ON THE SPACES Lt WHICH ARE
ISOMORPHIC TO A B*

by R. NIRENBERG and R. PANZONE

1. Introduction. The problem which we consider in this paper
is a particular case of the following one: characterize the Banach
spaces which are isomorphic (isometrically isomorphic) to the dual
of another Banach space, (ef. [D]). This particular case is when
the given space is of type L in the sense of Kakutani ([K]) and it
was explicitly proposed by Dieudonné ([D¢]).. However the stem
of Dieudonné’s problem is much older and goes back to Gelfand,
(cf. [Ge] and also [KM]). The best result in the isomorphic ecase,
as far as we know, was given by Phelps, (ef. [Ph] and also [P]).

The purpose of this work is to give an account of the subject
and to underline some problems. The paper is almost self-contai-
ned and precise references are given when a theorem is not pro-
ved. For the nomenclature and general references we mention [DS].
Finally, we want to note that many points of this paper were
clarified thanks to a discussion with A. Benedek.

2. Preliminary results. Along the paper we consider only real
Banach spaces and real valued Banach function spaces.

a) If L' is isomorphic (isometric) to the dual space G* of a
Banach space G, there exists a closed subspace of L®, B, such that
L' is isomorphic (isometric) to B*. Every b* e B* is the image of
an element f of L' verifying b*(b) = 1{ fb du for every beB.

In the case of isometry L! may be called B-reflexive (cf. [8;]

and [S.]) and B, *L%, ([G]). We shall sometimes use the word
‘“dual’’ for this situation.

b) Let L' (x,S,p) and B be as in 4) and S a o-finite set of X
with p (8) = 0. Suppose 8 =3;2 4;, 0 < p (4x) < . Then the
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space L (X, S, u) with p defined by: p (E ™ 4;) = 2% u (4y) 1
n(E ™ Ap), ;(E) =un(E) it E ™ Ay = ¢ for every k, is isome-
tric and lattice isomorphic to L'(u) so it is isomorphic (isometric)
to the dual of a space B. This particularly means that the pro-
blem for a o-finite space may be reduced to the same problem
for a finite space.

¢) Let (X,3, p) be a measure space- Let ||.|| be the Ll-norm
and [.] be a locally equivalent norm, that is, for every set of
finite measure there exists K and %k, both greater than zero, such
that: k [|f]] < [f] < K ||f|| for every f with support on this set.

LeMmaA. ¢) [.] s en L*-norm if aend only if it is determined
by @ measure v equivalent with . _

w) [.] verifies [f+ g] = [f] 4 g] for f, 920, f, g « L* with
disjoint support if and only if [xs(z)] = v(E) is a measure equi-
valent with p and f|f|dv=[f].

wi) [.] is an L'-norm if and only if for every f, g, ¢ L1 with
disjoint support [f 4+ g1 = [f] + [g].

Proof. i) Follows inmediately from the Radon-Nikodym theorem
that x and v have the same null sets on every finite set of 3. ii) im-

plies iii). Let us prove ii). We define v (E) = coif xg ¢ L'(X, 3, n),

[o o]
E ¢ 3. From the local equivalence of the norms and v (3 E;) =
1

N : o
=3 [xei]l + [2 xei], it follows that the last term tends to zero if
1 N1

o]
and only if u (3F;) tends to zero, which proves the s-additivity
N1
of the measure v. Besides, »<< ,u and p<<w, and since
[f— Exm]“+0 if and only if ||f — EXE.H—*O we get, [f] =

=f f(dv/dl Ydp for f =0, which proves the lemma. (Notice that
in the measure spaces (X,3, x) which we consider, 3 is a o-field,
and X is the union of a disjoint family (perhaps uncountable) of
finite measure sets).

