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SUMMARY:

The theory of the Clifford algebras is discussed in connection with the finite-
dimensional Jordan-Wigner algebras and the affine algebra Gs of Schonberg. The
relations of G, with the n-dimensional antisymmetric tensors allow to see in a simple
way the origin of some of the properties of the Clifford algebras and the spinors,
especially the connection between 2p-dimensional spinors and p-dimensional
antisymmetric tensors. On the other hand the theory of Gy is further extended.
The comparison with the Jordan-Wigner algebra leads to relations between the
Clifford algebras and the functions of two-valued variables. The spinors are shown
to be functions of the sub-sets of finite sets and the Jordan-Wigner algebra is discus-
sed in relation with such sets.

The null vectors in the Clifford algebra.

1. The Clifford algebra is a metric vector calculus of a real
n-dimensional flat space endowed with a non-degenerate metric
quadratic form g;;ai % the z denoting cartesian coordinates. To

- .
any vector V corresponds an element yy of the Clifford algebra,
the correspondence being characterized by two conditions

- -
DeaVi+ceVe—cyv+ v [1a]
(the ¢ denote numbers)

) y% = g1 ViVl [1b]
(1¢ denotes the unity of the Clifford algebra)

It follows from the conditions (I) and (II) that
Tr v + 1ra v = 2 ¢ Vi Vit e (2]

The Vi denote the cartesian components of the contravariant

vector ? The Clifford algebra Cn,®@ of the n-dimensional flat space
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endowed with the metric g;; can be defined as the assoctative algebra
with a unity le generated by the symbols vy of the contravariant

-
vectors V that satisfy the conditions (I) and (II). We may obviously
take as generators the symbols of n linearly independent contra-
variant vectors. We shall denote by v; the symbol of the j-t& basic

_)
vector I; of the cartesian coordinate system. The n symbols v;
can be taken as the generators of C,®, the multiplication rule
being '

Yite + YeYi = 295 le [3]

as a consequence of equation [2]. It will be convenient to take
C.® over the field of the complex numbers

We shall denote by W a generic null vector: g;; Wi W = 0.

The symbols yw are nilpotent: vy = 0. Let ﬁ)fl,. . I’_I)f,’- be r mutually
orthogonal and linearly independent null vectors. The unity 1c¢
and the r symbols vw,, . ., Yw, generate a r-dimensional Grassmann
algebra, which is simply the Grassmann algebra of the r-dimen-
sionall totally null vector space of the linear combinations of

-
the r null and mutually orthogonal vectors I?Vl, ..y W,. In the eucli-

dean case the ﬁ)f are always complex vectors, but in the case of an
indefinite metric there are also real null (or isotropic) vectors.
It is well known that when = is even, n = 2 p, the maximal
number of linearly independent mutually orthogonal null vectors
is p. The totally null (or totally isotropic) linear space defined by
p linearly independent and mutually orthogonal null vectors is
the linear space of the vectors of a maximal flat space of the null
hypercone of the n-dimensional space, whose equation is

gixxixk = 0.

When n is odd, n = 2p + 1, the maximal number of linearly
independent and mutually orthogonal null vectors is also p and
the vector space they generate is the linear space of the vectors
of a maximal flat space on the hypercone gzaia* = 0. Thereby
when n > 1, there is a Grassmann algebra of the order [n/2], as-
sociated to any maximal flat space on the hypercone gjrxixk = 0,
generated by the symbols of any set of [n/2] linearly independent
vectors of the flat space, [n/2] denoting the largest integer contained in
n/2. We shall from now on write [n/2] = p."
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Let the j’, be a set of 2 [n/2] = 2 p mutually orthogonal real
vectors, such that gz J/J.* = e,, with ¢, =1 or — 1. We shall

introduce 2 p null vectors VVG and V—l)/a*f
- . - ' d -
“=V60J“_V_ea;¢—PJa+p ) 2Wa+=veaJa+
-
+ NV —€aip Jayp (4]

(a =1, 2,.‘.,p)
We have obviously
Wa.Wo=0 , Wa. Wt =0 , 2Wa. Wet = 208
(a, b =1,..,p) ‘ [5]

the point indicating the inner product. The linear combinations of
the Wa constitute a p- dzmenswnal totally isotropic vector space and
the linear combinations of the W + another such vector space. When
the space 1s euclidean, Wa+ cotncides with the complex conjugate
ﬁ)’ * of VVG, since e, = 1 for all «. The 2 p null vectors W;’ and ﬁ)f +
are linearly mdependent VVhen n=2 p, the 2 p vectors W and

W + constitute a basis of the linear space of the vectors V We
shall call null basis of a 2 p-dimensional metric space a set of 2 p

- o
null vectors W, W,* defined in the above way.
) -
When n = 2 p, we can express any vector V as a linear combi-

- - -
nation of the vectors of a null basis: V = we, W, + oyt W,
with summation over the still indices a. We shall denote the

- - - -

null vector we, W, by wy and the null vector w,+* W+ by wvt.
- - - -

 Thus any V s the sum of two null vectors v, and wy*, the w, belon-

-
ging to a totally isotropic p-dimensional vector space and the wy*
to another such vector space. We have g ViVE = Z wy® oyte.

