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Vol. 69, No. 1, 2026, Pages 203–225
Published online: February 4, 2026
https://doi.org/10.33044/revuma.5219

CORE PARTIAL ORDER FOR FINITE POTENT
ENDOMORPHISMS

DIEGO ALBA ALONSO

Abstract. The aim of this paper is to generalize the core inverse to arbi-
trary vector spaces using finite potent endomorphisms. As an application,
the core partial order is studied in the set of finite potent endomorphisms
(of index less than or equal to one), thus generalizing the theory of this or-
der to infinite-dimensional vector spaces. Moreover, a pre-order is presented
using the CN decomposition of a finite potent endomorphism. Finally, some
questions concerning this pre-order are posed. Throughout the paper, some
remarks are made in the framework of arbitrary Hilbert spaces using bounded
finite potent endomorphisms.

1. Introduction

In this paper, the set of all m × n matrices over a field k is represented by
Matm×n(k). Given A ∈ Matm×n(k), the symbols A−1, A∗, R(A), N (A), rk(A)
and PR(A) will stand for the usual inverse (when it exists), the conjugate transpose,
the column space, the null space, the rank of the matrix A, and the orthogonal
projection onto the column space of A, respectively. Moreover, Id ∈ Matn×n(k)
will denote the identity matrix.

For an arbitrary (n × n)-matrix A with entries in a field k, the index of A,
i(A) ≥ 0, is the smallest non-negative integer such that rk(Ai(A)) = rk(Ai(A)+1).
The Drazin inverse of A is the unique solution that satisfies

Ai(A)+1 ·X = Ai(A), X ·A ·X = X, A ·X = X ·A,

and it is represented by AD. If i(A) ≤ 1, then AD is called the group inverse of A
and is denoted by A#.

For A ∈ Matm×n(C), if X ∈ Matn×m(C) satisfies

A ·X ·A = A, X ·A ·X = X, (A ·X)∗ = X ·A, (X ·A)∗ = X ·A,
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then X is called the Moore–Penrose inverse of A. This matrix is unique and it is
represented by A†. For details, see [4].

In 2010, Baksalary and Trenkler [3] introduced in the notion of the core inverse
of a matrix A ∈ Matn×n(C) with i(A) ≤ 1 as the unique matrix X ∈ Matn×n(C)
satisfying the conditions

A ·X = PR(A) and R(X) ⊆ R(A).

It is denoted by A # . Initially, it was presented as an alternative to the group
inverse. Firstly, they noted that this generalized inverse could be used to solve
certain linear systems and gained interest as it coincides with the Bott–Duffin
inverse PR(A) · [(A − Id) · PR(A) + Id]−1. The Bott–Duffin inverse occurs in the
solutions of some constrained systems of equations arising in electrical network
theory; see [4, Chapter 2, Section 10] and [6]. Ever since its appearance, the core
inverse and its applications have attracted a lot of researchers in the area; see, for
instance, [16], [15], [8], [9], [11], [12].

John Tate [24] introduced the notion of finite potent endomorphism. Let k be
an arbitrary field and let V be an arbitrary k-vector space. Let us now consider
an endomorphism φ of V . The ring of endomorphisms over the k-vector space V
will be denoted by Endk(V ). We say that φ is finite potent if φn(V ) is a finite-
dimensional vector subspace for some n. Tate used this operator in order to give
an intrinsic definition of abstract residue.

In [3], the authors studied some properties of the core inverse using the singular
value decomposition, and they used this inverse to define a partial order in the class
of square complex matrices of index one. In this paper, the core inverse and the
core order are extended to arbitrary vector spaces, in general infinite-dimensional
ones, endowed with an inner product over a field k = R or k = C, using finite
potent endomorphisms.

The article is organized as follows. Firstly, Section 2 is a gathering of results
that will be used later. Section 3 contains some new results related to the Moore–
Penrose inverse of a bounded finite potent endomorphism. Section 4 includes the
generalization of the theory related to the core inverse to arbitrary vector spaces,
following [3] as a guideline. However, the study here presented about the core
inverse is done with a different approach to the case of matrices. In particular,
we do not start by requiring our finite potent endomorphism to be of index less
than or equal to one. We start by deducing that when the core inverse of our
finite potent endomorphism exists, the endomorphism shall be of index less than
or equal to one (Proposition 4.2). From this previous fact and the definition of
the core inverse we deduce that the core inverse is also a unique finite potent
endomorphism of index less than or equal to one (Corollary 4.3). Further, the well-
known algebraic characterization of the core inverse, involving the group inverse
and the Moore–Penrose inverse is presented, as well as a geometric characterization.
Using the obtained geometric characterization, we further calculate the Moore–
Penrose inverse and the core inverse of the core inverse.

As an application of the previous theory, the core partial order is also gener-
alized to arbitrary vector spaces, namely, infinite-dimensional ones, using finite
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potent endomorphisms and this is included in Section 5. In the same paper in
which the core inverse was introduced [3], the core partial order for complex ma-
trices was extensively investigated. After relating the core order for finite potent
endomorphisms with the space pre-order, a characterization is derived in Theo-
rem 5.4. This is the key element to prove that the core order is indeed a partial
order on the set of finite potent endomorphisms of index less than or equal to one.
Finally, in Section 6 we introduce the so-called “general core order”, which is a
pre-order on the set of finite potent endomorphisms of arbitrary index. Moreover,
some conjectures are posed concerning this pre-order, possibly relating it with the
core-EP pre-order and, in general, relating the theory exposed here with the core-
EP inverse. It is worth noticing two final points. Every proof and result presented
can be specialized to finite square matrices over arbitrary ground fields. Finite po-
tent endomorphisms do not form an ideal of the endomorphisms. Namely, the sum
and the composition of two finite potent endomorphisms is not, in general, a finite
potent endomorphism. Therefore, the generalization presented here is not merely
a generalization from finite-dimensional vector spaces (finite square matrices) to
infinite-dimensional vector spaces, but it also carries the additional problems aris-
ing from the impossibility of using the usual ring structure of endomorphisms to
generalize the theory.

2. Preliminaries

This section is included for the sake of completeness.

2.1. Finite potent endomorphisms. Let k be an arbitrary field and let V be a
k-vector space. Let us now consider an endomorphism φ of V . We say that φ is
finite potent if φn(V ) is finite-dimensional for some n.

In 2007, M. Argerami, F. Szechtman and R. Tifenbach [1] showed that an en-
domorphism φ is finite potent if and only if V admits a φ-invariant decompo-
sition V = Uφ ⊕ Wφ such that φ|Uφ is nilpotent, Wφ is finite-dimensional and
φ|Wφ : Wφ

∼−→ Wφ is an isomorphism. Hence, this decomposition is unique. We
shall call this decomposition the φ-invariant AST decomposition of V .

Moreover, we shall call the nilpotency order of φ|Uφ the index of φ, denoted by
i(φ). One has that i(φ) = 0 if and only if V is a finite-dimensional vector space
and φ is an automorphism.

We shall remark that the sum and the composition of finite potent endomor-
phisms is not necessarily a finite potent endomorphism.

Basic examples of finite potent endomorphisms are all endomorphisms of a finite-
dimensional vector space, and finite-rank or nilpotent endomorphisms of infinite-
dimensional vector spaces.