3. Examples. The next three examples correspond to the case
of L'-spaces which are B-reflexive.

I) Following [K;] we say that a Banach space is of type L if
it is a Riesz space (x =y, y =2z =2; 22y, Yy = —>r=1Y;
there exist z _y, s " y; 2 =2y—>zx+2 Z2y+z;20 =20, A >0
—Ar = 0) such that =z, =2y, Zn = %, Yo —> Y, — = = Y;
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Z0,y20—=|x+yl=lxl+lyl; 2 7y=0—|lz+yl=
= | — yl|. Let C*(X) be the dual space of the space C(X) of the
continuous functions on the Hausdorff compact space X. The Riesz
representation theorem says that C* is isometric to the family of
regular countable additive functions on the Borel sets of X (o-field
generated by the closed sets), with the norm |ul| = sup

2 | (E;); S,E = X} = total variation of p on X. This isometry

satlsfles y? (f) = (f(z) du, for any feC(X) and preserves order.
It is well-known that C* is an L-space. Next we prove this fact and
also that for i, pe =0,

a) m (<) pe in the sense of [K;] (') is equivalent to uy
<< po, that is, u; is absolutely continuous with respect to ps.

b) w17 pe =0 is equivalent to p L ps, that is, u; and ue are
mutually singular.

Defining p >0 if p=pu* the Riesz representation theorem
asserts that p >0 if and only if y* (f) =0 for every £f>=0.
All the properties for being a space of type L are easily
verified; the only one which needs a little more of attention is
the existence of the sup and inf. Since the existence of one of them
is reduced to the existence of the other we shall only consider the
inf. We define w3 ™ po = (1/2) [m1+ po) — v(m1 — po)] where
v(p) is a regular o - additive measure called the total variation of p

N N -
and defined by v(u) (E) =sup {2 |u(E;)|; SE; = E}. Since for
1 1

every f 20, f fd(pe—pm) < ffdv(pa—m), we get [ fd(m +
4+ w)/2 — f fdv((ya — ,Lg)/2\ < f fduwy and therefore
1 pe < pa- Analogously py 7 pe << pe. On the other hand, there
exist two sets E;, B, E;_E, =X, such that p—p, =
= (;41—~,wz)f70nE’1 and pue — p1 = (w1 — pme)~ on E;’. On E,,
p1” pe = pe and on By, py T p2 = m1. From thig easily follows
that any p, p < i, ¢ = 1, 2, verifies p < p;  pe, and also
that w ™ pe = 0 if and only if g is singular with respect to
p2, this is, that each one is concentrated on a zero set of the other.
Besides, [lp + poll = [l — pall = v (1 + ) (X) = v (11 —
— p2) (X). Let us prove a). Suppose u; << pe and pg™v=0. Then,
v is singular with respect to pe. Obviously; v is singular with res-

[P

(") m(<)pe means u, ™y =0 for every »>>0 such that u, ™ » = 0.
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pect to uy, and therefore u; — v =0. Suppose p;, is. not absolutely
continuous wit respect to ue. There exists A such that pe(d4) =0
and p; (4) > 0. The restriction of p; to A is singular with respeet
to pe and is not singular with respect to py.

The Kakutani’s representation theorem, ([K]), asserts that
any space of type L is isometric and lattice isomorphic to a con-
crete L1(X, 3, u) space. The set X is the union of disjoint sets X,,
where each one is a part of a measure space (X, 3, p;) such that
us(Xs) = 1, and where 3 is a o - algebra of subsets of X;. 3 is the
o - algebra generated by s 3s and p is the measure on 3 such that
u=pq on 3, . Each Sycan be chosen as the family of Baire sets
(o - algebra generated by the compact G3 ’s) of a totally discon-
nected Hausdorff compact space. (In this case the family of Baire
sets coincide with the o -algebra generated by the clopen sets).
Each (LY(X,,Ss, ps)) T is isometric and lattice isomorphic to- a set
{z;2el,0>0,2(<)x,} and x5z, =0 if s~ ¢. Besides x, can
be chosen to be the homologous of the function which is equal one
on X, and zero on X — X, and = (<) z; means in L! to be integra-
ble and zero on X — X,; 2, " x; = 0 means that each function is
zero a.e. where the other is different from zero-

From all this it follows that a C*(X) is isometric and lattice

isomorphic to an L*(X,3, u). However, the last result can be obtai-
ned in a more direct way. Since C*(X) is of type L, it can be
decomposed into a direct sum of principals ideals [p o], where
[pa) ={p;peC*(<pa} and pa ™ pB =0 for a5~ B, and any

