GENERALIZED POTENTIAL OPERATORS

by M. Corrar (*) and. R. PANZONE (**)

Ths n-dimensional Hilbert transforms studied by Calderén

and Zygmund [1] are convolution operators F=#*h such that
the kernel h(z) satisfies the homogenous property h(az)=
anh(z),zeEn, for all a>0 and the integral of h(z) taken
over the set 1<<|z| <2 is zero. In the paper [2] the Calderén-
Zygmund results have been extended to convolution operators
Hypnf=1*K with kernels K satisfying the homogenous property
only for one value of a, for instance a=2: K(2z)=2-nK(z).
The operators H,, include as special cases the operators of
Fejer and ergodic type.

In this paper a similar generalization is done for the potential

operators 77,,=f* |z|¥-n, 0<Y=n, ze¢E", where the kernel
h(z)=|%|v-n satisfies the homogenous property h(az)=a¥-n
h(z), for all a>0. We consider operators of the form H,, f(%)=
f*Ky, where the kernel satisfies the condition K,,(2t)=
2" Ky, (t),te En. Such operators may be called generalized
potential operators. We show that if K., satisfies certain con-

ditions then the basic properties of the classical operators }‘}n,
due to Hardy-Littlewood, Thorin, Sobolieff, Zygmund, Du Plessis
and others, are true for these generalized operators H,,. We
derive these results from general properties of linear operators,
and we complete the results of Sobolieff in the case f(t)e
LA(En),x ¢ Em,m==n ().
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1. Introduction. We consider the n-dimensional Eu-
clidean space Er={x,y,...t,...}, 2= (8, ...E,), y=(ng, ... Mp) ---
and use the notations & +y=(&;+ny... Ep+1n)s (T y)EN &+ ..
+Epn, |2]2= (=, 2),de=dE;...dEn If ECEr, |E| will .denote
the measure, and ¢(x, E) the characteristic function of E. By
Lp=LP(Er) we mean the set of measurable functions f such that

={[_traieas P <o

If f(z) is defined on E" and if EmcCEn, then the p-norm
of the restriction of f to Em will be denoted by

irigm={ [ Irayras | @

We say that h=Tf is an operator of type (p,s), or more
precisely of type (LP(En),Ls(Em)), if for every feLP(Er),
h=Tf is defined in Em and satisfies

1Al < M ||ilp() (3)

where the constant M is independent of f. The least value of
M is the norm of T. If h is defined in EFm and.if a>0, we
denote by D(|h|,a) the (m-dimensional) measure of the set
E={zeEm; |h(z)|>a}. If s<w, we say with Zygmund [3]
that T is'of weak type (p,s) with constant M, if

D(|Tf],a) = (M |flp(™/a)s (4)

holds for any ‘a>0 and any feLP. If s=o then, by defi-
nition, weak type ‘(p,s) is the same as type (p,s). The least
valus of M in (4) is the weak norm of T. If T is of type (or
weak type) (p,s), we say also that T is of f{ype P, where P
is the point: of the plane of coordinates (1/p,1/s); if p=1,s=1,
then P is in the unit square, called the square of types. Givan
an operator T, one of the basic problems which arise is to de-
termine the points P such that T is of type, or weak type P.

In the case of the operators fm we have the following results.
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" A) The n-dimensional Hilbert transform f=Fg=f*h is
a_singular integral defined as a Cauchy principal value. It was
proved by Privaloff, Lusin, M. Riesz and Kolmogoroff in the
case n=1, and by Calderén and Zygmund [1] in the general
case, that if the kernel h satisfies some continuity condition,

then 7 exists ‘as a principal value for any feLP,p=1, and
the.operator f=f*h is of type (p,p) if 1<p<wm, and of

weak type (1,1). Thus, fon is of type P for every interior point
P of the diaganal A, B, of the square of types, and of weak
type at the end point B,. (See figure 1).

B) Consider now the Riesz potentials or fractional integrals

Fule)=en [ O la—th di=fritfn,  (5)
0<y=n, cyp=122YT (v/2)/T ((n—7)/2). (ba)

Since the kernel h=|t|Y—" is non-negative the integral (5)
is. well defined: for any f=0, so that (5) is not a singular inte-
gral. It was ‘proved by Hardy-Littlewood in the case n=1,
and by Thorin and Sobolieff in the case n>1,[4], (cfr. also[5]),
that the operator '(5) is of type (p,s) for every p,s such that

1/p—1/s=v/n, y/n<l/p<l. (6)

Hence, the operator (5) is of type P for .any interior
point of the ‘segment AB obtained by translating the diagonal
in y/n. Zygmund [3] proved that this operator is of weak type
at the end point B=(1, (n—r¥)/n). '

C) Let EmcEnr 'be a subspace of En. Let in (5) { vary
in Er and >z in Em, then the operator (5) assigns to func-

tions .f defined on En, functions 7(:1:) defined on Em. -Sobo-
lieff proved [6] that in this case the operator (5) is type (L? En),
Ls (Em)) for :

1/p—(m/n)/s=x/n, Y/n<l/p<l, (n—v)/m<l (7

Hence here the ‘operator is of type P in any interior
point of the segment AB’ obtained by translating and rotating
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the 'diagonal. SoBolieff'-really proved only a much weakér result,

assuming that f and fYn are considered on bounded domains
and that 1/p—m/ns<y/n; ‘he proposed the full result as a
problem. The problem was solved by Ilin[7]. Without knowing
the paper of Ilin we obtained the same result by a different
method (2) which is given below for more general operators.
Moreover, we proved that the operator is of weak type at the
end pomt B'. Similar results hold if Em> En (cfr. [8]).

D) If the functions f(t) and f (z) are considered on boun-
ded domains D,cEn, and D, CEm (so that the integral in
(6) is taken over D,), then it was proved by Sobolieff and
Kondrachieff ([6], cfr. [9]) that the operator (5) is of type
(LP (Dy), Ls (D)) for

1/p— (m/n)/s =v/n, % #:p,l1<s<ow, n—y<m, (8)

that for ‘
1/p— (m/n)/s <x/n (9)

the operator is completely continous, and if in addition
0<1/p<y/n then (5) is a completely continous operator from
LP(D,) to G(Dy,). .
E) It was proved by Du Plessis[10] that if feLP,yin<
1/p<1/2 then the set where (5) is not finite is of zero B-capa-
city for B>nh—py; if 1<p=<2 then this set is of zero
B-capacity for B=p—7yp. Finally it was proved by Hardy-
Littlewood in the case n=1, and. by Du Plessis in the case

n>1, that if feLipB, 0<B<l, then 7YneLip(a—|-B) o<y+

B<1; and if feLP p>1, 1/n+1/p>Y/n>1/p, then fY,.e
lip (Y—n/p).

The results mentioned in A) have been extended in [2] to
operators Hyn f=f* Ky, where the kernel satisfies the homo-
genous condition only for a=2. If for each kernel K we
associate the kernel k(t)=K(t) in 1=|t|<2 and zero other-

" (*) See our communications to the 1957 meeting of the UMA,
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wise, then . K=K, satisfies the homogeneous condition
Kon(2t) =2 Kon(2) if and only if -
Kou(t) = Z° e, 20 (251). (10)

" B

o

B (1,%Y)

A

Thus, the results A) hold for kernels of form (10), provided
k() satisfies some continuity condition and its integral is zero.

The aim of this paper is to obtain a similar generalization
for the operators 7-{“‘,Y>'O. Since the kernel h(t)=|t|Tn

satisfies the homogenous property h(at) =a¥h(t) for all a>0,
we consider generalized potential operators of the form

Hyn f(z) = fE” #() Kyn(z —t) dt,0<y =1, (11)

where the kernel satisfies the condition Ky,(2t)=2v-"K(t). This
is the same as to say that Ky, is of the form

Kpo(t) =Z" ¢, 20-n)ike(2-i1). (12)

We shall prove that properties B)—E) hold for operators
(11) if k satisfies certain conditions. In the case y>0, the
integral of k need not to be zero and we may take k=0.