For more details on the theory of finite potent endomorphisms, the reader is
referred to [18] and [19].

2.1.1. CN decomposition of a finite potent endomorphism. Let V be again an ar-
bitrary k-vector space. Given a finite potent endomorphism φ ∈ Endk(V ), there
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exists a unique decomposition φ = φ1 + φ2, where φ1, φ2 ∈ Endk(V ) are finite
potent endomorphisms satisfying

• i(φ1) ≤ 1;
• φ2 is nilpotent;
• φ1 ◦ φ2 = φ2 ◦ φ1 = 0.

Also, the following hold:

φ = φ1 ⇐⇒ Uφ = Kerφ ⇐⇒ Wφ = Imφ ⇐⇒ i(φ) ≤ 1. (2.1)

Moreover, if V = Wφ ⊕ Uφ is the AST decomposition of V induced by φ, then φ1
and φ2 are the unique linear maps such that

φ1(v) =
{
φ(v) if v ∈ Wφ,

0 if v ∈ Uφ,
and φ2(v) =

{
0 if v ∈ Wφ,

φ(v) if v ∈ Uφ.

2.2. Bounded finite potent endomorphisms on Hilbert spaces. In 2021, the
author of [21] studied the set of bounded finite potent endomorphisms on arbitrary
Hilbert spaces. Henceforth, this set will be denoted by Bfp(H).

Theorem 2.1 (Characterization of bounded finite potent endomorphisms [21, The-
orem 3.7]). Given a Hilbert space H and an endomorphism φ ∈ EndC(H), the
following conditions are equivalent:

• φ ∈ Bfp(H).
• H admits a decomposition H = Wφ ⊕ Uφ, where Wφ and Uφ are closed
φ-invariant subspaces of H, Wφ is finite-dimensional, φ|Wφ

is a homeo-
morphism of Wφ and φ|Uφ is a bounded nilpotent operator.

• φ has a decomposition φ = ψ+ϕ, where ψ is a bounded finite-rank operator,
ϕ is a bounded nilpotent operator and ψ ◦ ϕ = 0 = ϕ ◦ ψ.

2.2.1. The adjoint operator of a bounded finite potent endomorphism. Let us now
consider two inner product vector spaces (V, g) and (H, ḡ). If φ : V → H is a linear
map, a linear operator φ∗ : H → V is called the adjoint of φ when

g(φ∗(h), v) = ḡ(h, φ(v))

for all v ∈ V and h ∈ H. If φ ∈ Endk(V ), we say that φ is self-adjoint when φ = φ∗.
The existence and uniqueness of the adjoint φ∗ of a bounded (or equivalently a
continuous) operator on arbitrary Hilbert spaces is immediately deduced form the
Riesz Representation Theorem. Moreover, the adjoint of a bounded linear map is
also bounded. In [21, Section 4], the author studied the structure of the adjoint of
a bounded finite potent endomorphism. Let us recall some of the results presented
there. If φ ∈ Bfp(H), with H = Wφ ⊕ Uφ the AST decomposition induced by φ,
and φ = φ1 + φ2 the CN decomposition, then the adjoint operator φ∗ has the
following properties:

(I) φ∗ ∈ Bfp(H);
(II) i(φ∗) = i(φ);

(III) φ∗ = (φ1)∗ + (φ2)∗ is the CN decomposition of φ∗;
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(IV) If H = Wφ∗ ⊕Uφ∗ is the AST decomposition induced by φ∗ (notice that this
makes sense due to (I)), then one has that Wφ∗ = [Uφ]⊥ and Uφ∗ = [Wφ]⊥.

2.3. Generalized inverses. If A ∈ Matn×m(k) is a matrix with entries in an
arbitrary field k, a matrix A− ∈ Matm×n(k) is a {1}-inverse of A when AA−A = A,
and it is a {2}-inverse of A when A−AA− = A−. Moreover, we say that a matrix
A+ ∈ Matm×n(k) is a reflexive generalized inverse of A when A+ is a {1}-inverse
of A and A is a {1}-inverse of A+, that is, AA+A = A and A+AA+ = A+.
Similarly, given two k-vector spaces V and W and a linear map φ : V → W , we
will say thay a morphism φ− : W → V is a {1}-inverse of φ when φ ◦ φ− ◦ φ = φ,
and it is a {2}-inverse of φ when φ− ◦ φ ◦ φ− = φ−. Similarly, considering again
a linear map φ : V → W , a linear map φ+ : W → V is a reflexive generalized
inverse of φ when φ+ is a {1}-inverse of φ and φ is a {1}-inverse of φ+. Given any
linear operator φ, we will denote by Xφ(1), Xφ(2), Xφ(1, 2) the sets of {1}-inverses,
{2}-inverses, and reflexive generalized inverses of φ, respectively.

2.4. Group inverse of finite potent endomorphisms. Let V be an arbitrary
k-vector space and let φ ∈ Endk(V ) be a finite potent endomorphism of V . We
say that a linear map φ# ∈ Endk(V ) is a group inverse of φ when it satisfies the
following properties:

• φ ◦ φ# ◦ φ = φ;
• φ# ◦ φ ◦ φ# = φ#;
• φ# ◦ φ = φ ◦ φ#.

According to [20, Lemma 3.4], we know that if there exists a group inverse
φ# ∈ Endk(V ), then i(φ) ≤ 1. Moreover, [20, Theorem 3.5] shows that φD = φ#

is the unique group inverse of φ, where φD is its Drazin inverse.
The group inverse φ# satisfies the following properties:

• (φ#)# = φ;
• φ = φ# if and only if (φ|Wφ )2 = Id|Wφ ;
• if n ∈ Z+, then (φn)# = (φ#)n.

2.5. Moore–Penrose inverse of a bounded linear map. Let (V, g) and (H, ḡ)
be inner product spaces over k, with k = C or k = R.

Definition 2.2. Given a linear map φ : V → H, we say that φ is admissible for the
Moore–Penrose inverse when V = Ker(φ) ⊕ [Ker(φ)]⊥ and H = Im(φ) ⊕ [Im(φ)]⊥.

According to [5, Theorem 3.12], if (V, g) and (H, ḡ) are inner product spaces
over k, then φ : V → H is a linear map admissible for the Moore–Penrose inverse
if and only if there exists a unique linear map φ† : H → V such that

(I) φ† is a reflexive generalized inverse of φ;
(II) φ† ◦ φ and φ ◦ φ† are self-adjoint, that is,

(a) g([φ† ◦ φ](v), v′) = g(v, [φ† ◦ φ](v′)),
(b) ḡ([φ ◦ φ†](h), h′) = ḡ(h, [φ ◦ φ†](h′))
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for all v, v′ ∈ V and h, h′ ∈ H. The operator φ† is called the Moore–Penrose
inverse of φ and it is the unique linear map satisfying

φ†(h) =
{

(φ|[Ker(φ)]⊥)−1(h) if h ∈ Im(φ),
0 if h ∈ [Im(φ)]⊥.