. oo
ve C* can be uniquely expressed in the form v = 3 vai, van € [pan],
N=t

(theorem 2, [K1]). From a) and b) we know that [ua] is the set of
measures which are absolutely continuous with respect to pe, and
that pe ™ p‘ﬁ = 0 is equivalent to ua L mg = 0. Then, using Radon-
Nikodym theorem it easily follows that each [pq ] is isometric and
lattice isomorphic to a space L*(X, 3, pa) where 3 is the o - algebra
of Borel sets on the given space X. Hence, a concrete space L%,
isometric and lattice isomorphic to C*(X), is obtained as the
direct sum of a family { L'(X, 3, po)}, i.e. of spaces L' defined
on the same (X,3). The only éxtremal points of the unit sphere of
a space L' are the characteristic functions of atoms multiplied by
adequate constants, and of a space C*(X), the signed measures 3,
concentrated on a point xe¢X such that ||5]| =1. Among those
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measures, the positive ones are in correspondence - with the charaec-
teristics function of atoms of the isomorphic image L' of C*, in
other words, there are | X | copies of (X, 3) with pe a punctual
measure of mass 1, and they contain the only atoms of the space L
The space B (§ 1, a)) is now the class of functions b of L® that
~ coincide on each (X, 3, pq) with a fixed funetion of C'(X).

IT) We denote by 1' (X) the space of integrable functions of
the measure space (X, 3, p) where 3 =P(X) and p(z) =1 for
every xeX. It is well-known that 1' (X) is the dual space of
¢o(X) = the set of functions f such that for every e > 0 there
exist a finite set E = E(f) < X which verifies |f(z)|<eif
rek.

A characterization of the purely atomic spaces, i.e. spaces which
are isometric and lattice isomorphic to an 1! (X)), is given in [Ph].

III) It is well-known ([KM]) that an infinite dimensional
Banach space cannot be the dual of another Banach space but if
its unit sphere contains more than a finite number of extremal
points. This means that if L' has a finite number of atoms and is
a dual space, then it is purely atomic and finite - dimensional; be-
sides, it is isometric and lattice isomorphic to the dual space of
the continuous functions on a finite set of points. .

4. Case of separable L -spaces. In this section we prove a
theorem due to R- R. Phelps and the proof is the same given in
[Pn] except where me make use of a theorem of Dorothy Maharam.

D. MauARAM’s THEOREM. The measure algebra of a measure
space (X, 3, u), (all measurable sets mod. null sets), with u(X) =1,
is 1somorphic to the measure algebra of a space (Y, 37, '), where
this space s the darect sum of, at most, a denumerable set of typical
homogeneous spaces (Yn, 3w, p'n), n==1, and a purely atomic
space (Yo, 30, pn'o). Each (Y,, 3’,) s an infinite product of in-
tervals [0,1], T [0, 1o, where v, is the least ordinal number

=a<in
corresponding to its cardinal class and yn == ym if m£En; p'a s
the Lebesgue product measure except by a constant ¢, 0 < 0 <1,

(o]
where 3 ¢, =1—pu’o(Yy). The non atomic part of (¥, 3°, u’) is
: .

uniquely determined by the sequence {(yn, cx)} ,m =1, ([M]).

‘We want to recall that the measure algebra of the interval
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[0,1] with Lebesgue measure is isomorphic to the measure algebra

of II [0, 1], with the Lebesgue product measure. This isomorphism
<n<w

will be used without further comments in the following theorem.

PrELPS’ THEOREM. Every infinite dimensional separable L' -
space which is isomorphic to @ B* is isomorphic to 1* (N).

Proof. From the assumed separability and b), § 2, we can
suppose that our space is an L*(X, 3, p) with u(X) =1. From
Maharam’s theorem and the separability of L' we know that
(X, 3, p) is isomorphic, as a measure algebra, to the direet sum
of a finite or denumerable set of atoms and eventually, of a [0, 1]
interval. A theorem due to Gelfand, ([4], [Ge]) asserts that any
function of strong bounded variation (3| x(ai) —x (aic1) | KK

< o) from [0,1] to a separable Banach 2sp.‘slce which is isomorphic
 to some dual space, admits a strong derivative a.., that is
[@(a) —x(B)] / (a— B) converges in the norm when «—>pg for
a.e. B. If the isomorphic image 3’ of = contained [0,1], then the
function: [0,1] & x> x [o] (£) € L* (¥, 3, ') mould be of strong
bounded variation but it is not differentiable in any point. Then
(Y, 3, ) is purely atomic; besides, L' (Y’,3’, »’) must be isome-
tric and lattice isomorphic to 1' (N) because it is infinite dimensio-
nal. It is obvious that the space L' (X, 3, p) in the proof can be
chosen isometric and lattice isomorphic to the original L'-space and
therefore we have:

CoroLLARY. Every separable L' — space which is isomorphic to
a B* is isometric and lattice isomorphic to I* (N).

