality for several families of graphs. In particular, for n ≥ 95
we verify it for all graphs in Γn, that is, graphs of order n and diameter 3 that
contain a spanning tree of diameter 3; as a consequence, the conjecture holds
for all trees of diameter 3. Moreover, we show that if G has maximum degree
n − 2, then the inequality holds for all 1 ≤ r ≤ n. Finally, we prove that sun
graphs and partial sun-type graphs of diameter 4 also satisfy the inequality
for all 1 ≤ r ≤ n.

1. Introduction

We consider a simple connected graph G with vertex set V (G) = {v1, v2, . . . , vn}
and edge set E(G) = {e1, e2, . . . , em}. The adjacency matrix A(G) = (aij) of G is
a (0, 1)-matrix of order n, where the (i, j)-entry is equal to 1 if vi is adjacent to vj ,
and 0 otherwise.

Let D′(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees, where
di = dG(vi) for i = 1, 2, . . . , n. The Laplacian matrix of G is defined as L(G) =
D′(G) − A(G), and the signless Laplacian matrix as Q(G) = D′(G) + A(G). The
spectra of these matrices are known as the Laplacian spectrum and the signless
Laplacian spectrum of G, respectively. These matrices are real, symmetric, and
positive semi-definite. We write the Laplacian spectrum of G as 0 = µn ≤ µn−1 ≤
· · · ≤ µ1, and the signless Laplacian spectrum as 0 ≤ qn ≤ qn−1 ≤ · · · ≤ q1.

In a graph G, the distance dG(u, v) (or duv for short) between the vertices u and v
is the length of a shortest path connecting them. The diameter of G is the maximum

2020 Mathematics Subject Classification. Primary 05C50; Secondary 05C12, 15A18.
Key words and phrases. distance Laplacian matrix, Wiener index, trees, diameter, sun-type

graphs.
The research of S. Pirzada is supported by the National Board for Higher Mathematics

(NBHM) under research project no. NBHM/02011/20/2022.

193

https://doi.org/10.33044/revuma.5147


194 U. MUSHTAQ, S. PIRZADA, AND S. KHAN

distance between any two vertices in G. The transmission TrG(v) of a vertex v is the
sum of the distances from v to all other vertices in G, i.e., TrG(v) =

∑
u∈V (G) duv.

A graph G is said to be r-transmission regular if TrG(v) = r for each v ∈ V (G).
The Wiener index (or transmission) of a graph G, denoted by W (G), is the sum of
the distances between all unordered pairs of vertices in G, which can be expressed
as W (G) = 1

2
∑

v∈V (G) TrG(v). The distance matrix of G, denoted by D(G), is
defined as D(G) = (duv)u,v∈V (G). The quantity Tri = TrG(vi) is referred to as the
transmission degree of the vertex vi, and the sequence {Tr1, Tr2, . . . , Trn} is the
transmission degree sequence of the graph G.

Let Tr(G) = diag(Tr1, Tr2, . . . , Trn) be the diagonal matrix of vertex trans-
missions of G. Aouchiche and Hansen [2] defined the distance Laplacian matrix
of G as DL(G) = Tr(G) − D(G), and the distance signless Laplacian matrix as
DQ(G) = Tr(G) + D(G). If G is connected, then D(G) is symmetric, non-negative
and irreducible. Some recent works include [12, 14, 15]. Let Sk(G) =

∑k
i=1 µi,

for 1 ≤ k ≤ n, be the sum of the k-largest Laplacian eigenvalues of G. For a
graph with n vertices and degree sequence {dv | v ∈ V (G)}, Grone and Mer-
ris [11] conjectured that Sk(G) =

∑k
i=1 µi(G) ≤

∑k
i=1 |{v ∈ V (G) | dv ≥ i}| for

k = 1, 2, . . . , n. This was proved by Bai [4]. As a variation of the Grone–Merris
theorem, Brouwer [5] conjectured that for a graph G with n vertices and m edges,
Sk(G) =

∑k
i=1 µi ≤ m +

(
k+1

2
)

for k = 1, 2, . . . , n. For the progress on this conjec-
ture, we refer to [6, 10, 9, 8, 7, 13].

