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SUMMARY: 

The theory of the Clifford algebras is discussed in connection with the finite­
dimensional Jordan-Wigner algebras and the affine algebra G" of Schonberg. The 
relations of G" with the n-dimensional anti symmetric tensors allow to see in a simple 
way the origin of some of the properties of the Clifford algebras and the spinors, 
especially the connection between 2p-dimensional spinors and p-dimensional 
antisymmetric tensors. On the other hand the theory of G" is further extended. 
The comparison with the Jordan-Wigner algebra leads to relations between the 
Clifford algebras and the functions of two-valued variables. The spinors are shown 
to be functions of the sub-sets of finite sets and the Jordan-Wigner algebra is discus­
sed in ralation with such sets. 

The null vectors in the Clifford algebra. 

1. The Clifford algebra is a metric vector calculus of a real 
n-dimensional flat space endowed with a non-degenerate metric 
quadratic form gjkXi x k, the x denoting cartesian coordinates. To 

-t 
any vector V corresponds an element '"(v of the Clifford algebra, 
the correspondence being characterized by two conditions 

-t -t 
I) CI VI + C2 V 2 ~ CI '"(v, + C2 '"(v, [1 a] 

(the c denote numbers) 

II) '"(2V = gjk Vi Vk Ie [1 b1 
(Ie denotes the unity of the Clifford algebra) 

It follows from the conditions (I) and (II) that 

[2] 

The Vi denote the cartesian components of the contravariant 
-t 

vector V. The Clifford algebra Cn(u) of the n-d1:mensional flat space 



- 240-

endowed with the metric gjk can be defined as the associative algebra 
with a unity 10 generated by the symbols '(v of the contravariant 

~ 

vectors V that satisfy the conditions (I) and (II). We may obviously 
take as generators the symbols of n linearly independent contra­
variant vectors. We shall denote by H the symbol of the j-th basic 

~ 

vector Ii of the cartesian coordinate system. The n symbols '(I 

can be taken as the generators of Cn(u), the multiplication rule 
being 

'(jn + '(k'(j = 2 gjk 10 [3] 

as a consequence of equation [2]. It will be convenient to take 
Cn(u) over the field of the complex numbers 

. .. ~ . 
We shall denote by W a generic null vector: gjkVV! Wi. = O. 

~ ~ 

The symbols '(lY are nilpotent: '(2W = O. Let WI, . . , Wi- be r mutually 
orthogonal and linearly independent null vectors. The unity 10 

and the r symbols '(WI) •. , '(Wr generate a r-dimensional Grassmann 
algebra, which is simply the Grassmann algebra of the r:-dimen­
sionall totally null vector space of the linear combinations of 

~ ~ 

the r null and mutually orthogonal vectors WI, .. , Wr. In the eucli­
~ 

dean case the Ware always complex vectors, but in the case of an 
indefinite metric there are also real null (or isotropic) vectors. 

It is well known that when n is even, n = 2 p, the maxImal 
number of linearly independent mutually orthogonal null vectors 
is p. The totally null (or totally isotropic) linear space defined by 
p linearly independent and mutually orthogonal null vectors is 
the linear space of the vectors of a maximal flat space of the null 
hypercone of the n-dimensional space, whose equation is 

When n is odd, n = 2 p + 1, the maximal number of linearly 
independent and mutually orthogonal null vectors is also p and 
the vector space they generate is the linear space of the vectors 
of a maximal flat space on the hypercone gjkXi X" = O. Thereby 
when n > 1, there is a Grassmann algebra of the order [n/2], as­
sociated to any maximal flat space on the hypercone gjkXi Xl; = 0, 
generated by the symbols of any set of [n/2] linearly independent 
vectors of the flat space, [n/2] denoting the largest integer contained in 
n/2. We shall from now on write [n/2] = p .. 
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..... 
Let the J,. be a set of 2 [n/2] = 2 pmutually orthogonal real 

vectors, such that gjkJ,/J«k = ea , with e", = 1 or-I. We shall 
-) -) 

introduce 2 p null vectors Wa and Wa + 

-) -) ..... -) .... 
2Wa=VaJa--V -ea+pJa+p , 2Wa+=-Ve;;Ja + 

.------) +...; - ea+ p Ja+p [4] 

(a=1,2,00,p) 

We have obviously 

-) -) -)-) 

W a+ 0 W b+ = 02 Wa 0 W b+ = Oa,b 

(a, b = 1,0 o,p) [5] 

the point indicating the inner producto The linear combtOnations of 
-) .. 

the Wa constitute a p-dimensional totally isotropic vector space and 
-) 

the linear combinattOons of the Wa + another such vector space 0 When 
-) 

the space is euclidean, W a+ coincides w#h the complex conjugate 
-) -) -) -) 

Wa * of W a, since ea = 1 for all IXo The 2 p null vectors Wa and Wa + 
-) 

are linearly independent. When n = 2 p, the 2 p vectors Wa and 
-) -) 

W a+ constitute a basis of the linear space of the vectors Vo We 
shall call null basis of a 2 p-dimensional metric space a set of 2 p 

-) -) 

null vectors Wa, W a+ defined in the above wayo 
-) 

When n = 2 p, we can express any vector V as a linearcombi-
-) -) -) 

nation of the vectors of a null basis: V = wav Wa + wv+ a W a+, 

with summation over the still indices a. We shall denote the 
-) -) -) -) 

null vector Way Wa by Wv and the null vector (tlv+ a W a+ by wv+. 
-) -) -) -), 

Thus any V is the sum of two null vectors Wv and (tlv +, the Wv belon­
-) 

ging to a totally isotropic p-dimenstOonal vector space and the (')v+ 
to another such vector space. We have gpo Vi Vk = ~ (tlva WV+ a • 