In the 2 p-dimensional euclidean space the null vectors Z;v and
(T))y+ of a real vector I—} are complex conjugate. Hence there is a
one-one linear correspondence between the real wvectors f/') and the
vectors Z) of the p-dimensional totally isotropic vector space of the

-
complex linear combination of the W4 The euclidean geometry in the



— 242 —

real space is associaled to the unitary geometry of the 3 — space
since g ViVek =3 |wye |2 In the case of p = 1 we get the well,
known correspondence between the real vectors of theeuclidean plane
and the complex numbers.

We shall call maximally indefinite metric of a 2 p-dimensional
flat space the metric whose canonical quadratic form has p positive
and p negative squares. In this case, p of the e, are equal to 1 and

%
the other p are equal to — 1. We may numerate the J, in such
-—)
a way that the es be 1 and the eq,p, be — 1. Thus all the W, and
W—};f are real and we get two real totally isotropic p-dimensional

vector spaces of XV and u—))vf* associated to the linear space of the real 17)
For other types of indefinite metric there are no real p-dimensional
totally isotropic vector spaces. When the metric is maximally
indefinite and 7 is divisible by 4, p = 2 ¢, we may numerate the

- -

J.insuchawaythate; = e = ... = e =¢€p1= ... =€p =1

and €gp1= ... =€p = €pygs1 = ... =€ = —1,in order that

- - ) - -

Wo; =W forr=1,...,gand Wit = —W* fors=¢+1,...,p.
-

Thus forareal V,wy™" = 0y * and wy™* = —oy** and g ViVe =

. ) . . . %

= X |y |2— Z | wr*|% so that the indefinite metric of the V-
r 8

space is now associated to an indefinite hermitian metric in the

- . ..
linear space of the complex vectors w. It is easily seen in a similar
way that the indefinite metric whose canonical quadratic form
contains 2 m, positive squares and 2 m_ negative ones can be

. -
associated to the hermitian metric of the eomplex v — space
Dlovt|? — 2 |eye|? with b=1,...,my and c =m, +1,...,
b c
m, + m_. :
The elements vy, and g+ will be denoted by W, and W,t,
for the sake of simplicity. It follows from the equations [5] that

WaWb-I- WbWa =0 y W,,,"'Wz,"’ -I-' Wb+ Wa+ = 0,
W,,, Wb'" + Wb+ Wa = 3.,,1, l¢ [6]
When n = 2 p, the W, and W,* are a set of generators of the Clif-

ford algebra C:,® of our 2 p-dimensional metric space. We may also
interpret them as the generators of an associative algebra of a par
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- -
‘of p-dimensional v and * vector spaces, in which the symbols v and
o+ have the multiplication rules

oo + onor = 0, orten™ + ontert = 0

,__,,__,
¥4 9
o ®

oront + onter = X ertont le

By taking o = w* W, and ot = wte W,*, we see that the rules
[7 a] and [7 b] are a consequence of [6]. Actually we have

v =%, and ot = Yot

%
We may interpret the w* as the covariant vectors of a p-dimensinal

-9
space whose contravariant vectors are the w. Thus the v, w* algebra
appears as the algebra G, of a p-dimensional affine space introduced

by Schinberg (). The interpretation of the _w)+ as covariant vectors
of a p-dimensional space is quite natural, since any u_;ff defines
a linear functional on the 3, namely that which associates to o the
number o . 31"', and any linear functional can be obtained from

one and only one vector of the c_o)+ — space by means of the inner
product of the n-dimensional metric.

The possibility of reinterpreting the Clifford algebra of a 2 p-
dimensional real space as a kind of algebra of a p-dimensional
complex space is particularly natural in the case of the 2 p-dimen-
sional euclidean metric, in which there is a one-one correspondence

between the real V and the complex o. The euclidean Cyp can be

tdentified to an algebra of the unitary geometry of the complex'z —_
space. Now W and Wt are the symbols of complex conjugate vectors
and it is convenient to repiace the Wo* by new symbols Wg*. Thus
the multiplication rules [6] for the euclidean case become

WaWb + WbWa =0 ) Wa*Wb* + Wb*Wa* = O:
W, Wy* + Wy* W, = Say le (8]

‘The multiplication rules [8] are analogous to those of the creation
and anihilation operators of the quantum theory of a system of
particles obeying the Fermi statistics, developed by Jordan and
Wigner (%). Now there is only a finite number p of w,, whereas
there are infinite W, in the Jordan-Wigner formalism. Thereby
it is reasonable to call the W,, W,* algebra a p-dimensional Jordan-
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Wigner algebra. The original Jordan-Wigner formalism may be
viewed as a geometric algebra of a separable complex Hilbert
space of infinite dimensionality.

