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INTRODUCTION. The aim of the present paper is to study certain 
results about operators and distribution spaces related with the 
spaces LP with mixed norm (*). These last spaces are treated in [2], 
later we shall give their definition. It is our intention to translate 
to the spaces LP most of the results of [3]. Some theorems here 
may be proved in the same way as in [3], and we shall not give the 
proofs in these cases. In other theorems, which follow the same lines 
as in [3], we emphasize only that parts of the proof which are not 
obvious translations of similar results in [3]. 

This paper is divided into three parts. In the first, the spaces 
LP u are introduced. which are spaces of tempered distributions. 
There we are also dealing with Bessel potential operators and de
rivation acting on LP u. For this it is necessary to consider an ex
tension of a theorem of Mihlin. The first part concludes with an 
interpolation theorem between the spaces LP u. 

In the second part Wie consider a similar result to a theorem 
of Sobolev an Krylov (for the spaces LP u are related to the spaces 
HPn of Sobolev). 

In the third part we deal with Holder continuity of the func
tions belonging to LP u, 0 < u ~ 1. The main result of this part is 
stronger than its analogous and an alternative proof is given. 

NOTATIONS. x = (Xl, ... , X n), Y = Yll ... , Yn) denote points of 
the n-dimensional euclidean space En, P = (Pl, ... , Pn), Q, R" stand 
for n - tuples of generalized real numbers, (1 ~Pi ~ 00) . We in
troduce the mixed norm, II f lip, for a measurable function I(x) 
on En as 

II I lip = II ... II f II p,/x, .. ·11 p./X. (cfr. [2]) 

(*) This paper is part of the author's thesis. 
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and we denote with LP (En) = LP the class of measurable functions 
f on En such that II flip < 00. 

a = (aI, ... , an), {3, y, stand for n - tuples of non - negative 

integers alid . Da , . denotes the ·derivative Dr]' 
dial 

where 1 a 1 = al + ... + an, while x a =x1
a1 ••• xnan . We suppose 

further that the reader is familiar with Schwartz's spaces (8), (8'), 

(D), (D') and (OM). For f € (8'), f (or (f)t\) indicates the Fourier 
transform of f (for f € (8), f(x) = fEn exp (- 2,r ix. y)' fey) dy). 

C indicates absolute constants, dependant of the dimension n. 
In different formulae it may ·take different values. Special cons
tants which mantain their values throughout a proof we denote 
with M. 

If F (x, y, z) is a relation between the real variables x, y and z, 
then F(P, Q, R) stands for the n relations F(Pi, qi, ri), i = 1, ... , n. 

1. Let JZ be the Bessel transform defined by 

for f € (8') and z an arbitrary complex number. 
Each JZ defines an isomorphism on (8'), since 

for every z, and the family {r} is an additive group III the 
index z. Furthermore, if Re (z) > 0 

and GZ(x) = (2 'IT) (1-nJ/2 . 2- z / 2 • [r ( 2z ). r ( n -2z. + 1) 1-1 

00 f ( t2 ) (n-z-l)/. 

exp (-I x 1 (l + t)). t +2 . dt 
o 

for 0 < Re(z) < n+ 1. 
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A consequence of this formula is 
Theorem 1. Let Re(z) > 0 and 1 ~ P ~ 00. Then JZ transforms 
LI'(E'fI) continuously intoLP, and if ds real, with norm less than one. 

In what follow;s we need an extension of a theorem of Mihlin 
(Theorem 3). This will be a consequence of the following Theorem 2 
about singular integrals (proved in [1]). 
Theorem 2. Let K (x) be a function 'on E'fI which verifies 

a) K (x) is locally integrable 

b) J I K(x-y) -K(x) I dx ~ Ml < 00. 

I OJ 1~2.ly I 

If for some q, 1 < q < 00, II K .... fllq ~ M2 II fllq holds, for every f 
which is bounded and has bonded support, then for every P, 
l<P< 00, the inequality IIK·fllp~Cp,q(Ml+M2) IIfllp holds. 
Theorem 3. Let K be the operator on (8) defined by 

(KI) A (x) = k(x) . f(x), 

where k (x) verifies 

a) k(x) has continuous derivatives up to order I( = [n t 2] 

b) J IDak(x)12dx<M2.tn-2Ial for every real t, 

t/2.::;IOJI.::;2t 

o <t < 00 and I a I ~ 1(. 