, ' -) 

In the 2 p-dimensional euclidean space the mill vectors Wv and 
-) -) 

Wy+ of a real vector V are complex conjugate. Hence there is a 
-) 

one-one linear correspondence between the real vectors V and the 
-) 

vectors w of the p-dtOmensional totally isotropic vector space of the 
-) 

complex linear combination of the W~o The euclidean geometry in the 
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-+-
real space is associated to the unitary geometry of the W - space 
since gjk V; VII = ~ 1 (!.ly" 12. In the case of p = 1 we get the well, 
known correspondence between the real vectors of the'euclidean plane 
and the complex numbers. 

We shall call maximally indefinite metric of a 2 p-dimensional 
flat space the metric whose canonical quadratic form has p positiVe 
and p negative squares. In this case, p of the ell are equal to 1 and 

-+ 
the other p are equal to - 1. We may numerate the Jilin such 

-+ 
a way that the ea be 1 and the ea+ p be - 1. Thus all the Wa and 

-+ 
W a+ are real and we get two real totally isotropic p-dimensional 

-+ -+ -+ 
vector spaces ofwy and Wy + associated to the linear space of the real V. 
For other types of indefinite metric there are no real p-dimensional 
totally isotropic vector spaces. When the metric is maximally 
indefinite and n is divisible by 4, p = 2 q, we may numerate the 
~ . 
Jain such a way that el = e2 = ... = eq = ep+l = ... = ep + a = 1 
and ea+l = .. , = ep = ep +a+l = ... = e2p = - 1, in order that 
~ -+ -+ ~ 
W r+ = Wr* for r = 1, .. . ,q and W.+ = -W.* for s = q+ 1, .. . ,p. 

-+ 
Thus for a real V,Wy+r = wv'* andwv+· = --wv·* and gi!<V;Vk = 

~ 

= ~ 1 Wv' 12 - ~ 1 WV·12, so that the indefinite metric of the V-
r 8 

space is now associated to an indefinite hermitian metric in the 
-+ 

linear space of the complex vectors w. It is easily seen in a similar 
way that the indefinite metric whose canonical quadratic form 
contains 2 m+ positive squares and 2 m_ negative ones can be 

-+ 
associated to the hermitian metric of the complex w - space 

~ 1 Wyb 12 - ~ 1 wvc 12 with b = 1, ... , m+ and c = m+ + 1, ... , 
b c 

m+ + m_. 
The elements 'Yw .. and 'Yw .. + will be denoted by Wa and W a+, 

for the sake of simplicity. It follows from the equations [5] that 

Wa Wb + Wb Wa = 0 , W a+ W b+ + W b+ W a+ = 0, 

Wa W b+ + W b+ Wa = Oa,b 1e [6] 

When n = 2 p, the Wa and W a+ are a set of generators of the Clif­
ford algebra C:p(q) of our 2 p-dimensional metric space. We may also 
interpret them as the generators of an associative algebra of a pair 
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~ ~ 

of p-d-imensional wand W + vector spaces, -in which the symbols wand 
w + have the multiplicat1:on rules 

WIWn + WnWr = 0 , WI+Wn+ + wn+wr+ = 0 [7 a] 

Wr wn+ + wn+ WI = L: Wro (olI!+o 1 C [7 b] 

By taking W =WG Wa and w+ = w+o W a+, we see that the rules 
[7 a] and [7 b] are a consequence of [6]. Actually we have 

W = 'Y .. and w+ = 'Y .. +. 

~ 

We may interpret the w+ as the covariant vectors of a p-dimensinal 
~ 

space whose contravariant vectors are the w. Thus the w, w+ algebra 
appears as the algebra Gp of a p-dimensional affine space introduced 

~ 

by SchOnberg (1). The interpretation of the w+ as covariant vectors 
~ 

of a p-dimensional space is quite natural, since any wr+ defines 
~ ~ 

a linear functional on the w, namely that which associates to w the 
~ ~ 

number (0) • wr+, and any linear functional can be obtained from 
~ 

one and only one vector of the w+ - space by means of the inner 
product of the n-dimensional metric. 

The possibility of reinterpreting the Clifford algebra of a 2p­
dimensional real space as a kind of algebra of a p-dimensional 
complex space is particularly natural in the case of the 2 p-dimen­
sional euclidean metric, in which there is a one-one correspondence 

~ . ~ 

between the real V and the complex w. The euclidean C2p can be 
~ 

identified to an algebra of the unitary geometry of the complex w -

space. Now Wand W a+ are the symbols of complex conjugate vectors 
and it is convenient to replace the W a+ by new symbols Wa*' Thus 
the multiplication rules [6] for the euclidean case become 

Wa Wb + Wb Wa = 0, Wa*Wb* + Wb*Wa* = 0, 

[8] 

The multiplication rules [8] are analogous to those of the creation 
and anihilation operators of the quantum theory of a system of 
particles obeying the Fermi statistics, developed by Jordan and 
Wigner (2). Now there is only a finite number p of wa, whereas 
there are infinite Wa in the Jordan-Wigner formalism. Thereby 
it is reasonable to call the W a , Wa* algebra a p-dimensional Jordan-
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Wigner algebra. The original Jordan-Wigner formalism may be 
viewed as a geometric algebra of a separable complex Hilbert 
space of infinite dimensionality. 