R Lo
The choice of the totally isotropic w and w* vector spaces depends on
-5 -
the choice of a null basis W4, W4*, but it does not depend on that of
. N " .
the basic veutors I; of the cartesian frame of coordinates, when the

- . .
J o are not related to the vectors I;. When n = 2 p, it is possible to

- - -
take a set of W, and W,* as basic vectors I;. This is particularly
convenient in the case of the maximally indefinite metrics in which

we may take 2 p real W and W + as we have already seen.

The. affine algebra Gy

2. Let the z and I/ be the basic contravariant and covariant
vectors of a n-dimen;)iona.l affine space. We shall denote the con-
'travariant vectors by _f/ and the covariant ones by U. Thus
V V? I; and U U I i. The invariant V7 U; will be denoted by
<V, U>. The elementary vector calculus involves an affine
product of contravariant vectors T_/)' A Tf)' and a metric product

V X V= g;x Vi V'+ That calculus does not distinguish the con-
travariant and covariant vectors. Such a procedure is not incon-
venient as long as one deals only with an euclidean space and uses
only orthogonal cartesian coordinates.

The Grassmann algebra is an affine calculus of contravarlant
.vectors, closely related to the ordinary vector calculus. In the

Grassmann algebra the generators are the symbols I; of the ?,
and a unity (1) with the anticommutative multiplication rule
I; I+ IxI; = 0. It is also possible to build a Grassmann algebra
of the covariant vectors generated by a unlty (1) and the symbols
Ii of the {:, with the rule Ii I* + I*Ii = 0. Schonberg (1) intro-

duced the algebra G, of the contravariant and covariant vectors,
with a unity (1), generated by the 2 n elements I; and Ii with the
multiplication rules

3

I Ie4 I D, =0, Iide+ I8Li = 0, LT+ IxI; = 33 (1) [1]
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In the algebra G, the vectors lf) and U are represented by symbols
V and U with the multiplication ru—l)e's ‘
Vvi+V'V=0,U0U0+4+U'U=0, ‘
VU—I—UV=<V,U>(1) 2]

Let us consider the direect sum of the V and U linear spaces
We may take the I and I: as a basis of the sum space Thus any

vector Q of the sum- space can be represtﬂnted as follows:
- - -
Q=Vil,+ U;I" =V + U.
- -

The lszz'ne geometry of the n-dimensional space leads natdmlly to the
tntroduction of a metric m the Q — space, for which the square of
the length of Q 18 <V U> and the inner product of Q and Q’ is
1, (<V, U'> + <V’ U>). The V and U may be reqarded as
special kinds of null vectors of the Q — space constztutmg two totally
1sotropic n-dimensional vector spaces. The 2 n vectors I and I' consti-

tute a null basis of the 3 space endowed with the above <V U>
metric.

Schonberg pointed out (1) that the affine algebra G, is the Clif-

ford algebra C:. of the real 2 n-dimensional 3 — space endowed
with the maximally indefinite metric <V, U> = Vi U;. The ap-
proach to the theory of Cs, given in section 1is obviously suggested

by the theory of G, as a C:,. There, the 2 p-dimensional 17) — space
was essentially treated as the direct sum of the two totallyisotropic

o and o+ vector-spaces. When the vectors 171)7,,, and ﬁ)/,,'* of a null
basis are taken as basic cartesian vectors of the 2 p-dimensional
cartesian space, the expression of the square of the length of V is
2 wytwyte, analogous to the expression ViU; of the square of

the length of a 2 n-dimensional vector ﬁ

G, may be regarded as the basic elementary vector calculus of
the n-dimensional affine geometry. It involves only the affine
vector product, as the Grassmann algebra, but it deals symme-
trically with the covariant and contravariant vectors; whilst the
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Grassmann algebra deals only with one of the two kinds of vectors.
The symmetry with respect to the two kinds of vectors gives to
- @, an extremely simple algebraic structure: G, and the algebra
of the 20 X 2n mairices taken over the same field of characteristic
zero are isomorphic. Schonberg (}) showed that G, is the algebra
of the linear operators on the vectors £ of the linear space of dimen-
sionality 2 obtained by the direct sum of the linear spaces of the
covariant antisymmetric tensors of the orders 0, 1, 2,.., n of the
n-dimensional affine space. It follows from the symmetry of G,
with respect to the covariant and contravariant vectors that it is
also the algebra of the linear operators of the vector space obtained
by the direct sum of the linear spaces of the antisymmetric contra-
variant tensors of the orders 0, 1,...,n of the n-dimensional affine
space. We shall denote by 7 the vectors of the latter 2 — dimen-
sional space. )
When G, is treated as the algebra of the linear operators on the &,
the £ appear as contravariant spinors and the n as covariant spinors

=y
of the 2n-dimensional Q — space endowed with the maximally
indefinite metric <V, U>. When @, is regarded as the algebra
of the linear operators on the 7, they appear as the contravariant

-
spinors and the & as the covariant spinors of the Q — space with
the metric <V, U>.