Moreover, in [2] was given a further generalization of the

Hilbert operators fq. which is as follows. Let K=K, bé of
the form (10) and let k;(t) =2-nik(27it), so that Kpn=Z"_,k;
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If the generating kernel k satisfies ke Lip(1,1), then the
«generated» kernels k; satisfy the conditions

||ki||1§02 ||ki||(1,1)§2_563 /E k;dt=0, (13)

where ||k|/(,y) denotes the least constant ¢ such that
/ |k(z+h) —k(z)|dz<c|h|Y, (y<1), and keLip(1,v)
En

means ||k|l,y)<ce. (If y>1, y=Y47Y", Y = integer, vy" <1,
we say that ke Lip(1l,y) if k has absolutely continous deriva-
tives up to order Y’ and if the derivatives of order Yy’ belong
to Lip (1,v”)). Conditions (18) imply that the k; are «almost
orthogonal», that is |k;j*k;jl; <27je¢, if j>O0. It was proved
in [2] that the properties A) hold for operators of the form
Hyf==f*k; if the k; satisfy (13) or the almost orthogonal
conditions. Similarly if Kn is of the form (12) and if ke
Lip (1,1), then the corresponding Fk; satisfy

Ikilly <2%e¢; kil <20ie, (y<1), (14)

and the orthogonality condition |//;* kytjll(1,5y) =<277Yc holds.
From the results of this paper and from our previous paper [11]
it will follow that properties B)-D) hold for operators of the
form f*=k; if the k; satisfy (14) or the orthogonality con-
ditions. (In [11] the method is only sketched very briefly, the
* details will be given in [12]).

We give diret proofs, based on general properties of linear
operators, and do not assume known the properties of the clas-
sical potential operators.

2. General remarks on types. Let Ly=Ly(Er)
be the set of all step functions of Er; by a step function we
mean a linear combination of characteristic funcions of n-di-
mensional cubes. We say that the operator T is of type (or
weack type) on L, if (3) (or (4)) holds for fe L, Since L,
is. dense in all the LP, p<oo, any operator of type (p,s) on L,
can be extended to an operator of type (p,s) on LP. Our
main purpose is to establish that H,n is of type P=(1/p,1/s),
for all interior -points of a certain segment AB, and of weak
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type at B. - The fallowing general properties show that it will
be sufficient to establish the types only on L, and only for
two special cases: P=C and P=B. The case P=C is easier
to handle since in this case s=p’=p/(p—1) and Ls is the
dual of LP (see section 3); and in the case P=B we have
p=1 and some special arguments can be used (see B) below
and section 4).

A) In many cases is considered an operator T which is
the limit of «good» operators T.. More precisely, let T,
e>0, be a sequence of linear operators satisfying the following
conditions:

(i) TFor each €>0,T.f assigns to any function feLP,
p=1, a function T.jf(z), finite for all z. (i) If f,e LP (fi-
xed p) and if |fallp—0 as m— o, then limT,f, (x)=0, for
each fixed ¢>0 and for each . (iii) limT,f(z)=Tf(z)
exists for almost all  and all feL, Thus the limit operator
Tt is defined and is finite for all fe L.

For instance, if T)‘:?Ynzf* |t]Y7,he(t) = |t|71 if e <[t|<
€1 and zero otherwise, and if T ,f=f*h,, then each h. is a
bounded integrable function and properties (i)-(iii) are satisfied.
Let Mf be the maximal operator of the sequence T.f,

that is
Mf(z) =supeso |Te f()]. (15)

By (iii) Mf(x) is finitz for every fe L, .and almost all ,
and |Tf|<Mf. Mf is not a linear operator, but it is sublinear:

f=g+h implies Mf(z)<Mg(z)+ Mh(z).

Proposition 1. Let T be a set of linear operators sa-
tisfying (i), (it), (iii). a) If Mf is of type (of weak type) (p,s)
on Ly, then Mf is of type (weak type) (p,s) on LP, and (iii)
holds .for any feLP. b) If M{f is-of type (p,s) on L, then
T.f converges to Tf in the s-mean for fe LP; if M is of weak
type (p.s) then T.f converges in the s-mean only on bounded
sets and only if |f|P log(1+ |f]) is integrable.

- Proposition 1 was proved in [2] (p. 119) in the case p=s,
the proof in- the general case is essentially the same (see [15])
and we shall not repeat it. Proposition 1 shows that under
conditions (i)-(iii) we may restrict ourselves to types on L.



+ B) We say that Tf satisties the condition (p,s) of Kol-
mogoroff with constant M’, if for any s’<s, for any f, and
for any bounded set X Em it is true: \

L sl ay [ it syts — oy (Xfar—sn (19)

Prop051t10n 2. If T satisfies mequallty (16) for one
value ' <s and with constant M’ then T is of weak type
(p.s) with constant M <M'(s/(s—s"))s. If T is of weak type
(p,s) then T satisfies the Kolmogoroff condition with the same
constant M'=M.

This Proposition was proved in [2] (p. 67) in the case s=p;
the proof is almost the:same in the general case. It is important
to observe that the proof of Proposition 2 gives somewhat more:
if (4) is true for a fized f and for all a>0, then (16) is
true for this f .and for all <s and X, and conversely. From
this remark we deduce the following.

"Proposition 8. If p=1,1<s<», and if (4) is true
for the characteristic funclions of cubes, then T is of weak type
(1,5) on L.

Proof. Any function ¢e¢ Ly, g=0, is of the form g(z)=
¢ f1() +.... el fl(a:) where f; are characteristic functions of
cubes. By hypothesis (4) is true for each f; and since (4) im-
plies (16) for an individual f (16) is true for each f;. .Since
s>1, we may take 1<s’<<s, and since p=1,

s/ /s
{ L T [T
SM(s/(s =) | X[oor s | B il =
=M (s/(s — )3 | X[ue-30 g

Hence (16) is true for g(:n), and therefore (4).is true for g.
Proposition 3, provides a very simple proof of the.following
theorem due to Zygmund [3] (Zygmund considered only the

case n=m):.. : |
. o

Proposition 4. If EmcEr and m>n;Y, then the
potential operator (5) is of' weak type (Lt (E") Ls (Em)), with
s=m/(n—¥).
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Proof. Since s>1, it is enough to prove that (4) holds
if f=characteristic function of a cube Q. If ¢ is the center

and 1>0 the side of Q, then fYn(w) <the integral of |¢|T-n
extended over the set |t— (x—c)|<nl. An easy computation
shows that the last integral is < cr|z|Y=. Therefore if # is such

that fyn(z)>a then clrja[vn>a, or |z| < (clnja)e—N)=r.

Henco D(}“}m a2) < volume of the sphere of radius r=<

(o1 Infayml(n=1) < (cq || /aym/(n—).

C) Let T be a linear (or sublinear) operator on L, The
Riesz-Thorin convexity theorem asserts that if T is type P,
and of type P,, then T is of type P for any P of segment
P, P,; moreover, the corresponding norms M,, Mz, M satisfy
the inequality M <M, M 1~ where a is ‘the ratio in which P
divides the segment. The Riesz-Thorin theorem is a particular
case of the following Convexity theorem for analytic operalors
([18],[14]): Assume that for each complex number z,0 <Rz <1,
is given an operator T, defined on L, such that 1) for fixed
f.g of Ly (T,f,g) is an analytic and (for instance) bounded
function of z; 2) [Tifl;, S My Ifllp, and |Ty4 flle, =M Iflp,
iu=(—1)42u, for all feL, and all real u, (p,si=1 for
i=1,2). Then for each 1 0<¢<1, the operator T, is of
type (p.s), where 1/p=(1—1)/ps+1/ps 1/s=(1—1)/sy+ /50
and ||T)| =M -t M,

Another important generalization is the following Theorem of
Marcinkicwicz-Zygimund: If T is of weak type P; and of weak
type Py, P;=(1/p;1/s;), pi=s; 517=85 then T is of type P
in any interior point P of P,P, with norm M satisfying
M<cM*~~M,, where ¢ depends only on the points P; and
tends to infinity as P approaches one of the end points. The
theorem is not true if s, =s,.