Remark. If the given L! —space is a complex one there exists
an isometric isomorphism onto the complex I!' which preserves con-
Jjugation. \ '

5. Case of non separable L'—spaces, In this situation the pro-
blem remains open in all its generality. However, something can be
said in the case of an isometric isomorphism.

Theorem 1. Let L' (X, 3, u) be the dual space of B,B < L~=.
If L' has countable many atoms, them L' s isometric and lattice
isomorphic to 1* (N), (cf. [DS], 458, and the example IIT above).

Proof. We may suppose that every atom of X is of mass one.
The unit sphere of LSz, has as the only extremal points the
family of characteristic functions of atoms and their opposites. We
call E the family of positive extremal points, and prove next, that
E is compact in the B-topology.
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Since B < L=, from [DS], V.8.11 and V.8.6, we know that
every extremal point of Sp« is an extremal point of S zm+ , and
from V.8.7, that the multiplicative linear funetionals in S o),
form a set @, compact in the L= - topology. B induces on S zmy
a weak topology for which @ is still a compact set. Since £ = Q ™
canonic image of S , and sinee S; is B-compact, we get the
desired result. (Observe that @ is not necessarily a Hausdorff
space in the B-topology, and therefore, the compactness of E does
not. follow from an immediate argument. Notice that the natural
quotient space associated to @ and the B-topology is compact and
Hausdorff, and in an obvius sense E — @’ 7 canonic image
of Si1).

In our case, £ is a denumerable set, therefore B* is a separa-
ble space. Now, the theorem follows from the corollary of the
preceding section.

CoroLLARY. An L!-space is isometric and lattice isomorphic
to a purely atomic L'-space if, and only if, its restriction to
every set of finite measure is a dual space.

Remarx. The theorem holds even for the complex case, if we
take as the countable compact set, the set of all characteristic
functions of atoms.

6. In the following, x [4,z], or xa(z), or x[A], will re-
present the characteristic funection of the set A. A motivation of
the following theorem will be found in the last paragraph of the
next section, which is independent of this one.

THeEOREM 1. Let L' (X,3,u) be a ofinite space, and B «
closed subspace of L= (X,3,u). Let A be a mon-null subset of X
without atoms, and w(z)e L', a finite valued function different
from zero on every point of X-A. If for every function feL!, the
B*-norm and the L'-norm of w.x [X-A] + f.x [4] coincide, then
B* contains a functional which is not representable by a func-
tion of L.

Proof. a) Without loss of generality we can restrict ourselves
to the case of a finite measure space, ie. p (X) < o (ecf. §2,0)).
Maharam’s theorem enables us to replace 4 hy a direct sum of at
most a denumerable collection of product spaces- Let (Py,J) =
= (I [01]g ¢ II mq), be one of the terms of this sum, where

1=a<y 1Sa<y
¢ > 0, and m,; = m = Lebesgue measure on the unit interval. After
multiplying x by an adequate constant we can make ¢ =1,
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If I,, is an interval with rational end points r and s, then, by
hpyothesis, the functions (h,) * = u x [X—A] 4+ x [4—Pd] £ x
[I;s X T [01)e] +x [ ([01] —1Is) X I[01]s] have the same

2=a<y 2=<a<y ‘
B*morm and L' norm. Then, there exists a sequence {§".} < B
converging in measure to (h,)t 4 (1—u) x [X — A] =1, such
that || " || =1, n=1,2, ..., and another, with the same charac-
teristics, converging in measure to (h,)~ + (1 —u) x [X —A4].
This implies the existence of a sequence {g",,} of functions of B,
all of norm 1, which converges in measure to x [I,s X I [0,1]q ]

‘ 2= a<<y

when n— co. Moreover, we may suppose that the convergence is

almost uniform. The function w(z) of the hypothesis is used only
to ensure the existence of such a sequence.