There is a set of n commutable idempotent elements N; = Ii I;

A

associated to the basic cartesian vectors. The N; = I;Ii are
A

also idempotent and commutable. The elements P = N;... N,

and Q@ = N;...N, do not depend on the choice of the j), and are
also idempotent. It is easily seen that I; P =0, PIi =0, IiQ =0
and Q Ii = 0. Let us introduce the elements Pj,. ., = P I; I
‘and Piv-sts = it [ P; we shall take ji <js... <Jjs O Jp.
It is easily seen that P P® = BE’;; (1). By means of the P(j) and
P@® we build the 22" elements Pg‘; with all the ordered. sets of
values (j) and (k) : P& = P® Py;). It is easily seen that

( ¢ ) plk
PG PGy = 3G PG [3]
Tt follows from the orthogonality relations [3] that the 2?7 elements
P® are linearly independent and can be taken as a basis of

G,. This choice of the basis gives to G, the form of the algebra of the
linear operators on the above & spinors. In order to give to G, the
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form of the algebra of the linear operators on the 7-it suffices
to take as basis of G, the 22* elements Qg’; = Q¢ Q® with
Qi,...i, = Iy ... I,, @ and QFrionks = @ I%s ... I®. Since

® _ x® oM
3 Qe = 3w QW 4]

the 2?* elements Q(,) corresponding to all the 2% different pairs
of ordered sets (j), (k) are linearly independent. '

Let us consider the left ideal G, P constituted by the products
T P of the elements T of G, by the idempotent P. G, P is a vector
space of dimensionality 27 having as basis the 2» elements P®
with all the distinct ordered sets (j). G P s essentially the direct
sum of the linear spaces of the covariant antisymmetric tensors of all
orders, endowed with a product that renders it an algebra. The T may
be regarded as the linear operators on the elements TP of G, P
that transform T!P into T I'P. Thus G, appears as the algebra
of the linear operators on the E.

The linear space G, Q admits as a basis the set of the 27 elements
Q; corresponding to all the distinct ordered sets (j). G, Q s es-
sentially the direct sum of the linear spaces of the antisymmetric
contravariant tensors of all orders, endowed with a product that renders
it an algebra. The elements of G, can be associated to linear ope-
rators on the vectors of G, Q. Thus G, appears as the algebra of
the linear operators on the 7.

Matriz representations of G, and Cap.

3. The representation of the elements of G, by linear operators
on the &, discussed in section 2, gives a natural representation of
the elements of G, over the real numbers by real 27 X 2* matrices.
In that representation the matrix of I is the transpose of that of Ii
and the matrices of the n commutable idempotent elements N; = Ii I;
are diagonal. The matrices of the elements J; = I; + I are there-
fore symmetrical and those of the Jj., = I; —Ii are antisym-
metrical. The J, are the symbols of 2 n-dimensional orthogonal

vectors j a

The generators w, and wg* of a Cé”p) over the complex numbers
introduced in section 1 have the same multiplication rules as the
generators I, and I° of a G,. We may therefore represent any
C», over the complex field by 27 X 27 complex matrices, in
such a way that for all a the matrices of w, and wgs* be both
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real and mutually transposed, hence adjoint, by means of the above
representation of G,. In the present representation of CZ the
matrices of the real V are not always hermitian when ¢, ViVe > 0
and anti-hermitian when g;z Vi V* < 0. The matrices of the elements
wetw, are diagonal and real.

The present representation of @, gives also a representation
of the n-dimensional Jordan-Wigner algebra over the real numbers
by 27 X 2" real matrices, which is analogous to the well known
representation of the quantum field theory of the fermions, in
which the occupation-number operators of the fermion states are
diagonalized.

-5 o - - -

The above vectors J,,J; =1; + I_f) and  Jjn = I; —_I)v‘,

‘constitute an orthonormal basis of the 2 n-dimensional 5 — space

. y . - _) —)
with the metric <V, U>. The n-vectors .7‘,1,'__,% =Jau AN dJu A

->
A ... A Jgo, are associated to the elements Jo,. . 0, = Jar - -+ Ja,
‘The set of those elements constitutes a symbolic antisymmetric

tensor of the order n of the O — space. It is easily seen that the
square of any of those elements is either (1) or — (1). and that

'Jax..fz I'J;:l..a =ei1..a Ii with eil..d =1lor —1 [1]
1009 ®p T 1eey Bn 1009 Op yee9 U

We have e{,_,,n = (— 1)1 and ef,ﬂw,zn = (— 1)». We shall take -
when n is odd J = Ji,.,, and when n is even J = Jui1,.. 20
in order that for all =» ‘

JI;J-1=1i and JIiJ-'=1I; [2]

The inner automorphism I' —J I' J-! of G, corresponds to the

N
transposition of the matrices of the elements associated to the Q,
.in the above representation of @,.