Analogous to Brouwer’s conjecture, Alhevaz et al. [1] conjectured the following
for the sum of the k-largest distance signless Laplacian eigenvalues Uk(G).

Problem 1. If G is a connected graph of order n that is not a path, then Uk(G) ≤
W (G) +

(
k+2

3
)

for any k = 2, . . . , n.

They proved that this inequality is true for graphs of diameter one and two.
For 1 ≤ r ≤ n − 1, let Ur be the sum of the r largest distance Laplacian

eigenvalues of a graph G, i.e., Ur =
∑r

i=1 ∂L
i (G), where ∂L

i (G), i = 1, 2, . . . , n, are
the distance Laplacian eigenvalues of G. Similar to Alhevaz et al. [1], the following
problem was proposed by Zhou et al. [17].

Problem 2. Determine which connected graphs of order n, and any r = 2, . . . , n,
satisfy

Ur(G) ≤ W (G) +
(

r + 2
3

)
. (A)

Zhou et al. [17] confirmed the validity of inequality (A) for graphs with diameter
one and graphs of diameter two with given maximum degree for all r.

Definition 1.1. If d(v) = 1, then v is called a pendant vertex. A tree containing
exactly two non-pendant vertices is called a double-star. A double-star with degree
sequence (k1 + 1, k2 + 1, 1, 1, . . . , 1) is denoted by Sk1,k2 .

The following observations will be used in what follows.
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Lemma 1.2 ([3]). Let G be a graph on n vertices and N(v) represent the set of
all vertices adjacent to vertex v. If S = {v1, v2, . . . , vp} is an independent set of G
such that N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , p}, then ∂ = Tr(vi) = Tr(vj) for
all i, j ∈ {1, 2, . . . , p}, and ∂ + 2 is an eigenvalue of DL(G) with multiplicity at
least p − 1.

Lemma 1.3 ([2]). Let G be a connected graph on n vertices and m ≥ n edges.
Consider the connected graph G′ obtained from G by the deletion of an edge. Let
∂L

1 (G) ≥ ∂L
2 (G) ≥ · · · ≥ ∂L

n (G) and ∂L
1 (G′) ≥ ∂L

2 (G′) ≥ · · · ≥ ∂L
n (G′) be the

distance Laplacian eigenvalues of G and G′, respectively. Then ∂L
i (G′) ≥ ∂L

i (G)
holds for all 1 ≤ i ≤ n.

The paper is organized as follows. In Section 2, we prove that inequality (A)
holds for all graphs in the family Γn with n ≥ 95 and for any graph with a maximum
degree n − 2 and n ≥ 95. In Section 3, we establish that inequality (A) is true for
all sun-type and partial sun-type graphs.

2. Sum of the distance Laplacian eigenvalues of graphs
with diameter three

Graphs with diameter three can be divided into two categories: those that have
a spanning tree of diameter at most three, and those whose spanning tree has
diameter greater than three. We use the notation Γn for the first category. It is
important to note that every graph in Γn contains the double star Sk1,k2 , where
k1 + k2 + 2 = n, as a spanning subgraph. The graph H given in Figure 1 is the
largest possible graph in Γn in terms of edge count. The graph H is formed by
connecting an isolated vertex u to a complete graph Kk1 , and another isolated
vertex v to a complete graph Kk2 . Finally, the two complete graphs Kk1 and Kk2

are joined together. This construction yields the largest graph by edge count in the
family Γn. In this section, we prove that inequality (A) is true for all graphs in Γn

for which n ≥ 95. As a consequence of this, we finally show that inequality (A) is
true for any graph G with maximum degree ∆ = n − 2.

In the following lemma, we first obtain the distance Laplacian spectrum of Sk1,k2 .

Lemma 2.1. The distance Laplacian spectrum of Sk,n−k−2 is {(3n−k−3)k−1, (2n+
k − 1)n−k−3} together with the roots of the polynomial

p(λ) = λ(λ3 − (6n − 4)λ2 + (11n2 − 13n − k2 + kn − 2k + 3)λ
+ (3k2n − 3kn2 + 6kn − 6n3 + 9n2 − 3n)).