Then II Kf lip .~ Cp.M II f II P for 1 < P < 00 and f (8). 
Proof. Let cp (x) (D) be such that its support is contained in 

00 

and ~ cp (2mx) = 1 for x#O . 
.. --co 

If kj(x) = cp (2 i x) k(x), we define 
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Hormander proved ([4], Theorem 2.5) that 

( l ) 

and 

J 1 KN(X-Y) -KN(X) 1 dx~ C.M. 

I'" j ':::'21 y I 

Applying Theorem 2, taking into account that (1) implies 

II KN * f 112 ~ C.M II f 112, we obtain 

for every P, 1< P < Cf.) (2) . 

But from (1) it also follows thatKN * f ~ Kf in L2 and there
fore a subsequence KN i * f ~ Kf a. e. 

Applying Fatou's lemma to (2) we obtain 

II Kf II P ~ Cp.M " f II p q.e.d. 

Corollary. Theorem 3 remains true if condition b is replaced by 

b') for 1 a 1 ~ K 

since b') implies b). 

The following theorems we state without proofs, since their 
proofs in [3] only use the theorems of Young and Mihlin, and may 

. be carried over without change on LP. 
Theorem 4. The operator Da JZ, where 1 a I. ~Re(z), is conti

nuous from LP to LP, 1 < P < Cf.). In the case z = iv 

II Pf II P ~ Cp (1 + 1 vi) n ·11 f II p. 

Definition 1. For u a real n1tmber, 1 ~ P ~ Cf.), we define LP u 

as the image of Y under JU. That is Y U = ff; f = J 9 U with g ELP} . 
The norm in Y u we define as II f II P,u = II J-uf II p. 

Theorem 5. a) The spaces LP U are isometric to L p • 

b) If 1 < P < Cf.), JZ is an isomorphism from LP u onto 

PPu+Re(z) . 
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.c) If z is· rea lthe preceding isomorphism is an isometry, even 
if 1 .~ P~ 00. 

d) If u<v, then L P ;;;; LP and for fE£Pv we have u v 
II f II p,u ~ II f II p",. 

e) If 1 <-P < 00, then DO. transforms LPu continuously into 

LPu-lal· 
Definition 2. If . u is a non-negative integer, we call UP u, 

1 < P < 00, the Banach space of all functions of LP, which admit 
derivatives in the sense of Schwartz up to order u, in LP. TRhe· 

norm in HPu defined by Itlp,u= z; IIDatlip. 
. lal.::;;" 

Theorem 6. a) If 1 < P < 00 and u is a non-negative integer, 
thenLPu = HPu and 

. b) If uis a non-positive integer, 1 < P < 00, then f E £P u if 

and only if t= z; DO. Yo.' where YaELP. 
la\.::;;-u 

Further, there exists a choice of Yo. such that 

Cp,u II f II p,1i ~ ~ IIYalip .~ Cp,u II f II p,U· 
la[~-" . 

Note. Ii u is a non-negative integer,t a positive real number, 
then LP u+t C HP u C LP u-t for every P, 1 ~ P ~ 00, the inclu-
sions being continuous. . 

The proof runs the same way as that of Theorem 6, 
but instead of Theorem 4, it uses the fact that, ifu > 10.\ then 
DO. GlL (x) E L1 and therefore DO. JU transforms continuously LP 

::into L~ for 1 < P < oo~ 

Theorem 7. Let f and g E (S), 1 ~ P ~ 00. 'I'hen < f, g> = 
f f(x)g(x) dx verifies <f,g> ~ Ilfllp,u,lIgllP',-u, 

where liP' = 1- (liP), and < f, g > admits a continuous. exten
sion to LP u ® LP' -u . 

. If 1 ~ P < 00, then every continuous linear functional on LP u 
has the form 1 (f) = < f, g > with certain g E LP' -u. 

Next we give an interpolation theorem between the spaces LPu• 

Theorem 8. Let A be an operator defined on (S(En)) with v~ 

lues in (S'(Em)), continuous from L Piu. (En) into L Qi (Em), 
1 t Vi 

i . 0,11 < Pi, Qi < 00. 