The Moore–Penrose inverse φ† : H → V also satisfies the following properties:
• φ† is also admissible for the Moore–Penrose and (φ†)† = φ;
• if φ ∈ Endk(V ) and φ is an isomorphism, then φ† = φ−1;
• φ† ◦ φ = P[Ker(φ)]⊥ ;
• φ ◦ φ† = PIm(φ);

where P[Ker(φ)]⊥ and PIm(φ) are the projections induced by the decompositions
V = Ker(φ) ⊕ [Ker(φ)]⊥ and H = Im(φ) ⊕ [Im(φ)]⊥, respectively.

2.5.1. Moore–Penrose inverse of a bounded linear map. Finally, let us recall some
properties of the Moore–Penrose inverse of a bounded linear map between two
Hilbert spaces. Let H1 and H2 two Hilbert spaces. Given a linear map φ : H1 → H2
that is admissible for the Moore–Penrose inverse, that is, H1 = Ker(φ)⊕ [Ker(φ)]⊥
and H2 = Im(φ) ⊕ [Im(φ)]⊥, the following is well known.

Lemma 2.3. If φ ∈ B(H1,H2), then φ is admissible for the Moore–Penrose in-
verse if and only if Im(φ) is a closed subspace of H1.

Also, it is well known that
• if φ ∈ B(H1,H2) is admissible for the Moore–Penrose inverse, then φ† ∈
B(H2,H1);

• if φ ∈ B(H1,H2) is admissible for the Moore–Penrose inverse, then φ∗ is
also admissible for the Moore–Penrose inverse and (φ∗)† = (φ†)∗.

From the properties of the Moore–Penrose inverse of a linear map, if φ ∈ B(H1,H2)
with Im(φ) being a closed subspace of H2, one has that

• φ∗ ◦ (φ∗)† = P[Ker(φ)]⊥ ;
• (φ∗)† ◦ φ∗ = PIm(φ);

where P[Ker(φ)]⊥ and PIm(φ) are the projections induced by the decompositions
H1 = Ker(φ) ⊕ [Ker(φ)]⊥ and H2 = Im(φ) ⊕ [Im(φ)]⊥, respectively. Moreover, the
following usual relations between the adjoint and the Moore–Penrose hold.

Lemma 2.4. If φ ∈ B(H1,H2) is such that Im(φ) is a closed subspace of H2, then
one has:

(I) φ∗ ◦ φ ◦ φ† = φ∗;
(II) φ† ◦ φ ◦ φ∗ = φ∗;

(III) (φ∗)† ◦ φ∗ ◦ φ = φ;
(IV) φ ◦ φ∗ ◦ (φ∗)† = φ.
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2.6. Space pre-order. The space pre-order was introduced in [14, Section 3.2] as
a tool to study most of the matrix partial orders that include {1}-inverses on their
definitions. In [23], the definition of space pre-order was extended to the class of
bounded linear operators on Banach spaces.

Definition 2.5. Let φ,ψ ∈ Endk(B) be two bounded linear operators over a
Banach space B. Then φ is said to be below ψ under the space pre-order if Im(φ) ⊆
Im(ψ) and Ker(ψ) ⊆ Ker(φ) (or equivalently Im(φ∗) ⊆ Im(ψ∗)). We will denote
the space pre-order by <s and we will write φ <s ψ whenever φ is below ψ under
the space pre-order.

3. On the Moore–Penrose inverse of a bounded finite
potent operator

The aim of this section is to include some new results related to the Moore–
Penrose inverse of a bounded finite potent endomorphism that are not present in
literature and that will be used in the rest of the paper.

3.1. On the closedness of the image of a bounded finite potent operator.
Given a Hilbert space H, it is well known that the closedness of the image of an
operator φ is related to the solvability of the operator equation φx = y. Moreover,
the closedness of Im(φ) is equivalent to φ being relatively regular, that is, for
φ ∈ B(H) admitting a bounded {1}-inverse φ− ∈ B(H), i.e., φ ◦ φ− ◦ φ = φ, so
that if φx = y can be solved then x = φ−y is a solution. For details, reader is
directed to [10] and [17]. There are a lot of important applications of the closedness
of the image in perturbation theory and in the context of the spectral study of
differential equations; see, for instance, [7]. For an interested reader let us just
point out that the study of the closedness of the image is dealt within Banach
spaces too, with several applications, for example, in [2]. Now notice that in [5],
the authors pose the study of the Moore–Penrose inverse of a bounded finite potent
operator φ ∈ Bfp(H) by adding the so-called admissible (for the Moore–Penrose)
condition on φ (Definition 2.2), and proving Lemma 2.3 for bounded finite potent
operators. However, being a bounded finite potent operator could somehow imply
any condition on the closedness of the image. This question has not been studied in
the framework of bounded finite potent endomorphisms, and the author considers
that it is important to determine whether the admissibility condition is redundant
or necessary.

We then devote this short section to solving this question. Precisely, a counterex-
ample is given, showing that bounded finite potent operators do not have closed
image in general, that is, they are not relatively regular operators and therefore, if
φ ∈ Bfp(H), then φ is not necessarily admissible for a Moore–Penrose inverse.

Counterexample 3.1. If for every n ∈ N we denote by en the sequence

en = (0, . . . ,
(n)
1 , 0, . . . ),

then the family (of sequences) {en}n∈N is a (Schauder) basis of ℓp, 1 ≤ p < ∞.
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Now, let us consider the following operator:
φ : ℓ2 → ℓ2

en 7→

0 if n is odd,
en+1

n+ 1 if n is even,

that is, φ is the composition of the operator consisting of multiplying by the se-
quence (0, 1

3 , 0,
1
5 , 0,

1
7 , 0 . . . ) and then the operator of right traslation (or unilateral

shift operator), which are both continuous. In fact, φ is continuous and compact,
and it is clearly a bounded (continuous) finite potent operator (it is nilpotent).

Notice that φ2 = 0, so Im(φ)2 is closed. However, Im(φ) is not closed: the vec-
tors with a finite number of non-null components (0, 0, 1

3 , 0,
1
5 , 0, . . . ,

1
2n+1 , 0, 0, 0, . . . )

for n ≥ 1 are in the image but their limit, in ℓ2, is not. Indeed, recall that compact
operators do not have closed image unless they have finite rank.

Later in this article, we will be interested in finite potent endomorphisms with
index less than or equal to one. So let us make some remarks on them.

Despite the previous counterexample, we shall point out that in the case of a
finite potent endomorphism of index less than or equal to one over any inner product
vector space, we shall not add any hypothesis in order to obtain the admissibility
for the Moore–Penrose inverse. Notice that if (V, g) is any inner product vector
space over k = R or k = C, and φ ∈ Endk(V ) with i(φ) ≤ 1, then the AST
decomposition it induces is V = Wφ ⊕ Uφ = Im(φ) ⊕ Ker(φ), and by definition
Wφ = Im(φ) is a finite-dimensional k-vector subspace. Therefore, Im(φ) is a closed
subspace and V also admits the decomposition V = Im(φ) ⊕ [Im(φ)]⊥. In short:

Lemma 3.2. Let (V, g) be any inner product vector space over k = R or k = C,
and let φ ∈ Endk(V ) be any finite potent endomorphism with i(φ) ≤ 1. Then Im(φ)
is a closed subspace of V .

Let H be a Hilbert space and let φ ∈ B(H) be a bounded finite potent endomor-
phism with i(φ) ≤ 1. It is already known that φ† is bounded (if φ is) and that, in
general, it needs not be finite potent. However, it is natural to ask whether this is
changed by φ being of index less than or equal to one.