~ ~ 

The choice of the totally isotropic wand w+ vector spaces depends on 
~ ~ 

the choice of a null basis W~~ W a+, but it does not depend on that of 
~ 

the basic vel,tors Ii of the cartesianframe of coordinq,tes, when the 
~ . ~ 
Ja. are not related to the vectors Ii. When n = 2 p, it is possible to 

~ ~ ~ 

take a set of Wa and W a+ as basic vectors I j . This is particularly 
convenient in the case of the maximally indefinite metrics in which 

~ ~ 

we may take 2 p real Wa and Hfa+, as we have already seen. 

The affine algebra Gn . 

~ 

2. Let the Ii and J; be the basic contravariant and covariant 
~ 

vectors of a n-dimensiona.l affine space. We shall denote the con-
~ 

travariant vectors by V and the covariant ones by U. Thus 
~.. ~. ~ 

V = Vi Ii and U = Uifi. The invariant Vi U j will be denoted by 
~ ~ 

< V, U >. The elementary vector calculus involves an affine 
~ ~ 

product of contravariant vectors V 1\ V' and a metric product 
~ ~ 

V X V' = gik Vi V' k. That calculus does not distinguish the con-
travariant and covariant vectors. Such a procedure is not incon­
venient as long as cine deals only with an euclidean space and uses 
only orthogonal cartesian coordinates. 

The Grassmann algebra is an affine calculus of contravariant 
vectors, closely related to the ordinary vector calculus. In the 

~ 

Grassmann algebra the generators are the symbols I j of the Ii 
and a :unity (1) with the anticommutative multiplication rule 
Ii I k + I k Ii = O. It is also possible to build a Grassmann algebra 
of the covariant vectors generated by a unity (1) and the symbols 
fi of the fi, with the rule fi Ik + IkIi = o. Schonberg (1) intro-

~ . 

duced the algebra Gn of the contravariant and covariant vectors, 
with a unity (1), generated by the 2 n elements Ii and fi with the 
multiplication rules 

f11 
I. , 
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-+ 
In the algebra Gn' the vectors V and U are represented by symbols 

-+ 
V and U with the multiplication rules 

V V' + V' V = 0 , U U' + U" U 0, 

V U + U V = < V, U >(1) [2] 

-+ 
Let us consider the direct sum of the V and U linear spaces. 

. -+ -+ '.. , 
We may take the I j and Ii as a basis of the sum space. Thus any 

-+ . -+ ' 
vector 0 of the sum-space can be represented- as follows: 

-+ -+ -+ o = Vi 13 + Ujb = V + U. 
-+ -+ 

The affine geometry of the n-dimensional space leads naturally, to the 
-+ 

introduction of a metric in the (2 - space, for which the square of 
-+ . -+ .-+; 

the length of (2 is < V, U> and the inner product of (2 and 0 ' 1:S 
. -+, 

1/2 «V, U'> + <V', U». TheV and U may be regarded as 
-+ -+ 

special kinds of null vectors of the 0 - space cQnstduting two totally 
-+ 

isotropic n-dimensional vector spaces. The 2 n vectors I j and Ii consti-
-+ -+ -+ 

tute a null basis of the 0 - space endowed with the above < V, U> 
metric. 

Schonberg pointed out (1) that the affine algebra Gn is the Clif-
-+ 

ford algebra C2n of the real 2 n-dimensional 0 - space endowed 
with the maximally indefinite metric < V, U> = Vi Uj. The ap­
proach to the theory of C2p given in section 1 is obviously suggested 

-+ 
by the theory of Gn as a C2n . There, the 2 p-dimensional V - space 
was essentially treated as the direct sum of the two totally isotropic 
-+ -+ -+ -+ 
wand w+ vector-spaces. When the vectors Wa and W a+ of a null 
basis are taken as basic cartesian vectors of the 2 p-dimensional 
,carteEian space, the expression. of the square of the length of V is 
~ WyaWy+a, analogous to the expression Vi Uj of the square of 

-+ 
the length of a 2 n-dimensional vector O. 

Gn may be regarded as the basic elementary vector calculus of 
the n-dimensional affine geometry. It involves only the affine 
vector product, as the Grassmann algebra, but it deals symme­
trically with the covariant and contravariant vectors, whilst the 



- 246 -

Grassmann algebra deal" only with one of the two kinds of vectors. 
The symmetry with respect to the two kinds of vectors gives to 
G" an extremely simple algebraic structure: Gn and the algebra 
of the 2n X 2n matrices taken over the same field of characteristic 
zero are isomorphic. Schonberg (3) showed that. Gn is the algebra 
ofthe linear operators on the vectors ~ of the linear space of dimen­
sionality 2n obtained by the direct sum of the linear spaces of the 
covariant antisymmetric tensors of the orders 0, 1) 2, .. , n of the 
n-dimensional affine space. It follows from the sym1netry of an 
with respect to the covariant and contravariant vectors that it is 
also the algebra of the linear operators of the vector space obtained 
by the direct sum of the linear spaces of the antisymmetric contra­
variant tensors of the orders 0, 1, ... ,n of the n-dimensional affine 
space. We shall denote by 'I) the vectors of the latter 2n - dlmen­
sionalspace. 