That is II Af II Qi' "i ~ Mi II f II Pi' "'i for f E (S). 
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Let P,.Q, u and v be iJefined-by1/P = t!1'1 + (1- t)/Po; 
1/Q=t/Q1 + (l-t)/Qo, u = t.UI + (l-t).uo, V=t,V1 + 
+ (1- t) .Vo, where O<.t < 1. 

Then for f £ (S(En», 

IIAfllQ,v ~(JMi' Pi' 9i' Ui' wllfllp,u. 

Proof. We suppose without loss of gen{)rality that V1 ~ Vo. 

LetK be a moUifier in En, K = £-n cp (:)., 'where cp £ (D), cp~. 0, 

fEn cp dx = 1. Further, letJ1z and J2z be the Bessel transforms .in 

En and Em respectively, and 1 (z) = (UI-UO).Z+1to, L(z) = 
= (vo-vd Z-Vo. Finally let BZ=J2L(~)A.KJ11(Z) f for f be
longing to the class H of simple functions, constant on rectangles 
(see [2], p. 313), and 0 ~ Re(z) ~ 1. 

KJ11(Z)f=J11(Z)Kf E(S) C V 1U1, therefore AKJ1'I(Z) EL91vb 

and since Re (L (z» ~ - Vb it follows from Theorem 4 that 
J2L(Z)A K J11(Z)f £ L91(Em). 

We shall prove now that the operator Bz verifies the hypo
tesis of the interpolation theorem in [2], p. 313. 

Lemma. The operator B" verifies 
a) " Bzf "9j ~ CPj, 9;' Mj, ui, vi (1 + I z I ) n+m II f "Pi for 

z = j + iy, j = 0,1. 
b) For f £ H (En) and g bounded with bounded support, mea

surable on Em, we have. 
i) f (Bz!) . g dy is analytic in 0 < Re (z) < 1, and continuous 

in O~Re(z) ~ 1. 

ii) flYI~NIBzfldy ~ CNd (l+lzl)m+n. 

Proof of the lemma. Let z = j + iy where j = 0,1. 
Then Re (l(z» = Uj, Re(L(z» = - Vi' and 
Im(l(z» =y(U1-UO), Im(L(z» =y.(VO-V1). Applying 

Theorem 4, we obtain: 

" Bzf " 9/ ~ C (1 + I z I )n+m . Mi " Kf " Pi, and since 
" Kf II Pi ~ " f II Pi> i) follows. 

In the case z = x + iy, 0 ~x :::;;; 1, we have Re (l (z» ~ 
;;::: U1 + I UI-UO I , Re (L(z» ~ - VI. Using again Theorem 4, 

II Bzf " 91 ~ C. (1 + I z I )n+m " Kill P , - 11'1 -I'. I' (3) 

and iii) Tollows. 
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To prove ii), we observe that for f, g € (8), 
I(f,g,z) = fEm(J2-VIAJ11(Z) f).(J2(V1-VO)Zg) dx is an entire 
function of z. In analogy to Theorem 7 we also have 

Now if gk € (8) and gk ~ g in LQ'" then (3) implies that 

I(Kf, gk, z) converges quasi-uniformly to I(Kf, g, z) on the closed 
strip 0 ~ Re(z) ~ 1 (i. e. it converges uniformly on compact sub
sets). ii) follows. 

We proceed now with the proof of Theorem 8. 
From the interpolation theorem of [2], using the preceding 

lemma, we obtain 

II Btl II Q = II J 2 -v A J1u Kf II Q ~ ell f II p, (5). 

t, u, v, P and Q being the numbers and be n- and m tuples defined in 
the statement of this theorem. 

Taking € < fOe!) in the definition of K, me hwe II f II p ~ 
~ 2 II Kf II p, and we get from (5), II Ag II Q,v ~ c II g II P,u, where 
g=J1uKf· 

Since the set {g = J1 uK f; ftH, E<Eo(f)} is dense in (8) 
with respect to the norm of LPu, the theorem is established. 

2. We shall establish now results which correspond to theorems 
of Sobolev and Krylov (see Theorem 2 below). To do this we need a 
stronger form of Sobolev's theorem for mixed norm (cfr. [2]). 