Proof. Suppose that V1 = {u, u1, u2, . . . , uk} and V2 = {v, v1, v2, . . . , vn−k−2} are
the sets of vertices of K1,k and K1,n−k−2, respectively. We assume that the double
star graph Sk,n−k−2 is obtained by joining the central vertices u and v of the star
graphs K1,k and K1,n−k−2. Then the vertex set of Sk,n−k−2 is V (Sk,n−k−2) =
V1 ∪ V2. The sets of vertices {u1, u2, . . . , uk} and {v1, v2, . . . , vn−k−2} are clearly
independent, with the transmission values Tr(ui) = 3n − k − 5 and Tr(vi) = 2n +
k − 3. By Lemma 1.2, the distance Laplacian eigenvalues 3n − k − 3 and 2n − k − 1
of Sk,n−k−2 have multiplicities of at least k − 1 and n − k − 3, respectively.
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Figure 1. Graph H

The remaining are the eigenvalues of the matrix B, given below:

B =


2n − k − 3 −k −1 −2n + 2k + 4

−1 3n − 3k − 3 −2 −3n + 3k + 6
−1 −2k n + k − 1 −n + 2 + k
−2 −3k −1 3k + 3

 .

The characteristic polynomial of the matrix B is given by

p(λ) = λ(λ3 − (6n − 4)λ2 + (11n2 − 13n − k2 + kn − 2k + 3)λ
+ (3k2n − 3kn2 + 6kn − 6n3 + 9n2 − 3n)).

Clearly, 0 is one of the zeros of the polynomial p(λ) and the sum of the remaining
three zeros is 6n − 4. This completes the proof. □

Theorem 2.2. Let G be a graph in the class Γn with n ≥ 95, containing Sk,n−k−2
as a spanning subgraph. Then, for all 1 ≤ r ≤ k − 1 and k ≥ 2, inequality (A)
holds for G.

Proof. The graph H has the smallest Wiener index among all possible connected
graphs in Γn, and its Wiener index is n2+n

2 . Moreover, for any graph G′ of di-
ameter 3, ∂L

i (Sk,n−k−2) ≥ ∂L
i (G′) for all i = 1, 2, . . . , n. Therefore, in view of

Lemma 1.3 and the fact that the Wiener index of any graph in Γn is at least n2+n
2 ,

the following inequality will establish the result:

Ur(Sk,n−k−2) ≤ n2 + n

2 +
(

r + 2
3

)
.
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From Lemma 2.1, the distance Laplacian spectrum of Sk,n−k−2 is {(3n − k −
3)k−2, (2n + k − 1)n−k−2} together with the roots of the polynomial

p(λ) = λ(λ3 − (6n − 4)λ2 + (11n2 − 13n − k2 + kn − 2k + 3)λ
+ (3k2n − 3kn2 + 6kn − 6n3 + 9n2 − 3n)).

Since p(3n − k) < 0 and p(6n − 4) > 0, it follows that the spectral radius is one
of the zeros of the polynomial p(λ) and lies in the interval (3n − k, 6n − 4). To
establish the result, we consider the following two cases based on the multiplicity
of the second largest distance Laplacian eigenvalue ∂L

2 (Sk,n−k−2).
Case (i). n ≥ 2k + 2 and ∂L

2 = 3n − k − 3 with multiplicity at least k − 1.
For n ≥ 2k + 2, we have 3n − k − 3 ≥ 2n + k − 1 and 3n − k − 3 is a decreasing

function of k, so we can write (3n−k−3)(r−1) ≤ (3n−4)(r−1). As ∂L
1 (Sk,n−k−2) <

6n − 4, we prove that, for any r satisfying 1 ≤ r ≤ k − 1, the inequality

(6n − 4) + (3n − 4)(r − 1) ≤ n2 + n

2 +
(

r + 2
3

)
holds, which can be further simplified to r3 + 3r2 + 26r − 18nr + 3n2 − 15n ≥ 0.
Since r ≥ 1, in order to prove r3 + 3r2 + 26r − 18nr + 3n2 − 15n ≥ 0 we need to
prove that r3 +3r2 −18nr +3n2 −15n ≥ 0. Let f(r) = r3 +3r2 −18nr +3n2 −15n,
r ∈ [1, k − 2]. The function f(r) is decreasing in [1, −1 +