Since {g"s}, n=1, 2, ..., r,s rational, is a denumerable
family and, since every g is determined by a denumerable number
of sets ({z; g(z) >1, 1 rational } ), we may suppose that for
every m, r, S, g"s (#) = g"s (y) whenever the y—tuples and
y coincide on a denumerable set of indices (1 = 1,42, %, ...).
Reordering the factors of Pq we may also have for n =2, Ty = M.
Besides, after replacing 1 [0,1], by [0,1], we have: Py =

2<n<w ,
= [0,1] X [01] X T [01] = {(z,9,2), e [01], ye[01],
2<a<y
ze M [0,1] a}and therefore, the family { g™ } verifies for all
2<o<y
Ny Ty 8, T, Y, 21, 22 2 Js (2, Y, 21) = g"rs (%, Y, 22).

b) Next, we prove by an inductive process the existence of a
subsequence of the g’s with some special properties which permit
the construction of a linear functional not representable by a
function of L' (X, 3, n). We denote by = the measure Ime and

2<o<y
by R the product I [0,1]

0<a<y
INDUCTIVE HYPOTHESIS.

i) There are n functions of B, h;, of L* -norm equal to 1.

ii) There are n intervals I; with rationals end points such that
Li=[01] > I, > I... > Li; m(I;) <2°0-9, 1@ S



— 127 —

iii) Por every 4, and j > ¢,1=1,2, ..., n:
1 SIS hi(2,y,2) dadyde >1/2.
m(I;)  I; X [0,1] X R

iv) Let J; be the set [teX; |hi(t) —x[I; X [0,1] X R; t] | >
>27'} . Fort=1,2, ..., n, it is verified p (J;) < 2= m(L,).

1
v) Let Z; be the set{ ze[0,1]; H;i(z) = frdr [ h;i (z, y, 2)
0

dy >1/2} . Then, m(I, ~Z;) > (n—1) m(I,)/nfor 1 < 1 < n.

We find a function h, 4 ; and an interval I =1, , satisfying i)
to v).

Let Z’; and Z”; be the set of points of differentiability of the
funetion H;(z) in Z;, and the set of points of density of Z’;, res-
pectively. ‘

Obviously Z; > Z’; > Z”;; since H;(x) eL'(0,1), and
m(Z's—2";) =0,1=1,2, ..., n, we have m(Z’;) = m(Z";) =
= m(Z,).

The condition v) implies, as it is easy to see, that m (I, ™ Z27;) >

> (n—1) m(I,)/n, and m( ~ (I, T Z";)) > 0. Therefore, there
=1

n
is an interior point z, of I, belonging to ~ (In " Z7;) and an

=

€ > 0 such that every interval I with center x, and length less than

everifies m(Z'; T~ I) >nm(I)/(n+1),v1<i <n Hence m(Z;

~I) >amI)/(n+1),1 <7< n Also, we may suppose
n

e < 27" and I < I, Since x,¢ ™ Z’;, ¢ can be chosen as small as to
i=1

verify (1/m(I)) f H;(z) dx > 1/2 for every I with m(I) <e,
I

and for every ¢, 1 < ¢ < n. Of coufse, I may be chosen with ratio-
nal end points, suppose they are r and s. From the family ' gt },
we select a function h with the following properties:

1hllo =15 w{t; | (1) —x[IX[0,1] X B;t] | < 27m=1p< 27" tm(I);

m(I ™ {ze[0, 1] ;I{dvroflh(%y,zwy > 1/21) >namI)/(n+1);

(/mD) ff§ h(x,y,2) dedyd = >V .
x[en]xe

This is possible, because the g’s converge almost uniformly to
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x[I X [0,1] >< R;t] whenk — o. Now, we call hyqq, to b and Tnq1
to I.
¢) Since for each fixed 4, there is a sequence of j’s such that
(1/m(I;)) [[[ hi(z,9,2) dxdydr converges to a number = 1/2, by
nx[onlxr
a diagonal process it is possible to find a sequence {Jx } of natu-
ral numbers such that