, A
Since J N;J~! = N;, we have J PJ-! = Q and

TPy I = Qi 8]

J1yeasdr

The equations [2] and [3] are not covariant for a change of the
basic vectors T[)j. This results from the fact that J depends on the

_)
choice of the I;.
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* We shall denote J,,1,..,2, by C. It is easily seen that
C Pivir=(—1)or {(n—1)1} =1 e, 0 Pimtoin  [4]
29 =@2n+r) (r—1)* (5]
Hence ‘
C D)™ Gy, Pirri} = B4 (0 — 1) 1 ghieskace Phivcdr [g]
with

A
(1) Tirsarmsdn = (— 1)or gitomin &, [7]

Equations [6] and [7] show that the linear operator on the & correspond-

A
ing to the element C transforms & into the n whose components are
defined by [7] with r = 0, 1,..,n. The element C is therefore related
to the duality of the antisymmetric tensors of the n-dimensional space.

Alternative construction of G,.
s
4. The tensor product of the linear spaces of the ¥V and U gives
._)

the linear space of the mixed tensors 4+ We can associate to A

the linear operator A on the V defined as follows: A V= Ajx Vf?k.
Thus the space of the tensors A;* becomes an associative algebra, the
product of the tensors A+ and Bj* taken in a given order being the
tensor associated to the product of the operators A and B taken in the
same order: (A,*) (B*) = (Cj#) with Cj* = Ay* Bk

The tensor A,* may also be associated to a linear operator A on
the U defined as follows: 4 U = UipA;xIi. The space of the Aj*
- - -

18 now endowed with the structure of an associative algebra in which

the product of A,* and B;* is the tensor of the product of the corres-

ponding operators on the vectors U : { A;¥} { Bk} = { A»By*}.
_)

The present algebra of the A;* is the reciprocal of that corres-

ponding to the linear operators on the contravariant vectors T—f)
The above considerations can obviously be applied to any pair
of dual spaces of finite dimensionality. The linear spaces of the &
and 7 of section 2 are dual ones. Since G, is the algebra of the linear
operators on the &, it is the algebra obtained from the tensor pro-
duct of the & and v spaces that corresponds to the operators on
the &. G, is also the algebra of the linear operators on the n obtained
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tensors Af,‘,’i‘ (r, s = 0,1,..,n), antisymetrical with respect to
the indices j and also with respect to the indices k, correspond
two elements 2 A¥Fe Fivdr and X pAkks gl of @, the
Ty

J1yenadr 1.6
7y 8 8

former corresponding to a linear operator on the £ and the latter
to a linear operator on the =, (the sign X’ indicates that the
summation is taken only over the ordered sets with j1 < je <
< ... <jrand ki <k < ... <k

The double réle of G, as operator algebra on the § and 7 is related
to the tensor duality, in which Af"# corresponds to B’,}'ﬁ;;j}i: =
= 3’,;‘;.'jjf}c”n Aﬂ',j;’f‘ (r1s1) -1, 3 denoting the generalized Kronecker

delta. This follows from the fact for any values of the j and k

Buks (1) =R+ 8 6D {(n—r)! (n—8)1} ~* 35 Plsbin

(1]

The passage from the P basis of G, toits @ basis corresponds there-
fore to the replacement of the tensors 4 by their dual B.

The present definition of G, as the algebra of thelinear operators
of the & — space leads immediately to the introduction of the
Pg‘-}, which correspond to the dyadics associated to the basic
vectors of the £ — space. The element (1) corresponds to the ope-
rator unity. Hence we have

(1) = 3y~ PRy [2]
We can now define the I; and I7 in terms of the P @

I = B(r)~ Plyk, L= D00 [3]

Since Cé”,} -is the G, of the totally isotropic p-dimensional
w-space introduced in section 1, we may define ng as the al-
gebra of the linear operators on the vectors of the direct sum of the
linear spaces of the covariant antisymmetric tensors of all orders

- ;
of the w-space. Those 2¢-dimensional vectors are spinors of the
. . . % o
2 p-dimensional metric V-space. Thus we have a direct simple
definition of the 2 p-dimensional spinors and also a definition of
the Cufford argebra Cé‘g by means of those spinors.
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It is important to note that in the above definition of G, we may
replace the £-space by the direct sum of the linear spaces of the
antisymmetric covariant relative tensors of weight « and the
n-space by the direct sum of the linear spaces of the contrava-
riant antisymmetric relative tensors of weight-a. The choice
o = 0 s actually not the most interesting one from the point of view
of the tensor duality: by taking « = — 1/2 we get 1n the linear space
of the & the invariant bilinear forms

(‘Sy E/)f = 2=0 { ! (’ﬂ _T)‘ }_1 gliain Ejl,..,j, E’j,-.‘.x...,]',‘ fr [4]

gidn denoting the well known Ricci tensor density and the f, ar-
bitrary numerical coedficients. The existence of those forms follows
from the duality