√
1 + 6n] and increasing

in [−1 +
√

1 + 6n, k − 2]. Therefore, to conclude the proof it is necessary to prove
that f(−1 +

√
1 + 6n) ≥ 0, that is,

f(−1 +
√

1 + 6n) = (−1 +
√

1 + 6n)3 + 3(−1 +
√

1 + 6n)2

− 18n(−1 +
√

1 + 6n) + 3n2 − 15n

= (−1 + (1 + 6n)
√

1 + 6n + 3
√

1 + 6n − 3(1 + 6n))
+ 6 + 18n − 6

√
1 + 6n) + 18n − 18n(

√
1 + 6n) + 3n2 − 15n

≥ 0,

which is true for n ≥ 95.
Case (ii). n < 2k + 2 and ∂L

2 = 2n + k − 1 with multiplicity at least n − k − 2.
For n < 2k + 1, we have 3n − k − 3 < 2n + k − 1 and 2n + k − 1 is an increasing
function of k, so we can write (2n+k−1)(r−1) ≤ (3n−4)(r−1). Now, proceeding
in the same way as in Case (i), we can establish the result. □

Theorem 2.3. Inequality (A) is true for all connected graphs in Γn for which
n ≥ 95.

Proof. Assume that G is any graph in Γn and Sk,n−k−2 is the spanning tree of G.
If r ≤ k − 2, then the result is true by Theorem 2.2. We need to prove this for
r > k−2. The graph H has the smallest Wiener index among all possible connected
graphs in Γn, and its Wiener index is n2+n

2 . Moreover, for any graph G′ in Γn,
∂L

i (Sk,n−k−2) ≥ ∂L
i (G′) for all i = 1, 2, . . . , n. Therefore, in view of Lemma 1.3

and the fact that the Wiener index of any graph in Γn at least n2+n
2 , the following
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inequality will establish the result:

Ur(Sk,n−k−2) ≤ n2 + n

2 +
(

r + 2
3

)
.

From Lemma 2.1, the distance Laplacian spectrum of Sk,n−k−2 is {(3n − k −
3)k−2, (2n + k − 1)n−k−2} together with the roots of the polynomial

p(λ) = λ(λ3 − (6n − 4)λ2 + (11n2 − 13n − k2 + kn − 2k + 3)λ
+ (3k2n − 3kn2 + 6kn − 6n3 + 9n2 − 3n)).

We consider the following cases.
Case (i). n ≥ 2k + 2 and assume that the multiplicity of ∂L

n−4 = 2n + k − 1
is s.

Now, for n ≥ 2k + 2, we have 3n − k − 3 ≥ 2n + k − 1 and 3n − k − 3 is a
decreasing function of k and 2n + k − 1 is an increasing function of k, so we can
write

(3n − k − 3)(r − t) + (2n + k − 1)t ≤ (3n − 4)(r − t) +
(

5n

2 − 2
)

t,

where 1 ≤ t ≤ s.
For any r satisfying 1 ≤ r ≤ n − 4, we prove that the inequality

(3n − 4)(r − t) +
(

5n

2 − 2
)

t ≤ n2 + n

2 +
(

r + 2
3

)
holds. Since (3n − 4)(r − t) + ( 5n

2 − 2)t ≤ (3n − 4)(r), we show that (3n − 4)(r) ≤
n2+n

2 +
(

r+2
3

)
, which can be further simplified as

r3 + 3r2 + 6r − 18nr + 3n2 + 3n ≥ 0.