It is well known that a linear operator T is of type (p,s),
1=p,s,s<», if and only if |[(Tf;9)| =M|fll, lglly (this is not
true if s=o). Therefore, for convolution operators Tf=f*K
is true the following property: if T=f*K is of type (LP(Er),
Ls(Em)),p>1,s=1, then T is also of type (L¢(Em),(L¥
(Er)). That is, §f T is of type P it is also of type P*= the
simmetric point to P thh respect to the dlagonal this properly
is not true if p=1.
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Applying this remark and the Marcinkiewicz-Zygmund theo-

rem to the operator Hy, we see that, in order to prove that
Hyn is of type in the interior of AB and of weak type in B,
it is.enough to prove that Hy, is of weak type at the end point
B and of type at C=intersection of AB with the diagonal
1/p+1/s=1. "
{  Let us still remark that if we arve interested only in weak
types and weak norms, then the Marcinkiewicz-Zygmund theoren:
takes the following perfected form: If T is of weak type P,
with weak norm My, and of weak type P, with weak norm
My, then T is of weak type P in any point P of PP, wilh
norm M salisfying M <2M-aM,2. Here, as in the Riesz-
Thorin theorem, P; are arbitrary points in the square of types
and the case s;=s, is not excluded. The proof is essentially the
the same, and much simpler, as that of Marcinkiewicz’s theorem
(see [15] and [12]).

Finally, the definition of weak type may be formulated in
the following form, which is more similar to that of type. I'or
any function h(z) let us define the weak s-norm by

{h} = (supysofas D(|R|; a)} ). (17)

Then T is of weak type (p,s) if {Tf}s<M|f|l,. Let {Ls}
be the set of all measurable functions h such that {h},<<o.
The weak norm {h}; is not a norm but it defines in {Ls} a
topology equivalent to that of a normed space. In fact, as C.
Trejo showed in a forthcoming note, if V; is the set {h} =<d,
and if [f]; is the infimum of the numbers d=0 such that
feConv{Vy}, then [f], is a norm in {Ls} which defines the
same topology as {h};. Thus [L¢] is a normed space, and a li-
near operator T is of weak type (p,s) if and only if T is a
continous transformation from LP to [Ls]. Proposilion 4 asserts
then that the potential operator (5) is a bounded operator from
LP(Er) to [Ls(Em)] for s=m/(n—7). Let us define the space
{W (D} as the set of all functions which admit generalized deri-
vatives up to order. [, and with norm [f],+ Z[D!f]s <o, "where
D!f denotes the generic [ —th order dervative. Then from Pro-
position 4 we may deduce the following generalization of the
immersion theorem of Sobolieff[6]: if k=0,k=!—n and
s=n/n—(l—k)), then W,()c[W[k]. In particular if n>I,
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m=n—1 and s=m/(n—1), then W,!(Er)c[Ls(Em)]. We

shall return to this question in another paper.

8. Lemmas for types (p,p/). For each p=1 we
write p’=p/(p—1). Let ki(xz),zeEr, be a sequence of in-
tegrable kernels, so that f*k; is well-defined for each i. Let
us see under which conditions the operator ‘

Hf==*y . fxkj=f+K (18)
will be of type (p,p’). For any N we put
KN: ZN,‘__N ki; HNfz f* KN (188)

We say that ke Lip(p,Y),0=v=<1, if |k(z+h)—Ek(h)|,=

M|h|Y holds for any heEn; the [east value of M will be deno-
ted by |k|pk) (for y>1, see.the definition on the end of the
Introduction). The Fourier transform of f will be denoted by

f =Ff{, f:F*?, and the following well-known inequalities (see
[16]) will be used (1<p=2):

IF* 2] < Ifllp, (19)
[ F@Pupenase | f@pde @

|7 @) =erlflanlal. (21)

Lemma 1; If for almost all ue Er exists the limit
limpy.y.o Ky(u) = h(u), (22)
|I?N(u)| <M|u|v, for all N and almost all u, (23)
0s=y<n=dimEr, p=2n/(n+¥), p’'=2n/(n—¥), (24)

then: a) |Hyflly <M c,l|fll,, where cp does not depend of N;
b) for each feLP(Er) the functions Hyf converge in LM to

a limit HfeLP (E») and |Hf|,<Mec,|flp. ¢) Hf=F*(fh).
Hence Hf is of type (p,p')=type C. (See figure 1).
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Proof. Consider first the case fe L, so that all. Fourier
transforms will be well-defined. By (22) the sequence | ;(u) h(u)—
;‘\(u) I?N(u)v’ converges. to zero for almost all u, by (23) this.
sequence is dominated by the function G(u)= (2M)P |’f (u)|P
lu|~YP=(2M)? |F(u)|P |u[*(P-2), and by (20) G is integra-
ble with integral < (2M)P (¢, [|f|)P. Therefore we may integrat>
term by term and we obtain that f (u) I?N(u) converges in L¥
to F(u)h(z) and |fhip=(2Mec,) [fl,. From (19) follows
then that fxKy converges in LP to F *(]? h)=Hf and

IHfl < | ]”\h||n§ c; M ||flp,. This proves the theorem for the:
case fe Ly If feLP, we take f,,eLy such that ||f—f,l,— 0.
Then Hyf, converges in L” to a function Gy, as m-—o,
Since [|Gylly =lim |y frly< cpM Ifl,, and since [Hyf —
Hme”pé ”I(Nlll “f'—fm”p_’O’HN fm converges in LP 1o HNfr
so that we must have Hyf=Gy. Hence [Hyflp=<c,M|fl,-
Thus [Hyli<c,M and Hyf converges on a dense subset L,
of LP, and by a known theorem this proves the lemma.
Remark 1: If |k{(z)| <ki(z) and if the k; satisfy (22),
(23), then a), b), of lemma 1 are true for the operator f* = /.

Lemma 2. Let O0<y<l. If |kjly<20M, |[k;li(y, )=
2-(1-Y)iM, and if p=2n/(n+7%), then properties a), b) and c)
of lemma 1 are true.

Proof. From the hypothesis and (21) we obtain

i) < ¢ M 20 [u|-t, and [ki(u)| <M2Y.  (25)

Let us fix u and let r be such that 2"<|u|-1<2r+l.
Then, using (25) and 1—y>0, we have

=i, li(n)| < e Mlu|=t By, 261
< M 27 r(-M)|u |-t Zjs o 270N <

<c M2 |u|-)) |u|-T< " M|u|~Y;

By [fei(m)| < M Zie, 20 < oM [u]-.
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Hence (23) is true, and also (22) is true, since Zk(u) con~
verges absolutely for each u==0.

Lemma 8. Let 1§Y<n and let k= |kj|e,
(n—1/2)/(n—7). I W, =2 M, Vel <271 M, and
if kj vanishes outside of the set 2/ < |x| <2/, then @) and
b) of Lemma 1 hold for p=2n/(n+¥).

Proof. For any complex number z and for any fixed N we
define the operator

B f=f [ By |ki¥(2) 7] (26)

For any real number u we have ||kj*(z)|s|<1 and by
hypothesis k¥ k*=0 if l-=j, so that |2 |k*(z) || <1; hence

1H*i fllo = Iflly (Ev=(—1)*2u). (27)

On the other hand, ||kj*(z)|*+u|<k*(z) and the Ikj*
satisfy the hypothesis of lemma 2 with y=1/2. Ience by lem-~
ma 2 and Remark 1,

|H* i flle = €M |fllps r=2n/(n+41/2), (28).

where ¢ is independent of N. But it is easy to see that H*,f
is a bounded analytic operator in z, for 0 <Rz=<1, hence from
(27), (28) and from the convexity theorem for analytic operators.
it follows that H*, is of type (p,s) for 1l/p=(1—1)/141¢/r,
1)s=(1—1t)/,+1t/r,0<t<]1. Letting t=(n—vy)/n—1/2) we
obtain that H*, is of type (p,p’) and [HX*f|,<cM ||fllp,c
independent of N. Hence the operator H'Nf= f+ ZV_y |k;| sa-
tisfies |[H'y fll,»<cM ||f|lp and this proves part a) of the lemma.
Part b) es easily deduced from the last inequality, observing that
|Hyf —Hf| is dominated by |H'yf—H'f|, that |Hyf|<
H'y(|f]), and that H'y(|f|), is non-decreasing.

Consider now a subspace EmcEr, and let En=Em x En—m,
Em={x,}, Er-m={x,}, En={x} , = (z,,2,). If K(x) is defi-
ned on Er then the operator ‘

Tf(z) =F(z) =f+ K= /E (1) K(@—1)dt (29).
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assigns to functions f(z) defined on' En functions F(z) defined
on Enr, If in (29) we let z vary only in Em, that is if we
consider the restriction G(z,) =F(2;,0) of F to Em, then we
obtain a second operator T;f=G which assigns to functions f
defined on En functions G defined on Em. Finally if 9(2)
is defined on Em, we have a third operator

Tyg()=Fie)=[ o) Ko=t)ds (200

which assigns to functions ¢ defined on Em functions F, defi-
ned on Er. Thus the convolution with K ‘defines three diferent
operators T,T,T,. It was already observed in C) of Section
1, that if T, is of type (L¥(En),Ls(Em)) then T, is of type
(L#" (Em), LP* (En)), provided p>1,s=1.