Theorem 1. Let L = (h, ... , l,,) a n-tulpe or real numbers, 
o ~ Zi .~ 1, 0 < l". If P and Q verify l/P -'- l/Q = L, 
1 ~ Pi ~ 1/1i' 1 < p,,< l/Z", then 

II f * I X 11-" II Q ~ cp,Q II f II p for every f € LP, where 
Z=11+ ... +l". 

Proof. We must prove that 

1= If f(x) g(y) Ix-yIZ-n dxdYI~Cllfllp.llgIIQ' 

where l/Q' = 1 - (l/Q). 

Let us consider the (n - 1) -tuples 



t4e l~tter ~efined:'by liN =1 +,(VQ) ....... (Vi') '-1~L.' 
The function h(Xl1 ... ' Xn -1, a) - h(x, a)~~.{ Ixl 2 +-

n-l ' 

+ a2 ) (l-n)/2 satisfies II h(x, a) II:R= I all elri) II (h(ax, a) II.:R= 
i~l 

n-l ' 

Z-n + l (tIro) -= I a I i-I . II h (x, 1) II R~ 
Now, II h('X, 1) II :R is finite as it is easy to see, so 

II h(x, a) II if = I a I Zn-1 • OR 

Fixing Xn and Yn we obtain from Young's theorem and (1) 

If g(y) f(x) I x - Y II-n dXl, ... , dXn-1 dY1 .. . dYn~l I ~ (2) 

~II g II Q1 (En-I) . II f II P (En-I) .11 h(x, xn.:.......y,.) II if 
= 0.1 Xn-Yn Iln-1 II g IIQ", II flip· 

Calling F(xn) = II f II p, G(Xn) = II g ifQ", from (2) we obtain' 
I::::;; 0 . fF(xn) G(Yn) I xn-Yn Iln-.1 dXndYn ::::;;(by Sobo

lev's theorem) ::::;; 0 II F Ilpn II G II q' n = 0 lit II p • II g JI Q' q·;'e.d. 
To establish Theorem 2 we still need three auxiliary lemmas. 

There6.hf(x) = f(x + h) - f(x). 
Lemma 1. If ffU(En) and II 6. 2h flip::::;; c.lhl8 with 

o < 1$ < 2; then 

if 8<1 

1I4~illp::::;;O •. if s = 1 

if 8> 1. 

Proof. From formula 

N-l 
6.i.f(x)=-(1/2)l 2-k6.2~kd(x) + 2-N6.2Nhf(x) 

k=O 

we obtain by using the hypothesis, 

N-I 
II 6.h flip::::;; 0 I h I 8 l 2k (8-1) + 2-N 0 (3) 

k=O 
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In the case s < 1, the series~ 27c(s-1) converges, so for N---* 00 

we get our result. 

I:f s = 1, from (3) we obtain 

1164 lip ~ C( 1 h 1 N + 2- N ), . 

and if s > 1 

II D.h f II p ~ C (I his 2N(S-1) + 2-N). 

Taking in these cases N such that 

log + (I ~ I) < N ~ log + (I ~ 1) + 1 we obtain the thesis. 

CD 

Lemma 2. Let Fu(p) = r (n!;+l) Iexp (- p (1+ t» 

o 
( t2 
.. t + 2) (n-u-1)/2 dt 

for real u, u < n + 1, p being a real positive variable. 
Then, 

a) 

Proof. a) can be obtained by differentiating under the integral 
sign and integrating by parts .. 

00 

b) For p ~ 1 F u (p) ~ C f exp ( - t - p) 
o 

t2 (t+2) (u-n-1)/2dt~ C. exp(-p). 
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Now if p < 1, we separate. three cases. 

'" 
u < n: Fu(p) :::;;; 0 pu-n f exp(- t) 

o 

( t2 
pt +2) (n-u-l)/2 dt :::;;; 0 pu-n. 

no 

(1/2) f r.Fn_ 2 (r) dr:::;;; (by the preceding 
p 

1 dr . 1 
case) :::;;; 0 f - + 0 = 0 (log ( -) + 1) . 

p r p 

u> n: Fu(p) :::;;; O.exp(-p) [( t + ~2) (n-u-l)/2 dt = 
= O. exp (- p) ,q . e . d. 