-njf+1,..,jn = (r!) -1 Ejl.-.yjn Ejl'-'-,jf [5]

The choice of the weight &« = — 1/2 is however not possible in the real
domain, because a real relative tensor of weight — 1/2 in a cartesian
system has imaginary components in another system with opposite
ortentation. '

The equation (&,&'); = Oisinvariant with respect to the changes
of cartesian coordinates in the n-dimensional affine space. It does
not depend on the choice of the weight « given to the &, ;.
Let us interpret the components &, of £ as homogeneous projective
coordinates in a space of |[dimensionality 27 — 1, and the &, in
a similar way. The equation (&, &); = 0 associates a hyperplane
of the projective & — space to a point of the & — space and con-
versely.

The fundamental polarity in the projective E-space

5. We shall now treat the components of & as homogeneous
projective coordinates of a point in a 2" — 1 dimensional space
and the components of 1 as homogeneous hyperplane coordinates
in the same space. We shall write the equations of the tensor
duality as follows

A . ' .
'r‘jf-l—l!--'jﬂ = (-—— ]_»)”r Ejlv-‘v»'jﬂ. E-Jh-.,jr (7‘!)_1 [1]

2 =Q2n+r) r—1) (21
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The set of equations [1] for r = 0, 1,..,n defines a correlation

1/;9 = Ceo &, in the &-space. Since Coo = (—1)* ®+D/2 Cers the
correlation is involuctoric. There is a fundamental polarity in the
projective & - space associated to the duality of the antisymmetric
tensors. The bilinear equation of the polarityis (§, &) = 0

&, Epoby = 2 {11 (n—1) 142 e Eie E jrptronin (— 197 [3]
(&, &) = (— Dr@+D2(E, &) [4]

When n(n + 1)/2 is even, we have a polarity with respect to the
hyperquadric (&, §) = 0. When n(n + 1)/2 is odd, the form (, &N
is antisymmetric, so that the polarity is taken with respect to
a linear complex. . ,

The & - polarity corresponds to the well known polarity of
the spinor theory. The above discusston shows that the spinor polarity
of a 2 p-dimensional metric space s essentially the polarity of the
projective & -space of a p - dimensional affine space,.arising from
the duality of the p-dimensional antisymmetric tensors. It is known
from the spinor theory that the spinor polarity is invariant for
the linear transformations of the spinors induced by the 2 p-dimen-
sional rotations of the metric space. Since the £ are the spinors "

of the 2 n-dimensional space of the ?2 = T_} + U endowed with the

5
maximally ‘indefinite metric <V, U >, we see that the E-polarity
must be invariant for the linear transformations of the & induced
by the 2 n-dimensional rotations of the <V, U> metric, which
constitute a group larger than the n-dimensional linear group.
The & -polarity is obviously related to the transformation of
the linear space of the £ defined by the element C of G, introduced

A
in section 3. We have n = Cop £, Cop denoting the linear operator
corresponding to the element C. It follows from the equations [3]
and '[1] that

(&) By = Ehiyoen 2 (1) 72 (Clop E)er By, [5]

The above coefficients C# ¢ are simply matrix elements of Cap.

The £ as functions of n two-valued variables.

6. Let us consider n variables N’; which take only the values
0 and 1. The linear space of the real functions F (N') is of dimen-
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sionality 2». It is possible to establish a one-one linear corres-
pondence between the & and the F (N’) by associating to & the

function &(N') = Z/ iy nie Finonie (N'), the summation being

Iy T
taken only over the ordered sets of values j; < js < ... <7, and

Fi, ... (N') 3(N'%—1) ... 3(N';, —1) 8 (N, ) ... 3(N'j),

We may write Pf;' wF — P (N',N') with Fj, . ; (N) F, ..z (N")
=151 <...<j,and ki <... <k, There is a one-one linear
correspondence between the elements I' of G, and the functions

® (N, N"") : T'—> dp (N’, N"),
with " '
= X &p (N’, N") P(N',N").
N/' NII

The values of the function ®r are the matrix elements of I'in the
representation of @, discussed in section 3.

The two-valued variable N;' is closely related to the element
N;, since N; P#ir = N/ Piwir and Py, ;. Nj = Nj Piueir,
with N/ =1 when j coincides with one of the indices ji, . ., jr and
N; = 0 when this does not happen. There is an idempotent element
Na = <V, U>1*UYV associated to any non-isotropic direction

of the space of the 5, since Nq 1s not changed when £_2) 1s replaced by
a £_2) a being a non-null number. N; is the Ng of the direction of
] -+ I’ The correspondence between the Ng and the non-isotropic
dlrectlons of the Q. — space is not one-one, for the same Ng is
associated to all the a V + b U with ab = 0. There is another
idempotent element NQ = <V, U >-1VU = (1) — N g associat- .

ed to the aV+bU with ab = 0.
We can establish a one-one linear correspondence between the