If we fix x, and consider K(z,,z,) as a function of x,,
then the Fourier transform of this function will be denoted by
F, K(uy, z,). Similarly is defined FyK(z),u,). If K is in
L2 then we have

F K(u) = R(uy, 1) =F [F; K(u,)) () =F; F, K, (30)

so that F, K(uy, z,) =TF*, ﬁ'(ul, z,). If F=Tf,G=T,f,F,=T,g

are the three above defined operators, then ﬁ'(u) =? (u) f((u),
but instead we have:

G(u,) =T, G= /E Fy f(uy, @) Fy K(up,— 3) dzy,  (31)

Fy(u)=F Fy(uy, u5) =g () K (uy, ), (31a)
moe) s {[, el |
{ fE IF, K(ay, 2) |" do, }”’". (31b)

Lemma 4. If 0=y<na, if p=(m+m)/(m+y), and
if K satisfies

FlK uy, o) | dm2 <M uy | (n-m=PY)/P, 32
En— 1
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then T,=fxK is of type (LP (E»),Lr' (Em)) and |Ty f|[p(m) <
<M ||ilp()

Proof. Since n—m—py=m(p—2), taking in account
(82), (31b), (20) and (19),

A
Il =1Gly = Bl | [ ame-

[fE,._,,, |Fy f(uy, x5) |P d:z:z] du, }1/p

< Moy { [_ [ /E VG o) Py }”” =M, Il

Similarly is proved

Lemma 5. If 0=<y<n,p=(n+4+m)/(n+7Y), and if
A 1/P
{/ | K(uy, uy)|P du, } <M |uy|(n—m=PY)/P, (32a)
o En—m

then Tog=¢g*K is of type (LP (Em),Lr" (En)).
We denote by |lg||(.s) the least constant M such that
lg(z+h) —g(z)||,<M|h|s. With this notation we have,

Lemma 6. Let En=EmxEnr-m m<n <m+42y, and lel
p=m+m)/(m+y), 2<p’<2+1/m. If ky(x) vonishes outside
of |z|<2i, and if '

eillpr < 2imIP" e, Ikl 17pry < 2im+1)P ¢, (33)
then Hf=fx = k; is of type (LP (En), Ly’ (Em)).

Proof. Let us fix N. By lemma 4 it is enough to prove

that K=Ky satisfies condition (32). Let us fix u;, and let
g(xy) e LP(En—m) be such that |g|p,=1 and

1P
J={fE |Fy Kn(uy, xz)‘p'd“"z} =

= [ FiEn(w,) g(as) da,
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Then
J=F, {/E ~ Ky (zy, 25) g(2,) dag }: =N N Ei(ul), (34)

where

L) =| [, @a) gler) da,

= llgllpCr=m |ie;]

=
rmm) = [l e,

Since k; vanishes for |xz;|>2i, we deduce from the above

inequality and (33):

r /P
/ | Li(z,) | day 5/ {/ |Fei(y, ) [P dwz} 1 dz, <
Em || <2 En—~m '
. ) /‘ 1/ps
2im/P {/ |Fe;(@y, %) |V iy dixy } =
Em J En—-m

< 2imiP ¢ 2-im/P' =2 ¢, (34a)

where p.=m(2/p—1) > 0. Similarly, since |L(z,+h)— Li(=z,)|=<
Igllp lfe;(y + b, @) — ki, 25) ”p'("_m), we obtain

[, oy~ L) ds,

1/pr
./I‘w |<g {./En—m |Bi(@y b, @) — Fei(2, @) | P dty } - dz,

< 2P el (. 1700y [BIMP < 2 € 20=1P) | B[P, (34b)

Let r be such that 2" < |u|~* <2, then since 1/p'—n>0,
we obtain, using (84b) and (21), that

Zisr ‘f’z(u1> | <20 25, 270PH) [y [P <2 cluy | h
Similarly from (34a) we obtain

A
Zicr ILi(ul)l =2c¢ Eiﬁrzpiéc lu’|—“'



A
Hence =V_y |Lj(uy)| Zclul#, p=(pY—n-+m)/p, so that
in virtue of (84) Ky satisfies condition (32).
Since the condition 2<p’<2+41/m of lemma 6 implies
n— (n+m)/2<Y<n—m(n+m)/(2m+1) lemma 6 does not
apply to all y<n. However: ‘

Lemma 7. Let 0<y<n, m=n=m+2y, p=(n-+m)/
(m+y) and let kX*(z)=|k(x)|s, a=@n+m)/2(n—y). If
k;(x) vanishes outside of the set 2i< |x| <2+ and if

lkeiHlz < 27im/2 ¢ [l (5,170) < 27412 ¢, (83)

then Hf=Z=fxk; is of type (LP(Er),Lr'(Em)). Thus, Hf
is of type € (see figure 1).

Proof. Using the convexity theorem for analytic operalors,
lemma 7 is deduced from lemma 6 in the same way as lemma
3 was deduced from lemma 2.

4. Pseudo types (1,r;d). In this section we consi-
der a generalization of Riesz’s convexity thearem in the case
Po=1=<s, 1=p;<s,. For p;=s,, ps=5,=1, this generaliza-
tion reduces to one given in[2] (p. 77). In this section we con-
sider only operators Tf defined on Ly(Er), so that f is defi-
ned on Er and Tf on Em. We shall use the following notations:

S(f) =the support of f=the set of points x where f7:0,
m(f) =the minimum of |f| on S(f),

s Q=101 [ 1| de

In the case p,=1, Riesz’s theorem says that if (i) T is of
type (1,r), and (ii) T is of type (p,s), then T is of type P
for any interior point P of P,P,, . where P,=(1/p,1/s),
P,=(1,1/r). In the theorem of Marcinkiewicz, type es replaced
by weak type in both conditions (i), (ii). We shall now replace
type by weak type only in (ii), and (i) will be replaced by
another weaker condition, as follows. Condition (i) says that

[ mi@rae}” seip, (36)



— 20 —

We consider the following weaker condition: for each func-
tion feL, there is a functlon h and a set FEEm bllCh that

..o ~Wy@ s} ey (@)

If h=0, and F=0, then (87) reduces to (36). Since (37)
is always satisfied if h=f or if F=FEm, we must impose further
conditions upon h and F. In the case of Hilbert transforms and
other singular integrals T'f(x) is bad if x belongs to the support
of f- This suggests to take F=S(f). Since |S(f)| = Ifly/m(f),
it is natural to impose on F the more general condilion
|F| <c|lfly/m(f), or still more generally, the condition

|F| <[ellfly/m(f)]", d>0. - (38)

Similarly the case of singular integrals suggests to. impose
on h the conditions:

|h("")| =cm(f), and [hly=clfll; (39)

The condition |h| <cm(f) is a very strict one. For this
reason, instead of (88) and (39) we shall consider also conch—
tions of the following type:

|F| <¢|Q|",d>0,Q=5(f), (40)

h(z)=0 if zeEr—Q, and |h(z)| =
=cp(f; Q)=¢|Q|Ifl;- (41)

Definition 1: We say that the operator T, defined on
Ly(En), is of pseudo type* (1,r; d) with constant ¢, if for each
feL, there is a set FCEm and a funtion he Ly(En) such that
(37), (38) and (39) are satisfied.

Definition 2: We say that T is of pseudo type (1,r; d), or
more precisely of pseudo type ((Lt(Er),Lr(Em);d), with cons-
tant ¢, if for each feLy(En) and for each cube Q= S(f),
there is a set F.CEm and a function he Ly(En) such that con-
dition (87), (40) and (41) are satisfied.
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We have then the following generalizations of Riesz’s con-
vexity theorem .

Theorem 1. Let l<p<s,1=<r,d=(s—r)ps~1/(p—1) >0,
and let T be a linear (or sublinear) operator defined on Ly(Er).
If T is of weak type (p,s) and of pseudo type*(l,r;d),
then T is of weak type (1,r), and therefore of type P for
each interior point of P, P, Py= (1/p,1/s),Py=(1,1/r).