Lemma 3. If Gu(x) = [( 1 + 471"21 X 12) -u/2] v, we have for 
1 :::;;; R :::;;; 00 and u > 0, 

a) Gu(x) ELR if ~ (l/ri) > n-u 

b) II fuGu II R:::;;; 0 . I h Il:(l:"ri)-n+u if 
1 > ~ (l/ri) -n+u > 0 

c) For 2 > ~ (l/ri) -n+u> Owe have 
II 6 2uGh II R:::;;; 0.1 h Il: (1/r,' -n+u. 

Proof. a) If 0 < u < n + 1, Gu(x) = 0 Fu( I x I) and from 
Lemma 2, b), follows a) in case u < n + 1. 

If u ~ n + 1, there exists v < n + 1, such that ~ (l/ri) >n-v, 
and we have II Gu II R = II Gv * Gu- v II R :::;;; II Gv II R II Gu- v II 1 = 
= II Gv II R, q.e.d. 

b) and c). We shall show that 

i) b) with u < n implies c) with u<n+l 

ii) c) with u < n + 1 implies b) 

iii) b) implies c). 

In fact, suppose b) is true for u < n, and let u < n + 1, 

2 > ~ (l/ri) -n+u> o.NowwedefinePby! = ! + 21R' 
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Thim P verifies 

1 1 . 1 'It 
P + P . 1 + If and 1 >:s (l!Pi) - n + 2 > 0, 

and we have 

Applying Young's inequality 

II 6. 2h Gu II R :s; II 6. hG u II 2p :s; (because u ):s; 
2 2< n 

:s; 0 I h 1 2 (2] l/Pi-n+-i"l = C I h 12](l/Ti l - n + u • This proves i) 

ii) is consequence of Lemma 1, since the hypotesis of b) imply 
u<n+1. 
iii) may be proved in the same way as i). 

From i), ii), and iii) it follows that to prove b) and c) it is 
enough to prove b )in the case u < n. 
Applying the mean value theorem and Lemma 2, a), we obtain 
l6. hGu(x) 1= 0 l6.hFu(1 x I,) I :s; 0 I h I F'u(r)=O I h I·r. F u- 2 (r) 
where r = I x + 0 h I with certain 0, ° < 0 < 1. 

From Lemma 2, b), we then have 

If we call 

( a .1 x I u-n-1 if I x I ~ 2a > ° 
G1 (x;a) = t 0 elsewhere 

( ! x 1 n-u if 1 x 1 :s; 3a 
G2 (x;a) = ~ o· elsewhere, ~ 

it follows from (4) that 

II 6. hGu II R:S; 0 [ I! G1 (x;1 hi) II R + II G2 (x; I h I )11 R] = 
= c 1 hi:!] (1/ Til [ II G1 ( 1 h I x; 1 hi) II R + II G2 ( j h 1 x; I hi) II R ] = 

= C I h I~ (l/ri)+n-u [II G1 (x; 1) II R + II G2 (x; 1) II R ] • 
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Since II Gi (x; 1) II R < 00 we thus have proved b) in case 
u < n, q.e.d. 

Theorem 2. Let P and Q, 1 :::;; P, Q :::;; 00 be such that 1 I P ~ 
~ 11Q, 1 > l/p" > l/q" > ° and let u and v be real numbers which 
satisfy ~ (l/Pi -l/qi) = u - v. 

Then LPu CLQv, the inclusion being continuous. 
If 1> u - ~ (l/Pi) > 0, 1:::;; P :::;; 00, then every function 

f € LPu coincides a. e. with a ocntinuous function 7, and 

1 

IT!:::;; C Ilfllp,u , Ilfcx+h)-f(x) I:::;; C Ihlu-:£P.llfllp,u. 

1 1 
Proof. Let us call L = (h, ... , In) the n· tuple L = P - Q; 

then 0 < ~ li = u-v < n, and for f ELP, we have by Lemma 2, b). 
I (Ju-vf) (x) I = I (Gu- v * f) (x) I :::;; C I x I u-v-" * I fl· 
Now applying Theorem 1, II Ju-vf II Q :::;; CP,Q II f II p, or, what is the 

. same, II JUf II Q,v:::;; CP,Q II JUf II p,u. This proves the first part. For 
the second part, since 1t > ~ (11 Pi) = n - ~ (1/ P' i), we have from 
Lemma 3, a), that Gu(x) ELP'. 