Proposition 3.3. Given a bounded finite potent endomorphism φ ∈ B(H) with
i(φ) ≤ 1, it follows that φ† is also a bounded finite potent endomorphism with
i(φ†) ≤ 1.

Proof. This result is a consequence of the relationship between the Moore–Penrose
inverse and the adjoint operator. Recall that if φ is a bounded finite potent en-
domorphism, so is φ∗ and moreover i(φ) = i(φ∗) (see Section 2.2.1). Therefore
i(φ∗) ≤ 1, so V = Wφ∗ ⊕ Uφ∗ = Im(φ∗) ⊕ Ker(φ∗). The claim is proved as
Ker(φ†) = Ker(φ∗) and Im(φ†) = Im(φ∗), both being closed φ†-invariant sub-
spaces of H with V = Im(φ†) ⊕ Ker(φ†). In fact, (φ†)|Im(φ†)

is a homeomorphism
with Im(φ†) being finite-dimensional and (φ†)|Ker(φ†)

a bounded nilpotent opera-
tor. □
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4. Core inverse of finite potent endomorphisms

The study of the core inverse can be approached in two different ways, either as
a restriction of the left-Drazin–Moore–Penrose inverse (“lDMP”) to index 1 endo-
morphisms, or using Baksalary and Trenkler’s original definition (see [3]). Notice
that F. Pablos [22] studied the lDMP inverse of finite potent endomorphisms, and
therefore we shall use the other approach to provide a new view of the theory with
new results. That is, we will start by proving the equivalence of Baksalary and
Trenkler’s definition with the restriction of lDMP inverses to index 1 endomor-
phisms, and later we shall study the properties that are not shared between core
inverses and lDMP inverses in general, and thus are not already present in [22].
We must emphasize that these new properties are a consequence of the well-known
equality φD = φ# when i(φ) = 1 (recall the obvious fact that φD ∈ Xφ(2) in
general and φD = φ# ∈ Xφ(1, 2) when i(φ) = 1). All this shall be done within the
framework of bounded finite potent endomorphisms (over arbitrary inner product
spaces over a field) that are admissible for the Moore–Penrose inverse.

Let (V, g) be an inner product vector space over k, with k = C or k = R. In
particular, V can be an infinite-dimensional vector space.
Definition 4.1. Given a finite potent endomorphism φ ∈ Endk(V ) admissible for
the Moore–Penrose inverse, we say that a linear map φ # ∈ Endk(V ) is a core
inverse of φ when

• φ ◦ φ # = PIm(φ);
• Imφ # ⊆ Imφ;

where PIm(φ) is the orthogonal projection induced by the decomposition

V = Im(φ) ⊕ [Im(φ)]⊥.
Using the above-mentioned properties of the Moore–Penrose inverse, the two

conditions referred to in Definition 4.1 can be replaced by the following:
• φ ◦ φ # = φ ◦ φ†;
• PIm φ ◦ φ # = φ # , or equivalently φ ◦ φ† ◦ φ # = φ # .

Moreover, by substituting the first condition of the definition into the second,
one gets

(φ ◦ φ # ) ◦ φ # = φ ◦ (φ # )2 = φ # , (4.1)
and, by iteration, we obtain

φ # = φn−1 ◦ (φ # )n for every n > 1. (4.2)
Proposition 4.2. Let φ ∈ Endk(V ) be a finite potent endomorphism admissible
for the Moore–Penrose inverse. If φ # exists, then i(φ) ≤ 1.
Proof. Firstly notice that from φ ◦φ # = φ ◦φ† and φ ◦φ† ◦φ # = φ # one deduces
that

φ ◦ φ # ◦ φ = φ,

that is, φ # ∈ Xφ(1). Moreover, using (4.2) and substituting it on φ ◦ φ # ◦ φ = φ,
one gets

φ = φn ◦ (φ # )n ◦ φ for every n > 1.
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Therefore, Im(φ) ⊆ Im(φn) for every n > 1, and as the other inclusion is true for
every linear operator we conclude that

Im(φ)i(φ) = Wφ = Im(φ),
and therefore i(φ) ≤ 1 (recall (2.1)), as we wanted to prove. □

Corollary 4.3. Let φ ∈ Endk(V ) be a finite potent endomorphism. If φ # exists,
then φ # is a finite potent endomorphism with i(φ # ) ≤ 1. Moreover, φ # is unique.

Proof. The first statement is a direct consequence of Proposition 4.2 and Defini-
tion 4.1, as Wφ = Im(φ) is finite-dimensional by definition of the AST decompo-
sition and Im(φ # ) ⊆ Im(φ). Now, the second statement is a consequence of the
first statement and the equation shown in (4.2). To wit, as φ # is finite potent, let
us consider u ∈ U

φ # . Then, if i(φ # ) = m, we have

φ # (u) = φm−1(φ # )m(u) = 0
(recall that, by definition of the AST decomposition, (φ # )m

|U
φ

#
= 0). Hence,

Ker(φ # ) = U
φ #

(as the other inclusion is always true for any finite potent endomorphism), and by
(2.1) we conclude that i(φ # ) ≤ 1.

In order to see the uniqueness, let us suppose that there exist some φ
#

1 , φ
#

2
satisfying Definition 4.1. Then

φ ◦ φ #

1 = φ ◦ φ† = φ ◦ φ #

2 ,

with
Im(φ #

1 ) ⊆ Im(φ) and Im(φ #

2 ) ⊆ Im(φ).
Hence,

Im(φ #

1 − φ
#

2 ) ⊆ Ker(φ);

Im(φ #

1 − φ
#

2 ) ⊆ Im(φ);
so we have

Im(φ #

1 − φ
#

2 ) ⊆ Ker(φ) ∩ Im(φ) = {0};

as i(φ) ≤ 1, we conclude that φ #

1 = φ
#

2 . □

Let us now check the equivalence between Definition 4.1 and the restriction
to index 1 of the definition of the left-Drazin–Moore–Penrose inverse ([22, Theo-
rem 3.2]). In fact, this result is the generalization to arbitrary vector spaces of [3,
Theorem 1 (i)]. This will give a purely algebraic definition of the core inverse of a
finite potent endomorphism.

Theorem 4.4 (Algebraic characterization of the core inverse). If φ ∈ Endk(V ) is
a finite potent endomorphism with i(φ) ≤ 1, then

φ # = φ# ◦ φ ◦ φ†.
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Proof. Firstly, let us prove that Definition 4.1 implies the above expression of φ # .
Considering the decomposition induced in V = Im(φ) ⊕ [Im(φ)]⊥, one has that

(φ# ◦ φ ◦ φ†)|Im(φ) = (φ#)|Im(φ) = (φ|Im(φ))
−1.

From the equality φ ◦ φ # = φ ◦ φ†, one deduces that
(φ ◦ φ # )|Im(φ) = (φ ◦ φ†)|Im(φ) = Id|Im(φ) ,

and therefore, as i(φ) ≤ 1,

(φ # )|Im(φ) = (φ|Im(φ))
−1.

Hence,
(φ # )|Im(φ) = (φ# ◦ φ ◦ φ†)|Im(φ) .