Remark: The constant d has the following meaning: If &
is the argument of the vector OP, and ¢ the argument of
Py Py, then d=tge/tg%. Therefore the condition d>0 says
that theorem 1 is true if the point P, is «above» P, in the
square of types.

Theorem 2. If d<r and if T is of pseudo type (1,r; d),
then T is also of pseudo type* (1,r; d).

. Theorem 2a. Let d=(s—r)ps!/(p—1),d=r,1<p=<s,
1<r. If T is of weak type (p,s) and of pseudo type (1,r;d),
then T is of weak type (1,r), and therefore of type P for
each interior point of P,P,.

The proofs of these theorems are based on the following
two lemmas.

"Lemma 8. Assume that for any feLy|lfl,=1, is true
that

D(|Tf]; (m(f))4) = e(lIflo)/(m(£))""% (42)

where ¢,l,d are positive constants independent of f. Then for
any feLgy,|fl,=<1, and any a, 0<a<m(f), it is true that

D(|Tf|; av/?) = 2" e(lIfllp)Y/(a)"/2. (43)

Proof. We may assume |||, <1. Let S,S’ be two sets such
that S=5(f), 8" N S(f) =0, |S| <&, IS| <&, and let g be de-
fined by: g= f in Er—(SUS), g=a/28<m(f) in SUS.
If ¢ is small enough we have |g|,<1, and since m(g)=ua/24,
m(f—g) <a/2¢, we have by hypothesis,
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D(|Tf|; a*4) < D(|Tq|; a*/4/2) + D(|T(f —g)|; a*4/2) <
=D(ITg|; a4/2) + D(|T(f—g)| (m(f—9))*?) =
=2 o(Ifllp)Ya"’ + c(lIf — gllp) /(m(f — g)) 2.

Let e tend to zero. Then ||f —g|l, tends to zero, and since
m(f — g) =inf {m(f) — a/2¢; a/2d} =fixed positive number, we
obtain (43).

Lemma 9. Let d=(s—r)psY/(p—1),1=<p=<s,1=r.
If T satisfies condition (42) and if T is of weak type (p,s)
then T is of weak type (1,r).

Proof. We have to prove that D(|Tf|; ) <M(||flly/)",
and ws may assume |f[;=1. Let g(z)= f(z) if |f(x)|=ad
and zero otherwise, so that h(x) =f(z) — g() is f(z) if |f(z|<ad
and zero otherwise. From |Tf| < |Tg|+ |Th| we have

D(|T#|; @) < D(|Tg| a/2) + D(ITh]; a/2), (44)

and using the hypothesis and lemma 8, and that m(g) =ad, we
have ~

D({Tg|;l0/2) = ei(llglp)/a" = ex(Iflip) ! fa" =i/,
D(|Thi; a/2) = (cllhllp/a)s=

= [ (@] a9 hia) | ar-a e | <
En
c{f |h(z)| a~P+d(P-1) dav}sﬂD <c(lfly)*a"=ca.
En

Hence D(|Tf|;a)=<(c+c)a™"

Proof of Theorem 1. Given f let us put m(f)=a, b=d-1.
By lemma 9 it is sufficient to prove that D(|Tf|; ab) < ¢(|If|l1):
abr, and we may assume |f|,=<1. By hypothesis, (87), (38)
and (39) are 'true. Let h be the function of (39) and let
g=f—h, so that (44) is true. Using (39) and that T is of
-weak type (p,s), we have

D(|Th|; ab/2) < (cab|h|p)s=c UE |h(z) P a5 d P, _

n



— 93 —

. ° [ j'E” (|h(z)| a-t)P-1 (|h(z)| a=+P —Pb) Jw] s/P

<e, [ f |B(w) | a-Pbis dw]w =
. En
= e @t ([Iflly)sP. (45)
If » G={z; |Tg(z)| > ab/2}
we have
D(|Tg|; ¥/2) < |G N (Em—F)| + | F|.
By (38),
|F| < c(Iflly)brabr,
and by (87) we have

G En—Parsz [ (7ol des (2elfl)
Therefore
D(|Tg|; ab/2) < c (lIfll1)br a="+ ¢y ([Ifll)"a?" (46)

From (44), (45) and (46) we obtain the desired inequality
D(|Tf| ad) <c (|Ifl)tabr with l=inf (r, br,s/p).

Proof of Theorem 2. The proof of this theorem is quite simi-
lar to that of therem 4, p. 77,0f [2], so that we only sketch briefly
the main steps. By hypothesis, given a cube Q2 S(f) there is a
function h and a set F satisfying (87), (40) and (41). For -
any point 2;¢ S(f) there is a cube Q;=Q(i), with cenler in
i, such that

K(Qsi ) =8/4m(f) =a, (47)
@iz a3 [ Il de (4)

By hypothesis, to each set E;CQ;. there correspond a set
F;cEm and a function hi such that



— 24 —

. gr ,
{ f |T<cpif—h,->|'dw} <o f |flde=clf ol - (48
Em—Fi Ei X

|Fi| < | Qi hy=0 in Er—Q; |k Scp(Q,f @) Scad/s,

' _ (48a),
where ¢; is the characteristic function of E;. As in [2] we:
shall see that S(f) may be covered by a finite number of these
Q;, and E; in such a way that any point of E helongs to
at most 4» cubes Q; and the E; are disjoint. Writing h= X h;
F=UF; we have f=2f¢; and

{fz: _m |T(f —h)|" de }1/r

sz{f, | imge-mre s
exif | Ifl des el (49)

Taking in account that r/d=1, that each point belongs to.
at most 4" cubes and (47a), we obtain

IFISZ |Fi|scZ|Qi=c (Z|Q))e=

e (a1z )™ <
(5[ ™
o(aranf | 111ds)™ Se e (mif))

Similarly we obtain that |h|;=c|fll;, so that F and h
satisfy conditions (38) and (39), as well as condition (37) = (49),.
hence T is of pseudo type* (1,r; d).

Proof of Theorem 2a. This is a direct consequence of theo.
rems 1 and 2. '

Finally, lemmas 2 and 6 have the following correspondents.
for pseudo types:

Lemma 10. Let Hf=X_,° f*k;k;e L1(Er), and r=1.
If Ellrapy <277 ci=-41,42,...; ky(z)=0in |z| > 21, then:
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a) Hf is of pseudo type (L(Er),L"(En);r). b) If EmcEns,
then Hf is of pseudo type (L1(Em), Lr(Ewr);.mr/n).

Proof. Let feLy(Er) .and let Q2S(f); we may assume:
that center of Q is the origin 0. Let j be an integer such that.
|z| <2/ implies z€¢Q, and such that |z|>n1/22/ implies.
e B —Q, so that ze¢ Ern—2n1/2Q jmplies |z| >271nl2 (mQ
is the oubs of same center as Q and m times the side. Let:
h(t) be defined by

h(z)=p(0Q,f) if zeQ, h(z)=0if ze En—Q, (50)-

so that h satisfies condition (41). If g=f—h, we have
f .f/=f 9=0,  llgly=2ilfll,. (51).
En Q
Let F=2n1/2Q.F satisfies condition (40) with d=r.

Since g=0 in Er—Q, and k;=0 in |x|>2#1, we have that
if ze Ern—F and i<j then

grlefs)=[ o) (a—y)dy=0.(a¢ B—F). (52

Hence for any wxeBr—F, Hg(zx)=H(f—h)(z)=2Z;.;.
gx*k;(z), and by (51),

Ho(o)=Ziss [ 9(0) lele =)~ @)y, (53)

Applying to (58) the integral inequality of Minkowski and.
using the hypothesis, we have

= Zi>j'/'ng(t)i {,/-E.._Flki(“'_t) k(o) | da }w se.

Z; >j[Q |g(t)| 27 ¢ [t[r di < ¢ 2y 5 270 /2 20g]ly.

< ¢, 200rglly Zys j 27 S clglly el
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‘Hence condition (37) is also satisfied. This proves part a).
Part b) is proved in the same way.

If & is defined on Er=Emx En-m={(z,,x,)}, we say that
ke Lip(p,r,Em) if for any h=(hy, hy) e En,

. P
{fﬂ |k(w1+h1,$2+h2)—k(%:xz)'pd“’j}i/ =M|h|ir,

and the least value of M denoted by |lk||(,,») (™).
Then the same proof give us.