Since r ≥ 1, in order to prove that r3+3r2+6r−18nr+3n2+3n ≥ 0 we need to prove
that r3 −18nr+3n2 +3n+9 ≥ 0. Let f(r) = r3 −18nr+3n2 +3n+9, r ∈ [1, n−4].
The function f(r) is decreasing in [1,

√
6n] and increasing in [

√
6n, n − 4]. Hence,

to conclude the proof, it is necessary to prove that f(
√

6n) ≥ 0, that is,

f(
√

6n) = (
√

6n)3 − 18n(
√

6n) + 3n2 + 3n + 9

= (−12n)
√

6n + 3n2 + 3n + 9
≥ 0,

which is true for n ≥ 95.
Case (ii). n < 2k + 1 and ∂L

2 = 2n + k − 2 with multiplicity at least n − k − 2.
For n < 2k + 1, we have 3n − k − 3 < 2n + k − 2 and 2n + k − 2 is an increasing
function of k, so we can write (2n + k − 2)r ≤ (3n − 3)r. Now, proceeding similarly
as in Case (i), we can establish the result. □

Zhou et al. [17] proved the following result for graphs with diameter 2 and
maximum degree n − 2.
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Theorem 2.4 ([17]). Let G be a connected graph of order n and size m having
maximum degree ∆.

(1) If ∆ = n − 1, then Problem 2 is true for all n ≥ 21.
(2) If ∆ = n − 2, then Problem 2 is true for all n ≥ 26.

Now, we generalize this to all graphs with maximum degree n − 2, without any
constraints on the diameter.

Theorem 2.5. Let G be a connected graph of order n and size m with maximum
degree ∆ = n − 2. Then inequality (A) is true for all n ≥ 95.

Proof. Any graph G with maximum degree n − 2 has diameter either 2 or 3. If G
has diameter 2, the result holds by Theorem 2.4. Therefore, we only need to prove
the case where G has a maximum degree n − 2 and diameter 3.

Now, if G has diameter 3 and maximum degree n − 2, then G belongs to the
family Γn. Consequently, in this case, the result follows from Theorem 2.3. □

3. Sum of distance Laplacian eigenvalues of sun-type graphs

Definition 3.1. The sun graph Sn(a, a) is a tree of order n = 2a + 1 containing
pendent vertices, each attached to a vertex of degree 2, and a vertex of degree a.
The sun graph of order n can be obtained from the star graph K1,n−1 by deleting
n−1

2 pendent vertices and inserting a new vertex on each of the remaining n−1
2 edges

of K1,n−1. We define a partial sun graph Sn(a, k) as a tree of order n = a + k + 1
containing k pendent vertices (1 ≤ k ≤ a−1), each attached to a vertex of degree 2,
and a − k pendent vertices, each attached to a vertex of degree a.

Theorem 3.2 ([16]). For a ≥ 2, let Sn(a, a) be the sun graph of order n = 2a + 1.
Then the distance Laplacian spectrum of Sn(a, a) is{

0, 1
2 (12a − 1 ±

√
4a2 + 4a + 17)a−1, 1

2 (9a − 1 ±
√

9a2 − 22a + 17)
}

.

Now, we prove that inequality (A) holds for both the sun graph Sn(a, a) and
the partial sun graph Sn(a, k), each of diameter 4.

Theorem 3.3. If a ≥ 12, then inequality (A) is true for Sn(a, a).

Proof. We first find the Wiener index of Sn(a, a). Since Sn(a, a) has a vertices of
transmission 7a − 4, a vertices of transmission 5a − 3, and one vertex of trans-
mission 3a, the Wiener index of Sn(a, a) is 12a2−4a

2 . Thus, we need to prove the
inequality

Ur(Sn(a, a)) ≤ 12a2 − 4a

2 +
(

r + 2
3

)
. (3.1)

Since ∂L
1 (Sn(a, a)) = 1

2 (12a − 1 +
√

4a2 + 4a + 17) is of multiplicity a − 1, in order
to establish (3.1) we show that the following inequality is true for all r satisfying
1 ≤ r ≤ n:

1
2(12a − 1 +

√
4a2 + 4a + 17)r ≤ 12a2 − 4a

2 +
(

r + 2
3

)
.

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



200 U. MUSHTAQ, S. PIRZADA, AND S. KHAN

As
√

4a2 + 4a + 17 ≤ 3a, we show that 1
2 (15a)r ≤ 12a2−4a

2 +
(

r+2
3

)
, which can be

further simplified to

r3 + 3r2 − 45ar + 2r + 36a2 − 12a ≥ 0.

Again, since r ≥ 1, in order to prove that r3 + 3r2 − 45ar + 2r + 36a2 − 12a ≥ 0
we need to prove that r3 − 45ar + 5 + 36a2 − 12a ≥ 0.