On the other hand, by the expression of the Moore–Penrose inverse,
(φ ◦ φ # )|[Im(φ)]⊥

= (φ ◦ φ†)|[Im(φ)]⊥
= 0,

so (φ # )|[Im(φ)]⊥
∈ Ker(φ). Therefore,

(φ # )|[Im(φ)]⊥
= 0

because Im(φ # ) ⊆ Im(φ) and Im(φ) ∩ Ker(φ) = {0} as i(φ) ≤ 1. Directly,

(φ# ◦ φ ◦ φ†)|[Im(φ)]⊥
= 0.

Conversely, if φ # = φ# ◦ φ ◦ φ†, it is straightforward that
φ ◦ φ # = φ ◦ (φ# ◦ φ ◦ φ†) = φ ◦ φ†,

and it is clear that Im(φ # ) = Im(φ#◦φ◦φ†) ⊆ Im(φ#) = Wφ = Im(φ) as i(φ) ≤ 1,
so the statement is proved. □

Theorem 4.5 (Geometric characterization of the core inverse). Let φ ∈ Endk(V )
be a finite potent endomorphism with i(φ) ≤ 1. Then φ # is characterized by

φ # (v) =
{

(φ|Im(φ))−1(v) if v ∈ Im(φ),
0 if v ∈ [Im(φ)]⊥.

Proof. As in this hypothesis Im(φ) is closed (Lemma 3.2), V = Im(φ) ⊕ [Im(φ)]⊥.
If v ∈ Im(φ), then

φ # (v) = φ#φφ†(v) = φ#(v) = (φ|Im(φ))
−1(v),

which makes sense because φ|Im(φ) = φ|Wφ is an automorphism as i(φ) ≤ 1. On the
other hand, if v̄ ∈ [Im(φ)]⊥ then

φ # (v̄) = φ#φφ†(v̄) = 0.
Now, let us suppose that there exists φ̃ ∈ Endk(V ) such that

φ̃(v) =
{

(φ|Im(φ))−1(v) if v ∈ Im(φ),
0 if v ∈ [Im(φ)]⊥.
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Notice that if v ∈ Im(φ) then

φφ̃(v) = v = φφ†(v).

If v̄ ∈ [Im(φ)]⊥, we have
φφ̃(v̄) = 0 = φφ†(v̄).

Therefore,
φ ◦ φ̃ = φ ◦ φ†.

Directly from the expression of φ̃, one deduces that Im(φ̃) = Im(φ), and therefore
Definition 4.1 is satisfied. □

Theorem 4.6. Let us consider a finite potent endomorphism φ ∈ Endk(V ). The
core inverse of φ exists if and only if i(φ) ≤ 1.

Proof. Let us suppose that the core inverse of φ exists. Then it was already proved
in Proposition 4.2 that i(φ) ≤ 1. Conversely, if i(φ) ≤ 1, then V = Wφ ⊕ Uφ =
Im(φ) ⊕ Ker(φ) and Im(φ) is a finite-dimensional vector subspace and hence it is
a closed subspace of V . In these conditions, V = Im(φ) ⊕ [Im(φ)]⊥. Therefore, we
can now copy the reasoning presented when proving the converse of Theorem 4.5
to show that φ # exists. □

Corollary 4.7. Let φ ∈ Endk(V ) be a finite potent endomorphism with i(φ) ≤ 1.
Then φ # is also admissible for the Moore–Penrose inverse. Moreover,

(φ # )†(v) =
{
φ(v) if v ∈ Im(φ),
0 if v ∈ [Im(φ)]⊥.

Proof. As φ is admissible for the Moore–Penrose inverse, we have V = Im(φ) ⊕
[Im(φ)]⊥. Clearly, since Im(φ # ) = Im(φ# ◦ φ ◦ φ†) = Im(φ), one deduces that

V = Im(φ # ) ⊕ [Im(φ) # ]⊥ = Im(φ) ⊕ [Im(φ)]⊥.

For the second statement, bearing in mind that Ker(φ # ) = Ker(φ# ◦ φ ◦ φ†) =
[Im(φ)]⊥, by the characterization of the Moore–Penrose inverse one has

(φ # )†(v) =
{

((φ # )|
[Ker(φ # )]⊥

)−1(v) if v ∈ Im(φ # ),

0 if v ∈ [Im(φ # )]⊥,

which, using the above relations, can be rewritten as

(φ # )†(v) =
{

((φ # )|
[Im(φ # )]

)−1(v) if v ∈ Im(φ),

0 if v ∈ [Im(φ)]⊥.

Finally, since (φ # )| Im(φ) = (φ| Im(φ))−1, as stated in Theorem 4.5, we obtain

(φ # )†(v) =
{
φ(v) if v ∈ Im(φ),
0 if v ∈ [Im(φ)]⊥.

□
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Corollary 4.8. If φ ∈ Endk(V ) is a finite potent endomorphism with i(φ) ≤ 1,
then

(φ # ) # = (φ # )†.

Proof. Firstly we shall point out that this statement makes sense in virtue of Corol-
lary 4.3, that is, i(φ # ) ≤ 1.

For any v ∈ V , by Theorem 4.5,

(φ # ) # (v) =
{

((φ # )|
Im(φ # )

)−1(v) if v ∈ Im(φ # ),

0 if v ∈ [Im(φ # )]⊥,

as Im(φ # ) = Im(φ), and bearing in mind that

(φ # )|Im(φ) = (φ|Im(φ))
−1,

we can rewrite the above expression as

(φ # ) # (v) =
{

((φ|Im(φ))−1)−1(v) if v ∈ Im(φ),
0 if v ∈ [Im(φ)]⊥.

Hence, we conclude by Corollary 4.7. □

Remark 4.9. Notice that the previous propositions can be abbreviated as

(φ # ) # = (φ # )† = φ ◦ PIm(φ),

which is coherent with [3, Theorem 1 (iii)]. Moreover, we highlight that (φ # )† is
a finite potent endomorphism; in general, the Moore–Penrose inverse of a finite
potent endomorphism is not finite potent. This is deduced directly from the fact
that

((φ # )†)n = (φ ◦ PIm(φ))n = φn ◦ PIm(φ).

Corollary 4.10. Let φ ∈ Endk(V ) be a finite potent endomorphism with i(φ) ≤ 1.
Then φ # is EP. Moreover, (φ # )† is also EP.

Proof. By the expression obtained in Corollary 4.7, it is straightforward to check
that

φ # ◦ (φ # )† = (φ # )† ◦ φ # .

The last statement is deduced from the fact that for any finite potent endomorphism
admissible for the Moore–Penrose inverse, ((φ)†)† = (φ). □

Corollary 4.11. Let φ ∈ Endk(V ) be a finite potent endomorphism with i(φ) ≤ 1.
Then

(φ # )† = (φ # )# = (φ # )D.

Proof. This is a direct consequence of [20, Proposition 3.13], which states that a
finite potent endomorphism admissible for the Moore–Penrose inverse is EP if and
only if φ# = φ†. The other equality holds due to the well-known fact that φD = φ#

when i(φ) ≤ 1. □
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Corollary 4.12. Let φ ∈ Endk(V ) be a finite potent endomorphism with i(φ) ≤ 1.
Then

• φ # ∈ Xφ(1, 2);
• (φ # )2 ◦ φ = φ#;
• (φ # )m = (φm) # ;
• φ # ◦ φ = φ# ◦ φ.