Lemma 10a. Let Hf=Zfxk;,k;eL'(Er), and let
EmcEr,r=1. If |kil(ynm <2-irc,i=41,4-2,..., then Hf
is of pseudo type (Li(En), Lr(Em); nrim).

5. Type properties of Hy, Let k(z)eL'(Er) be a
fixed kernel defined on Er, let 0<<y=<mn, and let

ki) =2~ k(2iz), i=0,+1,42,.. (54
Kxn(#) = D =li(z) = S _ "2~ k(2-i5),  (5da)

HYnf:f*-KYn:Zf*kis (55)
so that A
Koyn (2 ) = 2-10=%) Kyn f(). (55a)

We assume that the generating kernel k satisfies the follo-
wing conditions:
o) k=0, and k=0 outside of the set 1=|z|<<2.

B) |k(x)|ee LA(Er) N Lip(1,1,Er) for a=1,a=n/(n—y)
and a=(n—1/2)/(n—¥).

In dealing with subspaces Em we shall also assume the fol-
lowing conditions:

y) If EmcEn then |k(z)|eeLt(En)'N Lip(1,1,En) for
a=(n+m)/(n—r).

&) If EmcEn then |k(x)|*¢ Lip(1,1, Em)for a=m/(n—y).



In most theorems below it will be enough to assume that
I(x) vanishes outside of a compact set and that |k|e Lt(En)'N
Lip (1,1; En), but for sake of simplicity we shall stick to con-
ditions a) - ).

If k(z)=|z|¥ ™ for 1<|2|<2 and zero otherwise, then
Kyn(z)=|z|¥™ and Hy,f reduces to the classical potential

operator 7Yn- It is easy to see that in this case k(z) is bounded
and conditions a)-b) are satisfied.

From (54) and «)-%) we obtain the following properties
of the generated kernels:
o) ki (x)=0 outside of 2!<|z| <21,
B) Mkl =2%¢, Nl =2-tie.
Ba)  Ikl(ram =27ime, for r=n/(n—v).
Bs) IIE[*la=27¢|[k]|*l(1,1) =277 ¢, for a=(n—1/2)/(n—Y).
Y1) |kl 2-imir for r=(n4+m)/(n—y),m<n.
Yo)  killrr) < 27imA)r for r=(n+m)/(n—7Y),m<n.
8y) kil ™M Z2-ire for r=m/(n—y),m<n.
From a,)-%,), from lemmias 2, 3, 6, 7, 10, 10a), theorems

1, 2, and taking in account Proposition 1, we obtain the fol-
lowing theorems:

Theorem 3. If 0<Y=n, then Hy, is of type (LP(Enr),
ILs(Er)), for any p,s satisfying

1/p—1/s=v/n, 1<p<n/y. (56)
For p=1,Hy, is of weak type (Li(En),Lnn=1)(Er)). Thus,

Hyn is of type P for every interior point P of AB, and of
weak type at B.

- Theorem 4. If 0<y=n,EmCEr and m<n<m-+y,
then Hy, is of type (LP(Er),Ls(Em)) for any p,s such .that

1/p—(m/n)1/s=v/n, (1<p<n/y) (57)
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For p=1 Hyn is of weak type (LA(ER), Lmin=) (Em)).: Thusr
Hy, is of type in AB’ and weak type at B’

Theorem 5. If 0<y=n,m<n<m-+yY, and Lf EmcEn,
then Hy, is of type (LP(Em), Ls(En)) for

1p—(nfm) 1fs=(y+m—n)/m, (n/(n—Y)<s<w).  (58)

For p=1,Hy, is of weak type (L1(Em), Lm/(m¥-n)(Er)).

In all cases the series (55) is convergent for almost dll =
of Er or of Em. If 1<p<n/y then this series converges also
in Ls(Er), or in Ls(Em). For y<1, we have in addition that

Hy, is a multiplier transform: Hy, f=T*(h ']}), where h(u) =

A
lim ZV,__yk;(u),N -, and |h(u)| <c|u|™.
For the case of bounded domains we have the following
theorems.

Theorem 6. Let D,cEr, D,cEm be bounded doma-
ins, EmcEr, and let 0<y<n, m=n<m+vY. Then: a) Hyn.
is of type (LP (Dn, Ls (Dy,)), that is Hy, is a bounded transfor--
mation from- LP(D:) to Ls(D,), for any p,s, such that

I/p—(m/n) (1/s) S¥/n, (1<p<c, pFn/v,1ss=®), - (59)
and for | |
" p=1, s<m/(n—Y), and p=n/y, s<. (59a)-
b) If '
1/p—(m/n)1/s<y/n,1<p<w, p7:n/y,1=ss®,  (60):

“hen Hy, is @ complebely continous operation. from - LP(Dn).
to Ls(Dy,).

Proof. a) Now f(t) is defined on Dn, so that we may-
consider that f(t)=0 for te¢ Er—Dj, and Hy,f(z) is consi--
‘dered only for ze¢D,. Hence, since k;=0 for || >22i, there:
is number iy=0, so that Hy, is now of the form

Hynf=2_ 0f *ly=f*K'y, (61),
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where Kyp=2_k. (6la)
Since Y>0, we obtain from B;) and B,) |

1Knlly = Z_0 kil S e Z-_.02=¢y;
K|, < ¢ Z_ 0 2-i0-Y) 2inir < ¢, if r<n/(n—¥).

Hence - we have no'w'
K'yne LN(E"Y; K'yne Lr(En) if r<n/(n—Y).  (62)

If p,s satisfy (57) then, by theorem 4, H.y, is of type
(LP(Dn), Ls(D,,)), and sinoz D, is a bounded domain, Hy,
is of type (p,&’) for all &’ <s. This proves part a) for p\n/Y
For p>n/y we have |Hy,fll.=< |fll, ||K’Yn||p, and since p'<
n/(n—y), we obtain from (62) that Hy, is of type (p,cn)
and hence alsc of type (p,s) for any s<o.

b) Let p,s satisfy (60), so that 1/p—m/(ns) —y/n=—
d>0. For any N let Hy,=Hn+ Ry where

Hyf=Z yfxk, Ryf=f+KNy, , (63)
Khyp(z)==_,N-1Ly(z) = B N1 280" kyyy (2N ) =
2N (=) 'y, (2N ). (63a),

Each k; is a «good» kernel, hence Hyf is a completely
continous operation from LP(Dn) to Ls(Dp), so that it is
enough to prove that ||[Ry||—0. If g(z) is defined by g(z)=
f(2N ), then from (63a) we obtain Ry f(z) =2"NY(gx K’) (2V x)
=2"NYHy, g(2V);  hence by part a) already proped, we have
IRy flly=27NY 27Nmis | Hyy g||; < 2-NY=Nmis.c|g||p =

| 2N t=NmistNalP gl fp = 2-¥ed o ],

..and therefore
|Ry| <|2d|N¢—0for N — .

-Simi‘larly, for p>n/y we have:
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Theorem 6a. If D,cEnr D,cEm, are bounded do-
mains, EmCEn,0<y<n, and 'if n/y<p<o, then H,, is
a completely continuos operation from LP(Dp) to C(Dp,).

Remark. The classical kernel k(z)=|z|Y¥™ satisfies also
the .following condition: If Em={y}, Enm={z}, En=FEmx
Er-m—={(y,2)}, m<n, then there is a kernel k*(y) such that
k(z) <cKy*(y), £=(y,2), 8=m—n+y>0. If this condition
is satisfied, then theorem 4 holds for any m<n if 1<p<s,
p<n/y (cfr. [12]).

Notations: The rest of this section is devoted to ca-
pacity properties of Hy,, and only Borel sets, functions and
measures will be considered. p will denote a non-negativa mea-
sure in Er. If p(Er)=1 then p 1is a distribution; if
p(Er—8)=0 then p is concentrated in 8. If K,L,N are
generating kernels (that is Borel functions satisfying conditions
a), B)) then Kyn, Lyn, Nys, denote the corresponding kernels
defined as in (54a). We shall write Ky instead of Ky, and
@(A) instead of ¢(z, A).