Let f(r) = r3 −45ar +5+36a2 −12a, r ∈ [1, n]. The function f(r) is decreasing
in [1,

√
15a] and increasing in [

√
15a, n]. Thus, to conclude the proof, it is necessary

to prove that f(
√

15a) ≥ 0, that is,

f(
√

15a) = (
√

15a)3 − 45a(
√

15a) + 5 + 36a2 − 12a

= −30a
√

15a + 36a2 − 12a

≥ 0

if a ≥ 12. □

Theorem 3.4 ([16]). For a ≥ 2 and 1 ≤ k ≤ a − 1, let Sn(a, k) be the par-
tial sun graph of order n = a + k + 1. Then the distance Laplacian spectrum
of Sn(a, k) consists of the simple eigenvalue 0; the eigenvalues 1

2 (5a + 7k − 1 ±√
(a + k)2 + 2(a + k) + 17), each of multiplicity k − 1; the eigenvalue 2a + 3k + 1,

of multiplicity a − k − 1; and the zeros of the polynomial

x3 − (6a + 8k)x2 + (−5 + a + 11a2 + 4k + 31ak + 21k2)x + 4
+ 7a − 3a2 − 6a3 + 12k − 10ak − 27a2k − 10k2 − 39ak2 − 18k3.

Theorem 3.5. For a ≥ 450, inequality (A) is true for the partial sun graph
Sn(a, k).

Proof. The Wiener index of Sn(a, k) is 6ak+4k2+2a2−4k
2 . Therefore, we need to

prove the inequality

Ur(Sn(a, k)) ≤ 6ak + 4k2 + 2a2 − 4k

2 +
(

r + 2
3

)
.

Since 1
2 (5a + 7k − 1 +

√
(a + k)2 + 2(a + k) + 17) is the spectral radius of Sn(a, k)

with multiplicity k − 1, we prove that(
1
2(5a+7k−1+

√
(a + k)2 + 2(a + k) + 17)

)
r ≤ 6ak + 4k2 + 2a2 − 4k

2 +
(

r + 2
3

)
for any r, 1 ≤ r ≤ n − 1. Since k ≤ a − 1 and a + k ≥ 4, we have 1

2 (5a + 7k − 1 +√
(a + k)2 + 2(a + k) + 17) ≤ 8a. So to establish the above inequality, we prove

that

(8a)r ≤ 6ak + 4k2 + 2a2 − 4k

2 +
(

r + 2
3

)
.

This can be further simplified as

r3 + 3r2 + 2r − 48ar + 18ak + 12k2 + 6a2 − 12k ≥ 0.
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Since r ≥ 1, to prove that

r3 + 3r2 + 2r − 48ar + 18ak + 12k2 + 6a2 − 12k ≥ 0

we can instead show that

r3 − 48ar + 18ak + 12k2 + 6a2 − 12k ≥ 0.

Let f(r) = r3 − 48ar + 18ak + 12k2 + 6a2 − 12k. The function f(r) is decreasing
in [1, 4

√
a] and increasing in [4

√
a, n]. Thus, to conclude the proof, it is necessary

to prove that f(4
√

a) ≥ 0, that is,

f(4
√

a) = (4
√

a)3 − 48a(4
√

a) + 18ak + 12k2 + 6a2 − 12k

= −128a
√

a + 18ak + 12k2 + 6a2 − 12k

≥ 0

if a ≥ 450. □

Conclusion. We have extended the study of Zhou et al. [17] by determining
the class of connected graphs of diameter 3 and 4 that satisfy the inequality
Ur(G) ≤ W (G) +

(
r+2

3
)

for any r = 2, . . . , n, where Ur(G) represents the sum
of the r largest distance Laplacian eigenvalues of G. Our findings demonstrate
that this upper bound holds for certain classes of graphs with diameters beyond 2,
expanding the understanding of the spectral properties of graphs with larger diam-
eters. Further research may continue to explore the validity of this bound for all
graphs of diameter 3, 4, and beyond, potentially providing deeper insights into the
relationships between graph structure and spectral bounds for distance Laplacian
eigenvalues.
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