Proof. The first statement is straightforward from the algebraic expression ob-
tained for the core inverse in Theorem 4.4. The second one can be proved from the
definitions, using the commutativity of the group inverse:

(φ # )2 ◦ φ = φ # ◦ φ# ◦ φ ◦ φ† ◦ φ = φ # ◦ φ# ◦ φ = φ # ◦ φ ◦ φ#

= φ# ◦ φ ◦ φ† ◦ φ ◦ φ# = φ# ◦ φ ◦ φ#

= φ#.

For the third claim, let V = Wφ ⊕Uφ = Im(φ)⊕Ker(φ) be the AST decomposition
of V induced by φ in our conditions. For all m ∈ Z+, one has that Wφm = Wφ

and Uφm = Uφ. Therefore, the claim is deduced from the fact that
([φm]|Im(φ))

−1 = ([(φ|Im(φ))]
−1)m.

The last equality is straightforward: φ # ◦ φ = φ# ◦ φ ◦ φ† ◦ φ = φ# ◦ φ. □

Lemma 4.13. Let φ ∈ Endk(V ) be a finite potent endomorphism with i(φ) ≤ 1.
Then

φ # = φ# if and only if φ is EP.

Proof. If φ # = φ#, then in particular Ker(φ # ) = Ker(φ#), so [Im(φ)]⊥ = Ker(φ).
As Im(φ) is closed in our hypothesis, taking orthogonals yields, as desired, Im(φ) =
[Ker(φ)]⊥ = Im(φ∗).

Conversely, if Im(φ) = Im(φ∗), then Im(φ) = [Ker(φ)]⊥ and therefore [Im(φ)]⊥ =
Ker(φ), so the claim is deduced by the expressions of both the core inverse and the
group inverse; recall that

φ # (v) =
{

(φ|Im(φ))−1 if v ∈ Im(φ),
0 if v ∈ [Im(φ)]⊥,

and

φ#(v) =
{

(φ|Im(φ))−1 if v ∈ Im(φ),
0 if v ∈ Ker(φ),

as i(φ) ≤ 1. □

In a similar way to [3, Theorem 2], let us highlight some properties of the core
inverse.

Proposition 4.14. Let φ ∈ Endk(V ) be a finite potent endomorphism with i(φ) ≤ 1.
Then:

(I) φ # = 0 if and only if φ = 0;
(II) φ # = PIm(φ) if and only if φ2 = φ;
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(III) φ # = φ† if and only if φ is EP;
(IV) φ # = φ if and only if φ3 = φ and φ is EP.

Proof. For (I), notice that φ # = 0 if and only if φ# ◦ PIm(φ) = 0. Pre-composing
and post-composing with φ one deduces that 0 = φ ◦ φ# ◦ φ = φ. Conversely, if
φ = 0, then it follows directly from Definition 4.1 that φ # = 0.

Statement (II) follows from the fact that φ2 = φ if and only if φ|Im(φ) = Id|Im(φ) .
The proof of (III) is analogous to the one shown in Lemma 4.13.
Claim (IV) is the restriction to index 1 of [22, Proposition 3.14]. □

4.1. Some remarks on the core inverse for bounded finite potent endo-
morphisms over Hilbert spaces. Let us now include the theorem corresponding
to [26, Theorem 2.1] in the framework of our theory. Namely, we will consider H
as a Hilbert space so that the adjoint operator of a bounded finite potent endo-
morphism is well defined.

Firstly, let us point out that, from the algebraic characterization of the core
inverse deduced in Theorem 4.4, one immediately obtains that φ # is a continu-
ous (bounded) finite potent operator, as it is the composition of three continuous
operators.

Theorem 4.15. If φ ∈ Bfp(H) with i(φ) ≤ 1, then the core inverse φ # of φ is the
unique linear operator satisfying

(I) φ ◦ φ # ◦ φ = φ;
(II) φ ◦ (φ # )2 = φ # ;

(III) (φ ◦ φ # )∗ = φ ◦ φ # .

Proof. Let us check that the operator from Definition 4.1 satisfies these three con-
ditions. Clearly:

φ ◦ φ # ◦ φ = φ ◦ φ† ◦ φ = φ.

The second condition is proved in the same way that the reasoning above (4.1),
substituting into φ # = φ ◦ φ† ◦ φ # the equality φ ◦ φ # = φ ◦ φ†, one gets

φ ◦ (φ # )2 = φ # .

Finally, the third condition is a direct consequence of the definition of the Moore–
Penrose inverse, to wit:

(φ ◦ φ # )∗ = (φ ◦ φ†)∗ = φ ◦ φ† = φ ◦ φ # .

Finally, if there is any endomorphism φ̂ satisfying the three conditions in the state-
ment, let us check that Definition 4.1 holds for it. From condition (II) we directly
deduce that

Im(φ̂) = Im(φ ◦ (φ̂)2) ⊆ Im(φ).
From (I) we deduce that

(φ ◦ φ̂)|Im(φ) = Id|Im(φ) = (φ ◦ φ†)|Im(φ) .

From (III), it is clear that
(φ ◦ φ̂)∗ = (φ̂)∗ ◦ φ∗ = φ ◦ φ̂.
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Therefore,
(φ ◦ φ̂)|[Im(φ)]⊥

= (φ ◦ φ̂)|Ker(φ∗) = ((φ̂)∗ ◦ φ∗)|Ker(φ∗) = 0 = (φ ◦ φ†)|[Im(φ)]⊥
.

Adding all up,
φ ◦ φ̂ = φ ◦ φ†,

and both conditions of Definition 4.1 hold. Once the equivalence with Definition 4.1
has been proved, uniqueness is proved in the same way as in Corollary 4.3. □

Let us calculate the core inverse of the Moore–Penrose inverse of a bounded
finite potent endomorphism of index less than or equal to one.

Proposition 4.16. If φ ∈ Bfp(H) with i(φ) ≤ 1, then

(φ†) # = (φ†)# ◦ PIm(φ†).

Proof. Firstly notice that this statement makes sense due to Proposition 3.3. By
direct computation,

(φ†) # (v) =
{

((φ†)|Im(φ†)
)−1(v) if v ∈ Im(φ†),

0 if v ∈ [Im(φ†)]⊥,
and bearing in mind the characterization of the Moore–Penrose inverse and that
[Im(φ†)]⊥ = [Im(φ∗)]⊥ = Ker(φ), this can be expressed as

(φ†) # (v) =
{

((φ)|[Ker(φ)]⊥
)(v) if v ∈ Im(φ†),

0 if v ∈ Ker(φ),
from where the claim is deduced. □

Proposition 4.17. Given φ ∈ Bfp(H) with i(φ) ≤ 1, we have that

φ # = φ∗ if and only if φ ◦ φ∗ ◦ φ = φ and φ is EP.