Now if f E LPu, then f = Gu * 9 with 9 € LP. Then Young's theo
rem implies the continuity of f and also that 

Finally f(x + h) - f(x) = 6 hGu * g, and again by Lemma 3, b), 
and Young's theorem, 

1 
:::;; C I h I U -}; Pi • II f II p,u q .. e. d. 

Note 1. If in the first part of the preceding theorem we had 
u - v > ~ (l/pi -l/qi), the same conclusion holds for 
1 :::;; P, Q:::;; 00, liP ~ l/Q. 

In fact then by Lemma 3, a), Gu - v € LR, ~ + ~ = ~ + 1, and 

II Gu-vf II Q:::;; C II f II P follows from Young's theorem. 
Note 2. If in the second part we had u - ~ (1/ Pi) = 1, the 

conclusion would change only in the fact that then 
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Indeed, from Lemma 3, c), and Lemma 1, we obtain 

il f:o.hGu II p' ::::;; 0 1 h 1 (log+ (I '! I) + 1) in this case. 

3. In this part we shall study Holder continuity properties 
of functions beloging to a class LP u. 

Definition. Let u bea real number and r the greatest integer less 
than u. We denote with 1\ P u, the class of distributions f, f E LP", 
such that 

The norm in l".,Pu we define as II f II P,u, plus the least constant OJ 
that satisfies the preceding inequality. TV e denote it with If I p,u • 

Theorem 1. a) If u is not an integer, then II f:o.2 hJ-rf II P ::::;; 
::::;; 0 1 h 1 U-r is equivalent to II f:o.hJ-r f II P ::::;; 0 1 h 1 u-r. 

b) JV is an isomorphism from I\P u onto 1\ P u+v for every pair of 
real numbers u and v and 1 ::::;; P ::::;; 00. 

c) If u < v and 1::::;; P::::;; 00, then !\/~ L/~ A/, the inctl-
sions being continuO'Us. _ 

To prove Theorem 1 we need certain auxiliary results, which 
we state next. 

Lemma 1. Let g(x) € (D) have support contained in 

{x; ~ <Ixl< 2} , and let t, v, be real numbers, 0 < t < 1. If the 

function Gv,t(x) € (8) is defined' by 

v 
(Gv,tY' (x) - g(tx) . (1 + 4 7T2 1 x 12)2, 

then II Gv,t 111 ::::;; Og,v t-v. 

Proof· Gv,t(x) = (_ 2 ~ ixt J exp (27T i (x, y)) 

En 
v 

Da [g(ty). (1 +47T2 1 y 12) 2 ]dx 

the integrand having support in {y; ~ < 1 y 1 < ~} 
2t t 

and being bounded by O",g tlal:-1J there. 
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Therefore 1 Gv,t ex) 1 :;::;;'CV,g • t s - v- n 1 x 1 -s for s = 0;1, ... 
and in particular 

{ 
t-n-v for 1 xl:;::;;' t 

1 Gv,t(x) I:;::;;' C . . t1- v . 1 x l-n-1 for 1 x I;;:: t. 

Integrating these bounds we get our thesis. 
In Lemma 2, x, y, z will denote one dimensional non - negative 

variables. 
Lemma 2. Let r, sand t be real numbers, r ;;:: 0, 0 < t < 1, s < 1. 

If g(x) £ C"" (0, 00), being zerofor x;;:: 47T', and dgd~) £ U(O, 00) 

00 

then 1 I 1 = f g(x) exp 
o 

ix Y) (r+8) 
(-t- .xr. (t2 + x2 ) - -. 2-dx 1 

( t ) 8, 
:;::;;, Cs II g' 111 11 

where Sl is a certain real number 0 < Sl <1. 
re ( izy ) (r+8j 

Proof. We call F(x) = J exp -t- zr (t2 + Z2) --2-dz. 