When Gu is treated as the algebra of the linear operators on the ~, 
the ~ appear as contravariant spinors and the 'I) as covariant spinors 

~ 

of the 2 n-dimensional (2 - space endowed with the maximally 
indefinite metric < V, U >. When Gu is regarded as the algebra 
of the linear operators on the 'I), they appear as the contravariant 

~ 

spinors and the ~ as the covariant spinors of the (2 - space with 
the metric < V, U >. 

There is a set of n commutable idempotent elements N j = [i I j 

A 
associated to the basic cartesian vectors. The N j = I j Ii are 

A 
also idempotent and commutable. The elements P = Nt . .. N n 

~ 

and Q = Nt.· .. N n do not depend on the choice of the I j and are 
also idempotent. It is easily seen that I j P = 0, P [i = 0, Ji Q = ° 
and Q Ii = 0. Let us introduce the elements Ph ... "r = P Iir Ii! 
and ph .... ]. = lit ... Ji.p; we shall take jt < j2 ... < js or jr' 

It is easily seen that P(j) P(k) = a~~~ (1). By means of the p(j) and 
P(k) we build the 22n elements pm with all the ordered set.s of 

values (j) and (k) : P~~~ = P(k) P(j). It is easily seen that 

p(k) p(i) _ a(i) p(k) 
(j). (h) - (j) (h) [3] 

It follows from the orthogonality relations [3] that the 22n elements 
p~~l are linearly independent and can be taken as a basis of 
Gn . This choice of the basis gives to Gn the form of the algebra of the 
linear operators on the above ~ spinors. In order to give to Gn the 
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form of the algebra of the linear operators on the 1) it suffices 
to take as basis of Gn the 22n elements Q~~~ = Q(j) Q(l» with 
Qit, .. ,jr = I j , ... I'r Q and Qk,; .. ,k. = Q Jk • ... Jk'. Since 

rJ.k) Q(i) _ ",(k) Q(i) 
let (1) (h) - 0 (h) (j) [4] 

the 2 2n elements Q~~j corresponding to all the 2 2" different pairs 
of ordered sets (j), (k) are linearly independent. 

Let us consider the left ideal Gn P constituted by the products 
r P of the elements r of G n by the idempotent P. Gn P is a vector 
space of dimensionality 2n having as basis the 2" elements pet) 
with all the distinct ordered sets (j). Gn P is essentially the direct 
sum of the linear spaces of the covariant antisymmetric tensors of all 
orders, endowed with a product that renders ~'t an algebra. The r may 
be regarded as the linear operators on the elements r' P of Gn P 
that transform r' Pinto r r' P. Thus Gn appears as the algebra 
of the linear operators on the ~. 

The linear space Gn Q admits as a ba~is the set of the 2" elements 
Q(j) corresponding to all the distinct ordered sets (j). Gn Q is es­
sentially the direct sum of the linear spaces of the antisymmetric 
contravariant tensors of all orders, endowed with a product that renders 
it an algebra. The elements of Gn can be associated to linear ope­
rators on the vectors of Gn Q. Thus Gn appears as the algebra of 
the linear operators on the 1). 

Matrix representations of G" and C2p • 

3. The representation of the elements of Gn by linear operators 
on the ~, discussed in section 2, gives a natural representation of 
the elem'ents of Gn over the real numbers by real 2n X 2" matrices. 
I n that representation the matrix of I j is the transpose of that of Ii 
and the matrices of the n commutable idempotent elements N j = fi I j 

are diagonal. The matrices of the elements J j = I j + fi are there­
fore symmetrical and those of the J j +" = I j -- fi are antisym­
metrical. The J", are the sy robols of 2 n-dimensional orthogonal 

~ 

vectors J "" 
The generators Wa and wa+ of a c~j over the complex numbers 

introduced in section 1 have the same multiplication rules as the 
generators Ia and Ia of a Gp • We may therefore represent any 
C2p over the complex field by 21' X 21' complex matrices, in 
such a way that for all a the matrices of Wa and wa+ be both 
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.real and mutually transpos~d,henceadjoint, by means of the above 
representation of Gp • In the present representation o(C~ the 
matrices of the real V are not always hermitian when {Jik Vi Vi > 0 
and anti-hermitian when gik V f V" < O. The matrices of the elements 
tV .. + w.. are diagonal and real. 

The present representation of G.. gives also a representation 
of the n-dimensional Jordan-Wigner algebra over the real numbers 
by 2" X 2" real matrices, which is analogous to the well known 
representation of the quantum field theory of the' fermions, in 
which the occupation-number operators of the fermion states are 
diagonalized. 

-7 -7 -7 -7-7 

The above vectors J II, J i = Ii + If and J i+ .. = Ii - b, 
-7 4-7 

'constitute an orthonormal basis of the 2 n-dimensional g - space 
" • ' , -7 -7-7 

WIth the metriC < V, U >. The n,:,vectors J a, ..... rr." = J al 1\ J a2 1\ 
-7 

1\ ..• 1\ J rr." are associated to the elements J a, .... "n = .J al ••• J "n' 

'The set of those elements constitutes a symbolic antisymmetric 
-7 

tensor of the order n of the g - space. It is easily seen that the 
square of any of those elements is either (1) or - (1). and that 

We have eL. ... = (- 1) .. -1 and e~+l .... 2" = (-1)". We shall take 
when n is odd J = J 1 ...... and when n is even J = J .. +1 .... 2 .. 

in order that for all n 

J IjJ-l = band J Ii J-'1 = Ii [2] 

The inner automorphism r ---+ J r J-l of G .. corresponds to the 
-7 

transposition of the matrices of the elements associated to the g, 
in the above representation of Gn• 