Proof. If φ # = φ∗, then since φ ◦ φ # ◦ φ = φ the first claim is clear. Moreover,
Im(φ # ) = Im(φ) = Im(φ∗). Conversely, as φ ◦ φ∗ ◦ φ = φ and i(φ) ≤ 1, one has
that

(φ∗)|Im(φ) = (φ|Im(φ))
−1 = (φ # )|Im(φ) ,

by Theorem 4.5. As Ker(φ∗) = [Im(φ)]⊥, we conclude that

(φ∗)|[Im(φ)]⊥
= 0 = (φ # )|[Im(φ)]⊥

.

Therefore, we obtain φ∗ = φ # , as desired. □

To conclude this section, let us generalize [3, Theorem 3] to our case.

Theorem 4.18. If φ ∈ Bp(H) with i(φ) ≤ 1, then the following are equivalent:
(I) φ is EP;

(II) (φ # ) # = φ;
(III) φ # ◦ φ = φ ◦ φ # ;
(IV) (φ†) # = φ;
(V) (φ # )† = (φ†)†.
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Proof. Firstly, let us check that (I) implies (II). Since φ is EP, we have φ ◦ φ† =
φ† ◦ φ. Therefore,

φ ◦ PIm(φ) = φ ◦ (φ ◦ φ†) = φ ◦ (φ† ◦ φ) = φ,

and we conclude by Corollary 4.8.
Conversely, let us see that (II) implies (I). By the expression obtained in Corol-

lary 4.8, it is clear that (φ # ) # = φ if and only if [Im(φ)]⊥ = Ker(φ), that is, if
Ker(φ∗) = Ker(φ), which is equivalent to φ being EP.

That (I) occurs if and only if (III) occurs was proved in Lemma 4.13.
To see that (I) happens if and only if (IV), recall that Im(φ†) = Im(φ∗). By the

expression obtained in Proposition 4.16, one deduces that the equivalence occurs
if and only if Im(φ∗) = Im(φ).

Finally, in a manner similar to the previous equivalences, the equivalence be-
tween (IV) and (V) is deduced by bearing in mind the expressions obtained both in
Corollary 4.7 and Proposition 4.16. The equivalence holds if and only if [Im(φ)]⊥ =
Ker(φ∗), that is, Ker(φ) = Ker(φ∗). □

5. Core-partial order for finite potent endomorphisms

Let (V, g) be an arbitrary inner product vector space over k = R or k = C.
Henceforth, we will denote by Endfp

k (V )≤1 the set of finite potent endomorphisms
on V of index less than or equal to 1.

Definition 5.1. Let φ,ψ ∈ Endfp
k (V )≤1. We will say that φ is under ψ for the

core order, denoted by φ ≤ # ψ, when

φ ◦ φ # = ψ ◦ φ #

φ # ◦ φ = φ # ◦ ψ.

Lemma 5.2. Let φ,ψ ∈ Endfp
k (V )≤1. If φ≤ # ψ, then

• Im(φ) ⊆ Im(ψ);
• Ker(ψ) ⊆ Ker(φ).

Proof. Recall that for any φ− ∈ Xφ(1), one has that Im(φ) = Im(φ ◦ φ−) and
Ker(φ) = Ker(φ− ◦ φ). Then, the claims are deduced from Corollary 4.12 and
Definition 5.1:

Im(φ) = Im(φ ◦ φ # ) = Im(ψ ◦ φ # ) ⊆ Im(ψ);

Ker(ψ) ⊆ Ker(φ # ◦ ψ) = Ker(φ # ◦ φ) = Ker(φ). □

Corollary 5.3. Let φ,ψ ∈ Endfp
k (V )≤1. If φ≤ # ψ, then φ <s ψ, where <s denotes

the space pre-order (Section 2.6).

Theorem 5.4 (Characterization of the core order). Let φ,ψ ∈ Endfp
k (V )≤1. If

V = Wφ ⊕ Uφ = Im(φ) ⊕ Ker(φ) is the AST decomposition of V , then

φ ≤ # ψ if and only if φ|Im(φ) = ψ|Im(φ) and ψ|Ker(φ) ⊆ [Im(φ)]⊥.

Rev. Un. Mat. Argentina, Vol. 69, No. 1 (2026)



220 DIEGO ALBA ALONSO

Proof. Notice that if φ ◦ φ # = ψ ◦ φ # , then

φ|Im(φ) = ψ|Im(φ) .

On the other hand, as (φ # ◦ φ)|Ker(φ) = 0 = (φ # ◦ ψ)|Ker(φ) , we have

ψ|Ker(φ) ⊆ Ker(φ # ) = [Im(φ)]⊥.

Conversely, let us suppose that both conditions in the statement hold and let us
prove that the definition of the core order is satisfied. On one hand,

(φ ◦ φ # )|[Im(φ)]⊥
= 0 = (ψ ◦ φ # )|[Im(φ)]⊥

since Ker(φ # ) = [Im(φ)]⊥. Now, as φ|Im(φ) ∈ Autk(Im(φ)), we have

ψ ◦ (φ|Im(φ))
−1 = φ ◦ (φ|Im(φ))

−1.

Therefore,
(φ ◦ φ # )|Im(φ) = 0 = (ψ ◦ φ # )|Im(φ)

and we obtain
φ ◦ φ # = ψ ◦ φ # .

Moreover, (φ # ◦ φ)|Im(φ) = (φ # ◦ ψ)|Im(φ) . Since ψ|Ker(φ) ⊆ [Im(φ)]⊥ = Ker(φ # ),
we have

(φ # ◦ ψ)|Ker(φ) = 0 = (φ # ◦ φ)|Ker(φ)

and therefore φ # ◦ φ = φ # ◦ ψ, as we wanted to prove. □

Corollary 5.5. Let φ,ψ ∈ Endfp
k (V )≤1 such that φ ≤ # ψ. If φ is EP, then ψ

leaves the AST decomposition of φ invariant.

Proof. It follows from Theorem 5.4 and the fact that [Im(φ)]⊥ = Ker(φ) if φ is
EP. □

Lemma 5.6. Let φ,ψ ∈ Endfp
k (V )≤1. If φ ≤ # ψ, then

Ker(φ) = Ker(ψ) ⊕ (Im(ψ) ∩ Ker(φ)).

Proof. This follows immediately from φ and ψ being of index less than or equal
to 1, together with the inclusion Ker(ψ) ⊆ Ker(φ) (recall Lemma 5.2). □

Lemma 5.7. Let φ,ψ, ϕ ∈ Endfp
k (V )≤1. If φ ≤ # ψ and ψ ≤ # ϕ, then

φ|Im(φ) = ϕ|Im(φ) .

Proof. By Lemma 5.2, we know that Im(φ) ⊆ Im(ψ). By Theorem 5.4, since
ψ ≤ # ψ, we have ϕ|Im(ψ) = ψ|Im(ψ) . Therefore, since φ ≤ # ψ,

ϕ|Im(φ) = ψ|Im(φ) = φ|Im(φ)

which concludes the proof. □
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Theorem 5.8. The core order is a partial order on the set Endfp
k (V )≤1.

Proof. Reflexivity holds directly. In order to prove anti-symmetry, let us consider
φ,ψ ∈ Endfp

k (V )≤1 such that φ ≤ # ψ and ψ ≤ # φ. By Lemma 5.2, we know that
Im(φ) = Im(ψ) and Ker(φ) = Ker(ψ). Since both are finite potent endomorphisms
of index less than or equal to 1, we conclude that φ = ψ.