*) @ (hi) =1lim 1
E— oo m(Lj, ) [f/ hi (z,y,2) dadyds

L, x[oalxr

exist for every 4 and it is no less than 1/2. In the subspace N < B,
algebraically spanned by {hi}, (¥) defines a bounded non zero
functional | @j(h) | <l|hllo. We extended now (7 by continuity to the
closure of N, and to the whole of B by the Hahn-Banach theorem.
If @ could be represented as (JJ (h) = }{ ¢.hdp with ¢ e L', then

conditions 1), ii), iv) and & (ki) =féidp= [ ¢ hidp+ § ¢ b;
X X=Ji Ji

“dp, would imply the convergence to zero of (J (h;) when @—> .
This contradicts the fact that & (h:) =1/2.

7. General considerations and problems. a) Suppose there
is an isometry of L'(X,3,p) onto C*(Y), Y a compact space- We
can assume without loss of generality that any atom of 3 is of
measure one. In this case, the isometry sends the extremal points
of C*(Y) onto the characteristic functions of the atoms or their
opposites. Since C*(Y) is isometric and lattice isomorphic to an
LY (Z,P5v) (efr. § 3, I), and since the characteristic functions of
the atoms or their opposites correspond to all the extremal points
of 0*(Y), we can, after eventually changing the isometry, suppose
that L'(X, 3, ) is isometric to L'(Z, J,v) ,and in such a way that
characteristic functions of atoms correspond to characteristic fune-
tions of atoms. Since, C(Y) is isometric and lattice isomorphic to
an algebra with unit of functions of L* (Z, 5, v) which aré-zero
outside of the set of atoms of (&, it follows that L*(X,Z3,p) is
isometric to the dual of an algebra with unit of funetions of
L*(X,3,p). Conversely, if L! is isometric to the dual of an alge-
bra with unit B, B < L*; by [DS], V.8.11 and IV.6.20, this
algebra is isomorphic (as an algebra, hence, lattice isomorphic and
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isometric) to the family of continuous functions of a compact
space Y. It follows that there is an isometry of L' onto C*(Y).

Besides, an L'-space may be isometric to the dual of several
algebras with unit. In fact, let X and ¥ be non homeomorphic
compact spaces such that there is an isometry of C*(X) onto
C*(Y). (Take for example, X =[0,1] _ [2,3], Y =[0,1]
— (12}). By the Banach-Stone theorem, C'(X) cannot be isometric
to C(Y).

b) Suppose (X,3,u) is a o-finite measure space the L' of
which is isometric to a B*, B < L>. If every function of L' takes
its norm on a function of the unit sphere of B, then L' is finite-
dimensional. In fact, we may suppose that u(X) = 1. The funection
equal to 1 in a set £ and — 1 in the set X — E takes its norm
only on itself, and therefore belongs to B. Since B is a closed
subspace and containg all the characteristic functions, it must coin-
cide with L=, which proves the proposition. If L!(X,3,u) is iso-
metric to a B* and not o - finite, ‘does the same conclusion hold?
This is equivalent to prove that an L!-space is reflexive if (and
only if) all its functions take their norm as linear functionals.
If instead of asking that all the functions take their norm, we
only ask it for a dense subset of L, the result is that it always
holds. In fact; every B* contains a dense subset of elements which
take their norm on elements of the unit sphere of B, ([BP])-

¢) If the real L'-space is isomorphic to a B* then the com-
plex L!-space is isomorphiec to a B*. We do not know if the re-
sult holds when ‘‘isomorphic’’ is replaced by ‘‘isometric’’ and
whether or not the converses are true.

d) We do not know if a o - finite L'-space which is isomor-
phic to a B* is necesarily purely atomic. Another question, a par-
ticular case of the preceding one, may be stated as follows. Suppose
p#(X) is finite and A is a subset of X of positive measure without
atoms. Is it true that L'(X,3,u) cannot be isomorphic to a B*
in such a way that L'(A4, A3, p) be isometric to a subspace
of B*? If instead of asking the isometry of L'(A), we require it
for the subspace of the form A(xx—4 + xaf), feLl, — o0 <AL 0,
then, as it is proved in § 6, L' is not isomorphic to any B¥*,
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