1 and the functions of the n two-valued variables N,-’ =1 —N/,

A
which are related to the elements N; of G. There is also a one-one
linear correspondence between the -elements I' of G, and the func-

A A A A
tions W' (N, N'') of the two-valued variables N;/ and N;".
It may be more convenient to use the variables 2 N;/ — 1 =

A
= N;/ — N/, that take the values 1 and — 1, instead of the N,
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A .
or N, with the values 0 and 1. Since 2 N; — (1) = (I; + /) (I; —
— I9), the 2 N,/ — 1 correspond to indices of inner orientation
of two dimensional manifolds parallel to the pairs of vectors

?,- 4 I’ and —I)j — I of the O — space. The n-dimensional geome-
- -

trical interpretation of those indices is not quite obvious.

The close relation between the theory of the antisymmetric
tensors of an affine space and that of the functions of two-valued
variables is very interesting, especially in the four dimensional
case, because of its physical importance. The existence of such
a relation indicates that there are fundamental discrete properties
of space and space-time, as yet not well understood, that may play
an important part in the theory of the elementary particles.

The identification of the & with the functions of n two-valued
variables N;’ corresponds to the description of the states of a
quantized field of fermions by functions of an enumerable infinity
of two-valued variables analogous to the above N,’. The states
of the quantized fermion field are vectors of a linear represen-
tation-space of the Jordan-Wigner algebra of the emission and
absorption operators, which is isomorphic to a G». The field va-
riables analogous to our N;' give the numbers of fermions in the
different particle-states. They have the values 0 and 1, because
in each particle state there may be at most one fermion, as a conse-
quence.of the Pauli principle.

A

The possibility of using either the N;’ or the N, in our formalism
corresponds to the well known symmetry of the formalism of the
quantized fermion field with respect to the particles and the ‘“holes”.

A

The exchange of the N and the N,/ corresponds to that of the
A .

particles and the ‘‘holes”, because we have N/ = 1 — N;/, so that

. : A
the value 1 of N;’ corresponds to the value 0 of N;’ and conversely.
t may be regarded as a function of the sub-sets of the set of the n basic

- - -
vectors I;, whosevalue for the sub-set (I;,. ..,1;) with j1 < j2 <...<
< ... <34 s &j,..,i The antisymmetric covariant tensors

of the order r are thus associated to the sub-sets with r elements

ﬁ
of the set of the I;. In particular the scalars correspond to the
functions of the empty sub-set.
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The 2p-dimensional spinors.

7. The spinors of a n dimensional metric space are the vectors
of a linear space in which C® has an irreducible representation.
The identity of C<) and the algebra generated by the W, and W,*

allows to obtain in a simple way the spinors of Cg’,ﬁ, as we shall

show. Let us introduce the idempotent elements Z/\\Ta = WaWqt.
The Z/Qf., are all commutable, so that P = J/\}l .. Z/\\fp is also
idempotent: P2 = P, Since W, Z/\\T,, = J/\\f,,‘ Wat - 0 and both W,
and Wyt are commutable with ]be when b = o, we have

WeP =PW,"=0 [1]
Let us introduce the elements

Poirovar,tayosty = Was ... Wa PWo, ... Wy, 21

which are antisymmetrical with respect to the r indices a and with
respect to the to the s indices b too. The P, ; ¢y will be taken with
o <a; < ... <arand by <b;... <bs. We have

Pao;o) =Pw:O0PO;®0 POH;®Pw:0)=3%w;0P [3]
Hence ,
Pa;o» Paiw = 30:@ Po;iw . - 4]

It follows from equation [4] that the elements Py, @ are all
linearly independent and, since there are 22# of them, any element
of Cé”l), must be a linear combination of the Py, ), the number
of linsarly independent elements of a C,, being also 222, Moreover
Cg’z), must be equivalent to the algebra of the matrices with 27
lines and 2?7 columns, because of the multiplication rule [4]. Cé";
18 the algebra of the linear operators of the vector space C ;",), P (consti-
tuted by the right products of its elements by P). since the left multipli-
catton of any element of Cé"z),P by an element of Cg’,), is again an
element of that vector space.

The general form of the elements of Cé",), Pis AP + AswstP +
+ DA s ot et P A4 L A DA%t weFP 4 L 4
+ Abp it w,t P, the numerical coefficients A% % being
the components of a p-dimensional antisymmetrical contravariant
tensor of order r. X’ denotes that the summation is taken only for
sets (a) such that a1 < a2 < as < .... The structure of the elements
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of C',(«»,”,),P shows that the 2° components of a spinor of C(‘” constitule
a set of antisymmetric tensors of the orders 0, 1, 2,.., p of the p- -di-

menstonal m — space.