A 
Since J Ni J-1 = Nil we have J P J-1 = Q and 

J p~I .. , .~. J-1 = Qh .... i, 
Jl, .• ,Jr kl, .. ,k, [3] 

The equations [2] and [3] are not covariant for a change of the 
-7 

basic vectors I j • This results from the fact that J depends on the 
-7 

choice of the Ii' 
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We shall denote J'n+l .... 2n by C. It is easily seen that 

C pi ••... ir=(:-l)Ur ~ (n -r)! r -1 cj, •..• i" pi,+ ••... i,. [4] 

2'gr = (2 n + r).(r -1)r. [5] 

Hence 
A 

C ~ (r 1)-1 ~it ...• jr ph •..• i, r = I: ~ (n - r)! r-1 "'IJk, •.•• k,.-r pk, •.•• k,.-r [6]" 

with 

[7] 

Equations [6] and [7] show that the linear operator on the ~ correspond-
• A 

ing to the element C transJorms ~ into the "'IJ whose components are 
deJined by [71 with r = 0, 1, .. ,no The element C is thereJore related 
to the duality oj the antisymmetric tensots oj the n-d1'mensional space. 
, 
Alternative construction oj Gn • 

-+ 
4. The tensor product of the linear spaces of the V and U gives 

-+ 

the linear space of the mixed tensors Ai'. We can associate to Al 
-+ -+-+ 

the linear operator Aon the V defined as follQws: A V = AlVfJ". 
Thus the space oj the tensors Ajl: becomes an associative algebra, the 
product oj the tensors Air. and B/· taken 1'n a given order being the 
tensor associated to the product oj the operators A and B taken in the 
same order: CAl) (B;") = (Cir.) with Cil: = Ahl: Bl'. 

The tensor Air. may also be associated to a linear operator A on 

the U defined as follows: AU = UkAjk Ii. The space oj the Ail: 
-+ -+ -+ . 

is now endowed with the structure oj an associative algebra in which 
the product oj A, Ie and B i k is the tensor oj the product oj the corres­
ponding operators on the vectors U : ~ A i Ie r . ~ B i k r = {Ai" Bh Ie r. 

-+ 
The present algebra of the Ajle is the reciprocal of that corres­

-+ 
ponding to the linear operators on the contravariant vectors V. 

The above considerations can obviously be applied to any pair 
of dual spaces of finite dimensionality. The linear spaces of the ~ 
and"'IJ of section 2 are dual ones. Since Gn IS the algebra of the linear 
operators on the ~, i~ is the algebra obtained from the tensor pro­
duct of the ~ and "'IJ spaces that corresponds to the operators on 
the ~. Gn is also the algebra of the linear operators on the"'IJ obtained 
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from the tensor product of the ~ and 1) spaces. To any set of (n + 1) 2 

tensora Af::::.t· (r, s = 0,,1,; ;,n), antisymetrical with respect to 
the indices i and also with respect to the indices k, correspond 
tw~ elements ~'A ~l; ..• ~. Fi1 ... .i. and ~' A ~l..,,~. Q" .. i. of G the 

31, .. ,3r kl ... ,k, 31, .. ,3r k1 .. k8 n, 
r.8 •• 8 

former corresponding to a linear operator on the ~ and the latter 
to a linear operator on the 1), (the sign~' indicates that the 
summation is taken only over the ordered sets with i1 < i2 < 
< ... < i, and kl < k2 < ... < k.). 

The double r6le of Gn as operator algebra on the.~ and 1) is related 

to the te~sor duality, in which AJ,~·:.i:· corresponds to Bt~~;::~: = 

= a~';;::~k" .. Af,:::;~Tq· (r! sl) -1, a denoting the generalized Kronecker 
delta. This follows from the fact for any values of the i and k 

Q~.;.~k. = I -1)' (,-1)/2 +.' • (8-1)/2J (n-r) , (n-s) I l -1 a~l .... ~ pi.+, ... .i" '1, ..• 1r \ ,,). r 31,··,3n k,+l.u.k,.. 

[11 

The passage from the P basis of Gn to its Q basis corresponds there­
fore to the replacement of the tensors A by their dual B. 

The present definition of Gn as the algebra of the linear operators 
of the ~ - space leads immediately to the introduction of the 

pm, which correspond to the dyadics asso~iated to the basic 
vectors of the ~ - space. The element (1) corresponds to the ope­
rator unity. Hence we have 

(1) = ~ (r ,) -1 p~l .... ? ... 
. • 31.··3r [2] , 

We can now define the I; and I; in terms of the P ~~~ 

[3] 

Since . C~J ,is the Gp of the totally isotropic p-dimensional 
w-space introduced in section 1, we may define C~J as the al­
gebra of the linear operators on the vectors of the direct sum of the 
linear spaces of the covariant antisymmetric tensors of all orders 

~ : 
of the w-space. Those 2P-dimensional vectors are spinors of the 

~ 

2 p-dimensional metric V -space. Thus we have a direct simple 
definition of the 2 p-dimensional spinors and also a definition Of 

the C~ifford a~gebra C~ by means of those spinors. 
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Itis important to note that in the above definition of Gn we may 
replace the ~ - space by the direct sum of the linear, spaces of the 
antisymmetric covariant relative tensors, of weight ex and the 
"I)-space by the direct sum ,of the linear spaces of the contrava­
riant anti symmetric relative tensors of weight- ex. The choice 
ex = 0 is actually not the most interesting one from the point of view' 
of the tensor duality: by taking ex = - 1/2 we~ get in the linear space 
of the ~ the invariant bilinear forms 

n 

( I: 1:'), = ~ {rl (n - r) I l -1 Eit, .. ,;" !:. . 1:'. . f, [4] ~, ~ • . ( '31, .. ,3r ~ 3,.+1, .. ". r 
r=O 

Ei1, .. ,;. denoting the well known Ricci tensor density and the fr ar­
bitrary numerical coedficients. The existence of those forms follows 
from the duality 

T/r-t1, .. ,i .. = (rl) -1 ei1, .. ,;" !:. . 
~ "1, ... ",. [51 

The choice of the weight Q: == - 1/2 is ho'wever not possible in the real 
domain, because a real relative tensor of wdght - 1/2 1'n a cartesian 
system has imaginary components in another system with opposite 
orientation. 