For transitivity, let us consider φ,ψ, ϕ ∈ Endfp
k (V )≤1 such that φ ≤ # ψ and

ψ ≤ # ϕ. Then, the same reasoning used in the proof of the converse of Theorem 5.4
enables us to extend the equality of Lemma 5.7 to the equality

φ ◦ φ # = ϕ ◦ φ # .

Moreover, again by Lemma 5.7,
(φ # ◦ φ)|Im(φ) = (φ # ◦ ϕ)|Im(φ) .

Further, by Lemma 5.6,
(φ # ◦ ϕ)|Ker(φ) = (φ # ◦ ϕ)|Ker(ψ)⊕(Im(ψ)∩Ker(φ)) .

If v ∈ (Im(ψ) ∩ Ker(φ)) with v = ψ(v′), then
ϕ(v) = ϕ(ψ(v′)) = ψ(ψ(v′)) = ψ(v),

and hence φ # ϕ(v) = φ # ψ(v) with v ∈ Ker(φ). Therefore, by Theorem 5.4,

φ # ψ(v) = 0 = φ # ϕ(v),
and since (φ # ϕ)|Ker(ψ) = 0 we deduce that (φ # ◦ ϕ)|Ker(φ) = 0 = (φ # ◦ φ)|Ker(φ) .
Finally, we have

φ # ◦ φ = φ # ◦ ϕ,
and we conclude the proof. □

Following the discussion presented in [3, Section 3], we can prove another char-
acterization of the core partial order.

Theorem 5.9. Let φ,ψ ∈ Endfp
k (V )≤1. Then:

• φ ◦ φ # = ψ ◦ φ # if and only if φ2 = ψ ◦ φ;
• φ # ◦ φ = φ # ◦ ψ if and only if φ† ◦ φ = φ† ◦ ψ.

Proof. Let us begin with the first equivalence. Let us suppose that φ◦φ # = ψ◦φ # .
Then, φ ◦ φ† = ψ ◦ φ# ◦ φ ◦ φ† by Theorem 4.4. Post-composing with φ2 yields
φ2 = ψ ◦ φ# ◦ φ2, and by the commuting property of the group inverse we have

φ2 = ψ ◦ φ ◦ φ# ◦ φ = ψ ◦ φ.
Conversely, let us suppose that φ2 = ψ ◦ φ. Post-composing with φ# ◦ φ† we get
φ2 ◦ φ# ◦ φ† = ψ ◦ φ ◦ φ# ◦ φ†. Again, by the commuting property of the group
inverse,

φ ◦ φ# ◦ φ ◦ φ† = ψ ◦ φ# ◦ φ ◦ φ†,

and we conclude by Theorem 4.4.
Let us prove the second statement. Let us suppose that φ # ◦φ = φ # ◦ψ, which

can be written as φ# ◦φ = φ# ◦φ◦φ† ◦ψ in virtue of Theorem 4.4. Pre-composing
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with φ† ◦ φ yields φ† ◦ φ = φ† ◦ φ ◦ φ# ◦ φ ◦ φ† ◦ ψ. Using the definition of the
group inverse, one gets

φ† ◦ φ = φ† ◦ φ ◦ φ† ◦ ψ = φ† ◦ ψ.

Conversely, if φ†◦φ = φ†◦ψ, pre-composing with φ#◦φ we arrive at φ # ◦φ = φ # ◦ψ
by Theorem 4.4. □

6. A pre-order induced by the core inverse for finite potent
endomorphisms

Finally, in this short section, let us include an order that makes sense in the case
of finite potent endomorphisms, as it relies heavily on the notion of index and on
the CN decomposition of a finite potent endomorphism (Section 2.1.1). Moreover,
we state some problems for future research.

Definition 6.1. Let φ,ψ ∈ Endfp
k (V ), with φ = φ1 + φ2 and ψ = ψ1 + ψ2 their

respective CN decompositions. We will say that φ is below ψ for the general core
order, and we denote it by φ < # ψ, when

φ1 ≤ # ψ1

for the core partial order (Definition 5.1).

Let us point out that this definition makes sense as by definition of the CN
decomposition the core part of any endomorphism is of index less than or equal to
one.

Remark 6.2. Let us consider any finite potent endomorphism φ ∈ Endk(V ), with
φ = φ1 + φ2 being its CN decomposition. Let us denote, again, by Endfp

k (V )≤1

the set of finite potent endomorphisms of index less than or equal to one. There
always exists a surjective morphism

Γ: Endfp
k (V ) → Endfp

k (V )≤1

φ 7→ φ1.

It is clear that this morphism is an isomorphism when restricting to the set of finite
potent endomorphisms of index less than or equal to one, that is, Γ| Endfp

k
(V )≤1 .

Notice that we can formulate and answer questions in the theory of matrix
partial orders using this morphism. This morphism being an isomorphism when
i(φ) ≤ 1 means that the general core order and the core partial order coincide on
the set of finite potent endomorphisms of index less than or equal to one.

On the other hand, the lack of injectivity of this morphism, when applied to
the general core order (Definition 6.1), is the same as saying that this relation is
not anti-symmetric. Thus, bearing in mind the well-known relationship between
finite matrices and endomorphisms over finite-dimensional vector spaces, any coun-
terexample for the injectivity of this morphism is a counterexample to the anti-
symmetric property of the general core order. For instance, let us consider the
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following matrices in Mat5×5(R):

A =


29 0 0 0 0
0 33 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

 , B =


29 0 0 0 0
0 33 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

Notice that i(A) = 2 and i(B) = 3. It is evident that

A1 = B1 =
(

29 0
0 33

)
,

A2 =

0 0 0
0 0 0
0 1 0

 , and B2 =

0 0 0
1 0 0
0 1 0

 ,

hence A < # B and B < # A, but nevertheless A ̸= B.

Theorem 6.3. The general core order is a pre-order on the set Endfp
k (V ).

Proof. Reflexivity holds directly and transitivity is guaranteed by Theorem 5.8. □

Remark 6.4. As shown in Section 4, the core inverse makes sense in the framework
of finite potent endomorphisms of index less than or equal to one. This limitation,
when working in the framework of finite matrices, led Manjunatha Prasad and
Mohana [13] to present the “core-EP” inverse in 2014 as an extension of the core
inverse for the case of matrices of arbitrary index. Moreover, in 2016, H. Wang [25]
introduced a new decomposition for square matrices called the core-EP decomposi-
tion and showed some of its applications. Among them, he defined some new orders
such as the core-EP order and the core-minus order. The author of the present
work thinks that it shall be of mathematical interest to generalize the theory of the
core-EP inverse (with the core-EP decomposition) to finite potent endomorphisms.
Once this is done, it shall be applied to studying the core-EP order on the set of
finite potent endomorphisms of arbitrary index. Finally, the author thinks that the
relation between the “general core order” and the core-EP order shall be clarified
in the framework of finite potent endomorphisms and thus, by specialization, in
the case of finite square matrices.
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[15] D. Mosić, One-sided core partial orders on a ring with involution, Rev. R. Acad. Cienc.
Exactas F́ıs. Nat. Ser. A Mat. RACSAM 112 no. 4 (2018), 1367–1379. DOI MR Zbl
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