~, m 

Then 1= fg(x). F'(x) dx = - f g'(x) .F(x) dx, and we have 
o 0 

III=llg'111. sup IF(x)l. 
O<re<41t 

We shall show that 

sup IF(x) 1 :;::;;'C8 (yt f' (1) 
O<re<41t 

having this way proved the lemma. 
For this we d'ecompose F(x) into real and imaginary parts and 

we shall find bounds for each part. 

'II" t 3'11" t 

Re(F(x)) = f 2ii + f2iJ + ... + f x 

'll"t (2m-I) 'll"t 
o 2ii 2y 

Z Y -r-s 
cos (-t-) Zr(t2 +z2 )-z- dZ=CO+C1+ .... +Cm 
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The sequence Ci is of alternating sign, and if· the function 
" ~ '." . (2 j -1) 11" t (2 k + 1) 11" t) 

zr(t2 + Z2) 2 IS monotonous III 2 ,. 2 
. y y 

then the sequence 1 Cj 1 , ••. , 1 Ck I, is also monotonous. There
fore we can associate Co + ... + cm) in at most five terms 

(co + ... + Cil) + ... + (Ci4 + ... + cm) such that in each 
parenthesis the moduli of the summands are monotonous. 

Then 
1 Co + 

Further we have 

so that from (2) it follows 

+ Cm 1 ~ 10. max 1 Ci 1 
O~i~m 

(l+z)-S if s<O 

Z-8 if 0 ~ s < 1 

f (t/y)1-s 
sup I· Re(F(x)) 1 ~ 0 8 • J 

() < x < 4 'IT l (t/y) 

if O~s<l 

if s < 0 

Similar bounds may be obtained for 1 Im(F(x)) I. 
Formula (3) implies the thesis for s :> 0 with Sl = (1 - s) . 

4lt 

(2) 

(3) 

If s ~ 0,1 F(x) 1 ~ f (1 + z) -s dz = Os, and from (3) we obtain 
o 

sup 1 F(x) 1 ~ Os min (1, t/y) ~ Os min (1, (t/y)Sl) < 
0< X < 4 'IT 

~ Os (t/y)s1 for any Sll 0 < Sl < 1, q.e.d. 
Now we shall generalize in certain sense Lemma 1; x, yare 

again points of En. 
Lemma 3. If v ~ 0, then Lemma 1 holds for any g € (D) 

support of gC{x; \x\<2}. 
Proof. Let v > 0. 

En 
v 

[g(tx) (1 + 411"21 X 12)2] dx 

= Yk -l times a finite sum of terms T; 
with 

(4) 
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T j = f exp (271" i(x, y)) g8(tX) (1 + 471"21 X 12) (v- i -r+S)/2Xk r ts dx. 
En 

Here gs(x) are linear combinations of derivatives of g(x), 
having thus the same support as g(x), gs(x) €,(D); O:::;;s:::;;j, 
o :::;; r :::; j. 

We shall find bounds for T j in two cases. 
i) j = O. 

v 
I To(Y) I:::;; Cg . f (1 + 471"21 x 12)2dx:::;; Cg,v . t-v- n (5) 

1 "'15,.2/t 

ii) j = n. Changing variables z = 2 71" tx, 

J ( . cos YZ) (Z) Tn(Y) = t- v exp ~ I y II z I-t - gs 2; 

(t2 + I Z 12) (v-n+s-r)/2 Zkr dz. 

Writing this integral in polar coordinates we obtain 

'" 
f ( Zk ) r f ( . cos y) (p Z ) Tn(y)=t- v lZT d~ exp ~IYlp-t- gs 271" 'TZT 
~ 

an applying Lemma 2 to the integral in p, we get 

I Tnl:::;;Cvt- v (Tf1tJICOSyl-sllloop gS(2P
7l" ' ih) Ill/p 

I . 

d ~ = CV,g t-V (G-T ) 81 (6) 

From (4), (5) and (6) it follows that 

r t-v - n for I y I :::;; t 

1 t~v . ( G-T f· I y I -n for I y I ~t 

and integrating these bounds we obtain the thesis for v > O. 
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If v = 0, it is immediate that Go,t(Y) = t- n GO,l(y/t), so that 

II Go,t II 1 = II GO,l II 1 q.e.d. 