The equation (~, ~')I = 0 is invariant with respect to the changes 
of cartesian coordinates in the n-dimensional affine space. It does 
not depend on the choice of the weight ex given to the ~!I ... ,ir' 

Let us interpret the components ~p of ~ as homogeneous projective 
coordinates in a space of ldimensionality 2" - 1, and the ~p' in 
a similar way, The equation (~, ~')I == 0 associates a hyperplane 
of the projective ~ _. space to a point of the ~ -space and con­
versely, 

The fundamental polarity in the projective ~ -space 

5. We shall now treat the components of ~ as homogeneous 
projective coordinates of a point in a 2n - 1 dimensional space 
and the components of "I) as homogeneous hyperplane coordinates 
in the same space, We shall write the equations of the tensor 
duality as follows 

". . TjJr+!, .. ,3n = ( -1,)Ur ej" .. d" I: . (rl)-1 , '-,It .... ,1,.· 

2gr = (2n + r) (r -1) 

[1] 

[2] , 
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The set of equations [1] for r = 0, 1". ,n defines a correlation 
I ... 
lJP = Cp,·~. in the ~-space. Since C·,p = (_1)n(n+l)/2 Cp,·the 
correlation is involuctoric. There is a fundamental polarity in the 
projective ~- space associated to the duality of the antisymmetric 
tensors. The bilinear equation of the polarity is (~, ~') = 0 

(~.r, ~) = ( - l)n (n+l)/2 (~, ~') [4] 

When n(n + 1)/2 is even, we have a polarity with respect to the 
hyperquadric (~, ~) = O. When n(n + 1)/.2 is odd, the form (~, ~') 
isantisymmetric, so that the polarity is taken with respect to 
a linear complex. 

The ~ - polarity corresponds to the well known polarity of 
the spinor theory. The above discussion shows that the spinor polarity 
of a2 p-dimensional metric space is essentially the polarity of the 
project~:ve ~- space of a p - dimensional affine space, arising from 
the duaUty of the p-dimensional antisymmetric tensors. It is known 
from the spinor theory that the spinor polarity is invariant for 
the linear transformations of the spinors induced by the 2 p-dimen­
sional rotations of the metric space. Since the ~ are the spinors 

~ ~ 

of the 2 n-dimensional space of the Q = V + U endowed with the 
~ 

maximally indefinite metric < V, U >, we see that the ~-polarity 
must be invariant for the linear transformations of the ~ induced 
by the 2 n-dimensional rotations of the < V, U> metric, which 
constitute a group larger than the n-dimensional linear group~. 

The ~ - polarity is obviously related Ito the transformation of 
the linear space of the ~ defined by the element C of Gn introduced 

" in section 3. We have lJ = Cop ~, Cop denoting the linear operator 
corresponding to the element C. It follows from the equations [3] 
and [1] that 

( I: 1:') - E ~ (r ,) ~1 (C I:)h, .. ,jr t'. . s, S kl .. ,kn - k1, .. ,kn • op S S jl, .. ,Jr [5 ] 
r 

The above coefficients Cp,· are simply matrix elements of Cap. 

The ~ as functions of n two-valued variables. 

6. Let us consider n variables N'j which take only the values 
o and 1. The linear space of the real functions F (N') is of dimen-
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sionality 2n. It is possible to establish a one-one linearcorres'" 
pondence between the ~ and the F (N') by associating to ~ the 

function ~ (N') = 2;' ~j, •..• i, Fit .... i, (N') , the summation being 
j, r 

taken only over the ordered sets of values j] < j2 < '" < jT and 
Fh .... ;, (N') = a (N';, -1) ... a (N'i, -1) a (N'ir+,) ... a eN' in)' 
with a (u) = aU.D. 

We may write P;,'::::j~8 = P (N',N") with Fh .... ir (N') Fk, .... k. (Nil) 
= 1, j1 < . .. < jT and k1 < ... < k •. There is a one-one linear 
correspondence between the elements r of Gn and the functions 

<P (N', Nil) : r ~ <Pr (N', Nil), 

with 

r = 2; <Pr (N', Nil) P (N', Nil). 
N',N" 

The values of the function<Pr are the matrix elements of r in the 
representation of Gn discussed in section 3. 