Given a function N(z), we say that the set S is of zero
N-capacity (cfr. [15]), and write ¢(S,N)=0, if for any dis-
tribution p concentrated in S,

V(N,p)=supie g | |N(t—)| dp(z) =sup(|N]*p)=co.
En

The following properties are easily verified:

a) If [M|<|N| in <8 and |N(z)|<c¢ in S—8,
then ¢(S,M)=0 implies ¢(S,N)=0.

b) o(AsN)=0,A=Uy" 4, imply (A, N)=0.

c) If feL'(Er) and S={z; |N*f(z)|=o}, then
¢(S,N)=0.

d) If the generating kernel K satisfies |K(z)|<c¢ and if
0<y<d<n, then ¢(S,Ky)=0 implies ¢(S,K,)=0 (becau-
ce then |Ky(z)| < |Ky(z)| in |z| <1, and |K3|<c in |2|=1).

Ky=|z|v" then the notion of zero Ky —capacity re-
duces to the classical notion of zero y —capacity, and theorems
“7,7a, belaw reduce (taking in account properties c) and d))
to theorems of Du Plessis [10]. However, theorem 7b, is pro-
bably new even in the case Ky=|z|Y ™" (cfr. [15]).
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Lemma 11. Let K,N,L be three generating kernels such
that L=(K)".N, and |N|2=cN,c¢>0, let V=V(Ny,u) and
let 8=vy—+yr/p’. Then for any set A,

”(P(A) (KY/P * P’)”r§ 51 vur ”‘P(A) (Lb * f")”p
where 1<r<ow, and ¢, is a fived constant. .

Proof. By hypothesis, 2-i(r—VP) K(2-iz) <

¢y 270P K (2-1 1) 27i(n—Y) N(2-i z),
hence

[Kant—2) au(2) S 3 (Kt 2) Myti—2) du(e) <
¢ { /| Kn_yypr(t— ) |r Ny(t — ) () }1’ " e,

Observing that

| By (1)1 = (Ko (0, (Ko (2) Ny(2) = Ly ()

and integrating over A the last inequality we obtain the desired
inequality.

Lemma 12, Let 1<r<2,|K|2=¢|K|,¢>0,L=|K|",
N(z)=|K(x)|"/=2), W=V(Ny,u). Then

(”KY/r‘* P‘”r'):r' = wr-2 (”LY/2 * P’“E)z'

Proof. Let a=n+ (r'—2) (Y—n)/r b=n+ (y—2n)/r.
Then we have:

o-i(n=11r) K(2-i ) < ¢ 2iC-n) (r-2)/" N(2-i ) 2-i(en-1) K(2-i ),
Ky (2) <eNy(z) K\(z), and hence

| [ Kunt— ) duce)

2

J INo(t— ) |"1=2) dps()

) ” | Ky(t— ) |2 di(z)
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“Taking - in account that
- (NYrr=2) = [Nrir=2ly, (Ky)r'i2 = (K12)yy,,

~ and integrating in ¢, we obtain the desired incquality.
The following lemma is easily verified and we omit the proof.

- Lemma 18. If (Kyp* K'yp)(t) <cKy(t), where K'(z)=
K(—a), then [I(Kys*B)llsP = oll(Ky* )0 =y VK, ).

Theorem 7. Let =0, fe LP(E"), S={x; | Ky, *f(z)|=o},
and let L=KP'l2, N=KP/(P-?), K2z=cK, ¢>0, a) If (Lyy*
Lyj5)(t) < ¢ Ly(t), then S is of zero Ly— capacity for 1<p<
4/3, and of zero Hy— capacity for 4/3<p<2. b) If p=1,
then S is of zero Ky— capucity.

Proof. a) We may assume that S is a bounded set, and
let w be concentrated in S, then by lemmas 12 and 18,

o= Wprpanans [ 10 || Kupt—o) du(o) |ars

1Flp 1Ky * i Ll < Ifllp (WP=2 | Lyjg * pfl2) 4P <
| [e(W)®-2) VP |l (84)

where V=V (Ly, 1), W=V(Ny,p). If p<4/3 then L=e¢N,
Vze, W, and if p=4/3 then Wx=g¢ V.
b) This follows directly from property c).

Lemma-14. Let Kyp= K'yp+ K'yp, where K'yp is
defined as in (6la), 0<y<n, 1<p<<w, and let p be a dis-
tribution. a) If Ke¢LP then K\ p*peLP. b) If KéL then
K/”*uell for any e>0.

Proof. a) We have

IR * il = 120000 | (20 d (1) =

< 3y 2(P-n): J | I K (2-i(z—1)) | do | " )
En

= Zieg ™ 2P 200 | K= | Ky Zimg™ 2P <0,



b) The proof is the same as in a) and we will not repeat it.

Theorem 7a. Suppose that the generating kernel satis-
fies the condition |K|2=cK,c>0,KeLPH. If felLP 2<
p<®, and if S={z; |Kyp*f(z)|=cw}, then S is of zero
Ky — capacity for all 3,0<d<y.

Proof. Let d<y, y/p=3%/r, ¥ —p'=e>0. We may as-
sume that S is a bounded set; let the distribution p be con-
centrated in S. Sinde K"y, vanishes outside of [z|<1,
K”yp*p vanishes outside of a bounded set A, so that K”y,p*u
=¢(A) K"yp*u, hence by lemma 11 (with N=K) and by b)
of lemma 14 (with K=L),

1K yp * pllp = llp (&) K50 * pllpr—e <
S|V L7 * ully S e| VD, (65)

where L=KPH el and V= V(Ks, 1), since a=05—3(r'—e)r’
>0. Since |K|P'< ¢;|K|PHe L1, we have by a) of lemma 14,

1Ky * pllpr <oo. (65a)

Since [Kyp* plly = 1K yp* mllp + 1Ky * pllpr, from the se-
cond inequality of (64), (65) and (65a) we obtain

Let En=FEmxEnr—m, We say that S is of N-capacity in
Em, if ScEm and if sup;¢g.|V*p(t)|=co for any pconoen-
trated in S. For simplicity let us assume that K (z)=|z|n,

Hpf=fKy= 7Yn = fy. Then we have:

Theorem 7b. Let 0<yp<n, feLP(Er), d=inf (y—
(n—m)/p;Y), s=inf(n,m). If 1=p=2, then the set S=
{ze Em; |Ky*f(x)|=o0} is of zero Ks,— capacity in Es. If
2<p<o then S is of zero K., — capacity in Es, for any
0<e<d,

Proof. If m=n we have the theorem of Du Plessis, al-
ready proved. If m>n, we have

|fv(@) | = Wfllp I (1 — & @2) Y|,
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whers the norm is taken in the variable ¢, and z=(=,x,).
If x,-/=0, the last norm is finite: In fact, we may take p>1,
so that we have y<n and (y—n)p'<n. If 2,=0, then

fy(Z) = J f(t) |2y —t|Y-ndt and we obtain the preceding case.

Let now m<n. Then

Iiy(@)| = JEA_M dt, J |t )] |t = 1) Pty <
{ JE,,. dty ”E.._,,. |£(t1,25) |P dt, ] P }

1/p
[ —seoman |7 <[ ittty 1o —sfe.
P
[ j (B ug) | )P duz] i
En—m

where |h|:1, t2=|t1'—m|u2- Since (Y_n) p/<m_n, the
last integral is finite. Since ¢(t;)=|f(ts,t)ll, € LP(Em), and
Il = llgllp{™), we obtain

i) se [ gt lt—afs-mat,

and we obtaiin again the precedent case, already proved.
Remark: We observe that the hypothesis K¢ Lip(1,1) of

B) was not used in theorems 7-7b). Similar theorems hold in

the case En'NEm=Et, even if Em is not contained in En

(cfr. [15]).

6. Lipschitz properties of Hy,. Now we shall
generalize some theorems due to Hardy and Littlewood [17] (cfr.
[10] and[15]). In this section we consider a fized generating
kernel k(z) which is assumed to satisfy condition o) of § &5
and to belong to Lt(E") N Lip(1,1,En) (some additional con-
ditions are assumed in theorems 8a and 8b). Ky, k; denote the
generated kernels defined by (54), (54a), and we write K, ins-
tead of Ky,, and Hf instead of Hy,f. The set {yeE";a<
|y — 2| <b} is denoted by (x,a,b) and Er—(z,q,b) by (=,a,b)".
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We say that fe LipB(En) if |f(z+ h) —f(z)| <c|h|B=0(|h|8),
and that felipB if |f(z+h)—f(x)| =o(|h|B).