The existence of relations hetWeen the spinors of a 2p-d1men51onal
metric flat space and the p-dimensional antisymmetric tensors
is well known from the Cartan approach to the theory of spinors (%).
The above discussion is essentially the same given by Schonberg (*)
in the theory of G,. Cartan defines firstly the spinor in connection
with the flat manifolds of maximal dimensionality lying on the
null hypercone g;zi x* = 0 of a space of odd dimensionality n =
I 2p + 1 and later introduces the Clifford algebra. We start
from the Clifford algebra and obtain the spinor from a left-ideal.

Let us consider now the right ideal P C(g) constituted by the
products P T, the I' being the elements of C(g,),. The elements of
C’é”z, may be viewed as linear. operators on the vectors of the
2r-dimensional linear space P Cé”,), since to any T' corresponds the
linear transformation P CY) — P C(”) T'. Thus we get a linear
representation of the reciprocal algebra of ¥ because the ope-
rator corresponding to the product I'iT: is the product of the ope-
rators corresponding to T'; and T taken in the reversed order. The
general form of the elements of the right ideal P Cg,, is PB +
4+ PWyB> + 3P Wy, We, B2 - ... + X' P Wy, ... We, Wy,
Bbiwbe . 4+ PW, ... Wy Bb:® the Bbirbr being numeri-
cal coefficients antisymmetrical with respect to the indices b,

which are components of antisy mmetrical tensors of the (j + — space.
The numbers B, B?, Bbub . BL-»? are the components of a
covariant spinor of Cé",),., ‘

The n elements N, = W,+ W, are idempotent and commutable
as the Z/\}a. By means of them we build @ = Ny ... Ny, which satis-
fies the conditions W,*Q = 0, Q W, = 0 and Q% = Q. Let us
introduce the Q@)@ = Wai .- Wi, Q@ Wa,* ... Wat, analogous to
the Py, ¢, taking them with by < by < ... < bsand a1 < @y <
< ...< a,. We have

Qe ;@ =0w:0Q0:iw QUiwlw;0 =3w» wd 5]
Qo i@ Qw;iw = 3@, » Qv ;@ - (6]

1t follows fron [6] that ghe Q@) @; are a set of 2% linearly inde-
pendent elements.
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The left ideal Cé";Q can be taken as a vector space whose linear
operators are the elements of Cg5. It is easily seen that the left

-—)
ideal Cé”,),Q is related to the antisymmetric tensors of the w*—spa-

N
ce in the same way as Cé”z),P to those of the w — space. The pro-

perties of Cé",), must obviously be completely symmetrical with

respect to the Z andz * vector spaces. The W,* play in the Q for-
malism the role played by the W, in the P formalism and con-
versely. :

The P and @ formalisms are covariant for a change of basic

- v . -
vectors in the v — space and the associate change in the v+ —
space, for

P=Wi..WoWot... Wi+ | Q=Wit... W*W,... Wy [7]

The w-algebra of a finite set.

8. Let us consider a set S, constitrted by p objects E;. We shall
associate to the E, the symbols w, and w,* of the generators of
a p-dimensional Jordan-Wigner algebra, which will be regarded as
an algebra of the set S, and called the w-algebra of the set. It
Sollows from the considerations at the end of section 6 that the w-algebra
is equivalent to that of the linear operators on the numerically-valued
Junctions of the sub-sets of S,. The formalism of the spinors of a
Cé‘z developed in section 7 can be applied to the numerically-
valued functions of the sub-sets of S,.

We have regarded the Jordan-Wigner algebra of a quantized
fermion field as an algebra of a separable Hilbert space, but it is
also possible to view it as an algebra of the numerically-valued
functions of the finite sub-sets of an enumerable infinite set of
objects, namely the functions of a complete orthonormal set for
the states of a fermion of the field. Thus the J ordan-Wigner algebra
of the field appears as the infinite-dimensional analogue of the
above w-algebras of finite sets.

The w-algebra over the complex numbers of a set with a single
object is isomorphic to the Pauli-algebra of the spin operators, 1.e.
to the algebra of the linear operators of a two-dimensional complex
vector space. This results from the fact that a S; possesses only two
sub-sets: the empty sub-set and 8; itself. Since the Pauli algebra
is a fundamental geometric algebra of the three dimensional eucli-
dean space and the four-dimensional minkowskian space-time:
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the geometry of the flat space-time s fundamentally related to the
w-algebra of a single object. ' ’

The w-algebra of a S taken over the complex numbers is iso
morphic to a Ci over the complex numbers, hence to the Dirac
algebra of the y-matrices of the leptons and baryons. The above
results indicate that the two simplest sets S1 and S; are likely to
play an important part in the theory of the structure of the world.

" The Pauli algebra as an algebra of the space-time is that of the
half-spinors, which are related to a distinguished screw-orientation
of space. The w-algebra of S; is therefore associated to a minkows-
kian space-time with a preferred screw-orientation of space, the
actual situation for the neutrino. The Dirac algebra includes the
two screw-orientations of space. This suggests that the above S
and 8, could be the sets of one and two screw-orientations, respec-
tively.
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