The two-valued variable N/ is closely related to the element 
Nj, since N; ph .... ;, = N/ pit .... ir and Ph .... i, N; = N/ pit .... ;r, 

with N;' = 1 when j coincides with one of the indices j1, .. , jrand 
N/ = 0 when this does not happen. There is an idempotent element 
No = < V, U > -1 U V associated to any non-isotropic direction 

~ ~ 

of the space of the 0, since No is not changed when ° is replaced by 
~ 

a 0, a being a non-null number. Ni is the No of the direction of 
~ 

h + Ii. The correspondence between the No and the non-isotropic 
~ ~ 

directions of the Q - space. is not one-one, for the same No is 
~ 

associated, to all the a V + b U with ab .,e O. There is another 
A ~ 

idempotent element No = < V, u> -1 V U = (1) - No associat­
~ 

ed to the a V + b U with ab .,e O. 
We can establish a one-one linear correspondence between the 

1\ 
1) and the functions of the n two-valued variables N/ = 1- N/, 

A . 
which are related to the elements N j of Gn. There is also a one-one 
linear correspondence between theele.ments r of Gn and the func-

A 1\ A 1\ 
tions 1JI' (N', Nil) of the two-valued variables N/ and N;". 

It .may be more convenient to use the variables 2 N/ - 1 = 
1\ 

= N/ - N/, that take the values 1 and - 1, instead of the N/ 
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" or N/ with the values 0 and 1. Since 2 N j ~ (1) = (Ij + Ij) (Ij -
- Ii), the 2 N/ - 1 correspond to indices of inner orientation 
of two dimensional manifolds parallel to the pairs of vectors 
~. ~ .~' . 

I j + Ij and I j - Ii of the 0 - space. The n-dimensional geome-
~ ~ 

trica,l interpretation of those indices is nbt quite obvious. 
The close relation between the theory of the antisymmetric 

tensors of an affine space and that of the functions of two-valued 
variables is very interesting, especially in the four dimensional 
case, because of its physical importance. The existence of such 
a relation indicates that there are fundamental discrete properties 
of space and space-time, as yet not well understood, that may play 
an important part in the theory of the elementary particles. 

The identification of the ~ with the functions of n two-valued 
variables N/ corresponds to the description of the states of a 
quantized field of fermions by functions of an enumerable infinity 
of two-valued variables analogous to the above N/ The states 
of the quantized fermion field are vectors of a linear represen­
tation-space of the J ord&n-Wigner algebra of the emission and 
absorption operators, which is isomorphic to a Goo. The field va­
riablesanalogous to our N;' give the numbers of fermions in the 
different particle-states. They have the values 0 and 1, because 
in each particle state there may be at most one fermion, as a conse­
quence . of the Pauli principle. 

" The possibility of using either the N/ or the N/ in our formalism 
corresponds to the well known symmetry of the formalism of the 
quantized fermion field with respect to the particles and the "holes". 

" The exchange of the N/ and the N/ corresponds to that of the 

" particles and the "holes", because we have N/ = 1 - N/, so that 
1\ 

the value 1 of N/ corresponds to the value 0 of N/ and conversely. 
~ may be regarded as a function of the sub-sets of the set of the n basic 

~ ~ ~ 

vectors Ij, whose value for the sub-set (Ij" ... ,Ijr) with jl < j2 < ... < 
< ... < jr is ~j, •... • jr. The antisymmetric covariant tensors 
of the order r are thus associated to the sub-sets with r elements 

~ 

of the set of the I j • In particular the scalars correspond to the 
functions of the empty sub-set. 
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The :2p-dimensional spinQrs. 

7. The spinors of a n dimensional metric space are the vectors 
of a linear space in which C~) has an irreducible representation. 
The identity of C~o~ and the algebra. generated by the Wa and Wa + 

allows to obtain in a simple way the spinors of C~~, as we shall 
/\ 

show. Let us introduce the idempotent elements Na = Wa Wa+. 
/\ /\ /\ 

The Na are all commutable, so that P = Nl . , . N p is also 
/\ /\ 

idempotent: p2 = P. Since WaNa = Na W a+ = 0 and both Wa 
/\ 

and W a+ are commutable with Nb when b ~ aj we have 

WaP = P Wa+ = 0 [1] 

Let us introduce the elements 

P a, .... a" bl •..• b. = W~, . , , W~r P W b• ' " W b1 ,[21 

which are antisymmetrical with respect to the r indices a and with 
respect to the to the s indices b too,. The P (a) ; (b) will be taken with 
al < a2 < '.:' < ar and b1 < b2 . " < b., We have 

P (a) ; (b) = P (a) ; ( ) P ( ) ; (6) P ( ) ; (b) P (a) ; () = 0 (a) ; (6) P [3] 

Hence 

[4] 

It follows from equation [4] that the elements p(a); (6) are all 
linearly independent and, since there are 2 2p of them, any element 
of c~g; must be a linear combination of the p(a); (b), the number 
of linaarly independent elements of a C2p being also 2 2p, Moreover 
c~~ must be equivalent to the algebra of the matrices with 2P 
lines and 2P columns, because of the multiplication rule [4], c~; 
is the algebra of the Unear operators of the vector space C~; P (consti~ 
tuted by the right products of its elements by P) since the left multipli­
cation of any element of c~g~ P by an element of C~~ is again an 
element of that vector space, 

The general form of the elements of C~; P is A P + AGwa+ P + 
+ ~'Aa ..... wa,+ wa.+ P + ". + ~' Aa' .... ar wa,+ " war+P + ," + 
+ Al .... p Wl+, •• wp+ P, the numerical coeffiqients Aal .... ~r being 
the components of a p-dimensional antisymmetrical contravariant 
tensor of order r. ~' denotes that the summation is taken only for 
sets (a) such that al < a2 < as < ... , The structure of the elements 
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of e~a~ P shows that the 2P components of a spinor of e~~ constitute 
a set of antisymmetric tensors of the orders 0, 1, 2, .. , P of the p-~i­

~ 

mensional to - space, 
The existence of relations between the spinors ofa 2p-dimensional 

metric flat space and the p-dimensional antisymmetric tensors 
is well known from the Cartan approach to the theory of spinors (3). 
The above discussion is essentially the same given by Schonberg (4) 
in the'the'ory of Gn• Cartan defines firstly thespinor in connection 
with the flat manifolds of maximal dimensionality lying on the 
null hypercone gjkXi Xk = 0 of a, space of odd dimensionality n = 

II 2 P + 1 and later introduces the Clifford algebra. We start 
from the Clifford algebra and obtain the spin or from a left-ideal. 