Let =_,0k; be denoted by Ky, =,%k; by K+ and Z_N
k; by KyN~—. Then we have the following properties of the ge-
nerated kernels, which are easily deduced from the definition

(54) and a,), By).
a) 1RyH(t-+h) — K1) I, =0 ).
b) |l1t|B |Ky~ (¢+ D) — Ky (2)||y=0 (|h|B+Y), B>0.

(For proof, take N <0 such.that 2V <|h| <2N+1 and split K~
into KyN-+ (Ky~— Ky¥-); in estimating KyN— use condition
%;lly=<2%¢, ;=0 in |x|>2i; in estimating K, —K,V- use
condition |lk;](y,4)=<201i¢ (cfr. the proof of lemma 2).

¢) By similar splittings is proved that if ke Lip(q’,1) and
if N is such that 2"V 1< |h| <2-N, |h|<1/3, and if 2°¥ <
d<1—38h, then:
J Ky~(s+h) — Ky(2)|ado | ' <
) ooy K@) — Ky (a) |7 do =

=y 2 { J (w2 h) — () | } <

(0,]7]2,52i)

= 2V 20n=Yn/)'i |2 + 2L h) — k()| = O( | h|Y—"/9).

) z*,-_\,_” [ki(w)|q'da;}1/q'=
(0,0,4R)

1/q
===l g [ s
(0,0,4|%])

< |2-N|7n/q k| g < |E|lg(|R|1~"/9).
1/q’
C) me’?w{ J |kl($+h)—kl(x)|q/d1}} =
©,51 ,
=< 3Z0_yy 2i(-n/g).

Theorem 8. Let 0<y<l, a=inf(B+v,1). If fe
Li(Er)'N LippB (Er),0<B, then Hfe Lipa (En).
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Proof. From the hypothesis we have |f(z)|<c<o. We
have )

Bf(a+ 1) —Bf@)| = [ #a—0 (Kate+ 1y (o] ot | <

J ooy [(E 0 Kt R) —Kh(B)] e | +

[, (@=0 = HE) (14 k) — K9] dn

U Ky (8) dt — f K(t) dt ] I
(»,0,1) 0,0,1)

and |f(x+1t) — f(z)|="0(|{|B), hence using a) and b) we obtain
[Bf(2+-h) — Hf(w)| = O || -+ [1).
Theorem 8a. Let keL(q,1), ¢g>1, 14n/g>v>n/q,

0<y<n. If feLd then Hfelip(y—n/q).
Proof. We have

+ ()|

(Bf(ah) —Bf@) =] [fe—0)] [Kp(+ B—Ket(o)] dot

(1,0,1)
”(o,o,sh) + I(O,Shyﬁ) + J(O, ¥ 1)] [|f(-’13 - t) | |KY_(t T h) o KY_(t>| dt]'

We take N>1 such that 2-V-1 < |h| <2V and ® such
that 2-M <d<1—3|h| andv

Loya) [f(z—t)|adi=s. .

Applying Hélder’s inequality and using c;), ¢;), c3) we obtain
|Bf(z+ k) — Hf(z)| = o | [t-+s) +0( 1Al ) =a(|R[="4).

Theorem 8b. Let 0<y<1, ke L= (En). If feLP(En),
1<p<x, then Hfelip(p,¥).
Proof. Let

g,(5) = I 1) Ky(m—1) di;

(,0,¢|R])
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9:(%) =j £(t) Ky(z —1) dt,

(wyc|hl,2|R]) B
9s(z) = J f(t) Ky(z—t) dt;

(2,0,8|Rly
AHf(z)=Hf(z) —Hf(x—h)=Ag1+ A gs+ Ags
It Vis sufficient to prove that, given £>0, for sufficiently

small constant ¢ and sufficiently large d, it is true that (for
small h tending to zero):

[AEEr (66)
(laglar=[ag P deeipim, (67)
I galp=o (|A[Y). (69)

We first prove (68). Let A={(x,cl|h|, d|h|),A;=(0,¢|h],
d|h|). If teA,u==z—1i, and |h| small, then =__=|k;(u)| <
2r=YM |u|Y—", hence

g = || 00 —fe—m) B e -1 1| =

<ot L 1) — f(t—h| |o—tiv-ndig
My djhl2((d—o) e f [ 1 —fe—mypan ) =
=t(e.d) e [ 170 —fe—yppan [
(15 galp)? < M(erd) [bie-n [ d [ 170) = fe—B)PPdt=
= Mppfe-n| da (70— fe—R)IPdi=o (IAIY).

Now we prove (67). Let B=(0,0,c¢|h|). Since |K(u)|=
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M|u|Y—n if ue¢B and |h| is small, we have for sufficiently
small ¢,

lgs(@)llp=| L If(z—u)| | Ky(u)| dulp<
=M| JB If(z—u)| |u|t-rdulp=

M [ Julton ity dus My (el )Y e[
B

Similarly g(2 — B </h]T. |
Now let us prove (66). Let D=(0,0,(d+1) |h|),D'=
(h, d|h‘|, (d+1) |h]), 2N < (d+1) |h| <2-M+. We have

89:@)| = | [, Fa—0) 2 ga —b) — b)) | +
L) |f(z—u)| Z_.® | k()| di+

+[ 1= 7 lk(w)| da=R; + Ry By

If d is suﬂ‘lici-ently large, then

rdo=f [| [ 2 ka =0 k@)l 7o — )1 da | a |7
<[ = =) k() Iz — )l d
= fllp Z° 4=y 200-n)|h| < M|d|¥n |h|Y < e|h]Y.
Let D”=(0,d|h|,(d+1) |h|), then applying Minkowki’s
integral inequality, ) '
(URdp= [ d | [ (fa—u)| 20" lw)idu]” =

sy [ [ e —w)du ]”da;

En

<My (d|h|)(r-n)P [P/ g (n=)P/P? J dz J f(e—u)|Pdu=
En - D"
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M, APy ¥n=1)XP—) | Pr-n I £(2)|Pda |(z,d|h], (d-+1)h])|=
En
=My dP(-1) |h|PY < ¢|h|PY, since y<1.
Similarly we see that (||Rs]|,)? <¢|h|"P.

Theorem 8c. Let 1=p<o, 0<y<l—o,a>0, k(z)=
k(—=). If feLPN Lip(p, ), then HfeLip(p,y+a). If fe
lip (p,a) then Hfelip(p,y+a).

Proof. We prove the first part of the theorem; the other
part is proved in the same way. Let A=(0,0,3|h|),B=Er—A,
K(t) = Ky(t), then
{Hf(z+h) —Hf(z—h)| = |2 Hf(z)| =

H f(z+u) K(u—h) du—J f(z—u) K(u—h)du | =
En En
=|[, e+ w = fa—w) (K(a— 1)~ (w1 du+
+ | Ho—u) —f(o+ )] K() da-+

+ IA [f(z+u) —f(z—u)] K(u—h)du,

=i+ T+ 5l

Applying the integral inequality of Minkowski, and letting

2N <8R =2 ML N>, |y <

=t |, Ve+n) —fe—wii—h — K da

pdw}llpé
= [ 1K=k — K| |5 flpdu=
B
gMJ lu)® [K(z—h) — K(u)| du<
B

= M[ @] 274, 200 [Je((m — h)/26) — k(21 ) |dz
= M1 Z°_N Qui+in (Y—n) iz—ihl —
=M, (Z1_y+ =) |h| = Mg|h|v+e :



— 40 —

1/P:
= [ K@ [ fe+u)—fe—wyas | au<
<M J e B~V 2i0v-m) [ k(2-iw) | du<

<M, =_ N+ gy-na)i j k(2-i) du < My |h| =+,

||Js||,,§Mj K (u—h)| |u|adu§MJ 1K (a)| |ul® du

(0,0,3|2)) (0,0,4]n))

and the last integral is estimated in the same fashion as J,.
Remark. It was proved in [2] that in the case of y=0

the properties of Hilbert transforms hold also for «ergodic
Hilbert transforms», that is for operators of the form

Honf(@)= | f(s12) Konlt) dt,

where {o,x} is a group of measure-preserving transformations
of an abstract measure space X ={z}. The corresponding exten-
sion for Y>0 is not clear and the few results we obtained are
mostly of negative character (cfr. [15]). Hence it is an open
problem whjch are the type and capacity properties of the
«ergodic potential operatorss.
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