Lemma 4. There exists a function g (x) € (D (E1 » such that 

1 00 

support of g C{x;-<x<2} and ~ g2(2- mx) = 1 for x> O. 
2 111--«> 

Proof. There are standard constructions (e. g. see [4]) for a 

1 
gl(X) belonging to (D(E1», support of gl C{x; 2 <x<2}, 

such that ~ 
1n= - 00 

Now 

1n=-CIJ 

Therefore we may take g(x) = gl(X). g2-l/2(X) q.e.d. 
Proof of Theorem 1. a) follows from Lemma 1, section 2. 
b) Since for v an integer b) is true by the definition of /\ P u, 

one needs only to prove b) for 0 < v < 1 and consider the case 
o < u ~ 1. Let f € /\ P u. 

Case 1: u + v ~ 1 (therefore u < 1). 

Using a) and Lemma 3, b) of section 2, we get 

Further II JVf II p ~ II Gv 111 II f II p = II f II p ~ Ifh,u 
From (7) and (8) it follows 

q.e.d. 

Case 2: 1 < u + v < 2. 

(7) 

(8) 
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Let {.f i}' i = 1, ... , N, be a family of open, circular cones, 
with vertexes at the origin, such that they cover the surface ~ of 
the unit sphere, and the angle between two generatrices of each {,f il 
is not greater than '71'/2. We call ei the unit vector direction coinci
des with that of the axis of {f il . 

Let g i (x), i = 1, ... , N, functions of (D), with support of 
g. a r· such that 

! II 

N 
~ gi2 (X) = 1 for x€~. 

i=1 

Let g (x) be the function of Lemma 4. We define 

gi* (x) =gi (\:\) . gel x\), i=1, ... ,N. Then gi*e(D), 

support of gi* afi n { ;:c; ~ <lxl<2 } , and they satisfy 

'" N 
~ ~ gi*2(2- mx) =1 for x¥=O. 

",--8 i-1 

N 
But ~ ~ gi*2(2- mx) = g**(x) € (D) if we put g**(O) = 1 

",=0 i=1 

and it vanishes for \ x \ ;::: 2. 
With these definitions we thus have 

00 N 
g**(x) + ~ ~ gi*2(2-mx) = 1 for x € En. 

,,,-1 i=1 

Then for any t, 0 < t :::;; 1, 

(JV-If) l\ (x) = g**(tx) (1 + 4 '71'2\ X \2) (I-V)/2.! + 
N + ~ ~ [gj*(2- mtx) (1 + 4'71'2\ x \2) (I-V)/2] 

"1-1 j=l 

[gj*(2- mtx) (1-exp(2'71'i2- mt(X,0))f"2]. (6 22- m tejf)!\. 

Using the notation of Lemmas 1 and 3, we may rewrite this as 

co N 
JV-lf = G1-v,t * f + ~ ~ G*il _ v,2-mt'" GiO,2 -'--mt * D 22- mte . f 

",,~1 i=1 ' 
(9) 

and from the same Lemmas 1 and 3, taking t = 1, we get 

Ii JV-If II p :::;;CV,g { II flip + m~1 2m (I-V-U)/f/p,u} :::;; Cv. /fh,u 

(10) 
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Analogously taking t = I h I in (9), we obtain, 

on 

" 6,2hJV-1f II p ~ Cv ( II 6,2hfll p + ~ (2-m I hi )u+v-1/f/p,u) ~ 
m-l 

~ Cv I h I U+V-1/f/p,u (11) 

(10) and (11) imply 

q.e.d. 

c) From the very definition, Av-/ C L/ = LP, and 
/f/pw-u ~ II f lip. Applying JU to both spaces and using b), we 
obtain L/:l /)./, which is the second inclusion we had to prove. 

To prove the first inclusion, we call s = u - r. 
Then II 6,2h JSf II p = II 6,2h Gs " f II p ~ II 6,2hGs 111. II f II p, for fEY. 
Using Lemma 3, c), of section 2, 

II 6,2hJ8f II p ~ Cs I h 1 8 II f II p. Since further II JSf II p ~ II f II p, 
we have / JU f / p,u ~ C8 II JUf /I p,u, q.e.d. 
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