Let us consider now the right ideal P c~g~ constituted by the 
products P r, the r being the elements of e~g~. The elements of 
e~~ may be viewed as linear operators on the vectors of the' 
2P-dimensional linear space P en since to any r corresponds the 
linear transformation P e~g~ ~ p e~~ r. Thus we get a linear 
representation of the reciprocal algebra of e~~, because the ope­
rator corresponding to the product rl r2 is the product of the ope­
rators corresponding to r] and r 2 taken in the reversed order. The 
general form of the elements of the right ideal P e~~ is P B + 
+ P WbB7i + ~' P Wb. Wb,Bb,.b, + ... + ~' P W br ... Wbo Wb, 
Bb, .... br + ... + P Wn ... W l Bl •... n the Bb, .... br being numeri­
cal coefficients antisymmetrical with respect to the indices b, 

~ 

which are components of antis}' mmetrical tensors of the to + - space. 
The numbers, B, B7i, Bb,. b" . .. , Bl •... p are the components of a 
covariant spinor of e~~. 

The n elements Na = W a+ Wa are idempotent and commutable 
1\ 

as the N a. By means of them we build Q = Nl ... N n, which satis-
fies the conditions Wa+Q = 0, Q Wa = 0 and Q2 = Q. Let us 
introduce the Q(b); (a) = W b, •• Wb8 Q W a/ ... W a,+, analogous to 
the P Ca) ; (b), taking them with bl < b2 < ... < ba and al < a2 < 
< ... < ar • We have 

QCb);(a) = QCb);()Q();(a) Q ( ) ; (a) Q (b) ; () o (b). ta) Q [5] 

[6] 

It follows fron [6] that qhe Q(b); (ai are a set of 2 2p linearly inde­
pendent elements. 
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The left ideal en Q can be taken as a vector space whose linear 
operators are the elements of eM. It is easily seen that the left 

ideal e~~Q is related to the antisymmetric tensors of the :+-spa-
" ~ . 

ce in the same way as e?~ P to those of the w - space. The pro-
perties of e~~ must obviously be completely symmetrical with 

~ ~ 

respect to the wand w + vector spaces. The W a + play in the Q for-
malism the tole played by the Wa in the P formalism and con­
versely. 

The P and Q formalisms ate covariant for a change of basic 
~ ~ 

vectors in the w - space and the associate change in the w + -
space, for 

P = WI ... Wn Wn+ ... W1+ , Q == Wi+ ... Wn+Wn .. . W l [7] 

The w-algebra of a finite set. 

8. Let us consider a set 8p constitEted by p objects Ea. We shall 
associate to the Ea the symbols Wa and wa+ of the generators of . 
a p-dimensional Jordan-Wigner algebra, which will be regarded as 
an algebra of the set 8 p and called the w-algebra of the' set . .It 
follows from the considerat£ons at the end of section 6 that the w-algebta 
is equivalent to that of the lineat operators on the numerically-valued 
functions of the sub-sets of 8 p • The formalism of the spinors of a 
e~~ developed in section 7 can be applied to the numerically­
valued functions of the sub-sets" of 8 p • 

We have regarded the Jordan-Wigner algebra of a quantized 
fermion field as an algebra of a separable Hilbert space, but it is 
also possible to view it as an algebra of the numerically-valued 
functions of the finite sub-sets of an enumerable infinite set of 
objects, namely the functions of a complete orthonormal set for 
the states of afermion of the field. Thus the Jordan-Wigner algebra 
of the field appears as the infinite-dimensional analogue of the 
aboV"e w-algebras of finite sets. 

The w-algebra over the complex numbers of a set with a single 
object is isomorphic to the Pauli-algebra of the spin operators, i.e. 
to the algebra of the linear operators of a two-d£mensional complex 
vector space. This results from the fact that a 8 1 possesses only two 
sub-sets: the empty sub-set and Bl itself. Since the Pauli algebra 
is a fundamental geometric algebra of the three dimensional eucli­
dean space and the four-dimensional minkowskian space-time: 
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the geometry of the flat space-time is. fundamentally related to the 
w-algebra of a single object. . 

The w-algebra of a 8 2 taken over the complex numbers is iso 
morphic to a C, over the complex numbers, hence to the Dira<l 
algebra of the ,,(-matrices of the leptons .and baryons. The above 
results indicate that the two simpleEt sets 81 and 82 are likely to 
play an important part in the theory of the structure of the world . 

. The Pauli algebra as an algebra of the space-time is that of the 
half-spinors, which are related to a distingUished screw-orientation 
of space. The w-algebra of 81 is therefore associated to a minkows­
kian space-time with a preferred screw-orientation of space, the 
actual situation for the neutrino. The Dirac algebra includes the 
two screw-orientations of space. This suggests that the above 81 
and 8 2 could be the sets of one and two screw-orientations, respec­
tively. 
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