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Abstract: The pairing plus quadruple interaction have been diagonalized 
for four identical particles in the N = 2 shell of the harmonic oscillator. The 
states of the basic representation are classified accQrding to the SU3 coupling 
scheme. The energy levels and wave functions are calculated for different va­
lues of the relative intensity of the two forces. The results are compared with 
the predictions of the vibrational and asymmetric rotor models. 

1. INTRODUCTION 

Many properties of nuclei at low energies can be explained 
with a model which considers the particles out of closed shell as 
moving independently in a single-particle potential and interacting 
through an effective residual force. 

The residual interaction considered in this paper has' been pro­
posed by Bohr and Mottelson (1, 2, 3, 4). It has a long range com­
ponent (quadrupole interaction) which produces the level scheme 
corresponding to ellipsoidal deformations, and a short range one 
(pairing interaction) which gives rise to the "seniority" scheme. 

There are different approximations used un order to deal with 
this Hamiltonian. The more ,usual of them are: 

a) The quasi-particle formalism which approximately diagonal­
izes the pairing interaction. 

b) The quasi-boson method. It is used in order to treat the 
effects of the quadrupole force which has not been incorporated into 
the single particle field. 
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c) The deformation of the central field, which is produced by 
the long range component and which gives rise to collective degrees 
of freedom. The corresponding parameters are calculated through 
the "crancking model". 

Although these approximations are very usefull, it seems con­
venient to perform an exact calculation in order to obtain a more 
detailed insight on the effects of the residual forces and correspon­
ding collective level schemes. This is done in the present paper. 
We have solved .the Hamiltonian for the case of four identical par­
ticles in the N = 2 shell of the harmonic oscillator. 

Pairing and quadrupole forces have different symmetries. The 
first is invariant with respect to the symplectic group and the se-· 
cond one is the Casimir operator of the SU3 group. 

We use the SU3 coupling scheme because the pairing force has 
simpler matrix elements than the quadrupole force. 

In order to classify the states of an harmonic oscillator shell, 
Elliott (6) introduces the chain of subgroups 

SUs::> SU3 ::> R3 ::> R2 

where s is the shell degeneracy. 
Corresponding to the SU3, R3 and R2 representations, the 

states are labelled by the pair of numbers (Ap..) , the angular mo­
mentum L and its projection M, respectively. 

Weyl's theorem states that if we label the states according to 
irreducible representations of SUs we are labelling at the same 
time according to the re:presentations of the symmetric group IIn: 
(n = number of particles). This is done through the partitions [f]. 

The wave functions must be totally antisymmetric: this fact 
determines the relation between the permutation symmetries of the 
spatial and the spin wave components. Therefore, once S is fixed, 
we know which irreducible representations of IIn are possible. 

Weare interested then in the possible values of A and p.. which 
are compatible with a given [f], and in L values which are com­
patible with each (Ap..). Elliott has' obtained these values of (Ap..) 
for the N = 2 shell and most of the N = 3 shell. 

The representations of R3, which occur in the representation 
(Ap..) of SU3 are given by: 

L = K, K + 1, K + 2, K + max (A,p..) (la) 
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where the integer K is 

K = min(Ap.) -2, ... , 1 or 0 (11) 

except when K = 0 in which case 

L = max (AP.) , max(Ap.) -2, ... ,1 or 0 (lc) 

The structure of the Casimir operator of the SU3 group is 

• 3" 1" 
G(AP.) = 4 Q.Q + T L.L (2) 

with eigenvalues 

(2a.) 

From here we obtain an expression of the quadrupole interaction 

A A A A A 

Q . Q = 4 G (AP.) - 3 L . L 

with eigenfunctions having definite values of (AP.) and L. 

2. CALCULATIONS 

We have constructed the wave functions of four identical 
particles, which have total spin S = 0, using the Hill-Wheeler 
projection integrals 

2L+1 J '\It «AP.) L M K) = C «AP.) t, K) DLMK (0) Xu «AP.» do (3) 

where Xu is the intrinsic wave function referred to a rotated frame 
and C «AP.) L,K) is a normalization factor. 

For the present case the SU3 :::> R3 chain is not sufficient to 
give a complete classification of the states and we connot use frac-
tional parentage coefficient techniques. In order to perform a com­
plete classification, the parameter K is introduced by (3). This pa­
rameter K is an approximately good quantum number and can be 
interpreted as the projection of the angular momentum on the 
z-axis of the rotated frame. 
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The complete set of wave functions is given in table 1. 
The intrinsic wave function introduced in (3) must satisfy 

the system of equations 

A",y X = A z", X = A zy X = 0 

(A"",-Ayy) X = P.X (4) 

(2Azz - Amm-Ayy) x= (2A+p.) X 

where 

(4a) 

and the operator ai+ = /2 (Xi + i Pi) creates one quantum of the 

harmonic oscillator in the the i-direction (i = X, Y or z). 
We can obtain functions which satisfy the conditions (4) using 

the fact that the SU3 group clasifies the quanta of the harmonic 
oscillator and that for each irreducible representation (Ap.) corres­
pons a Young tableaux according to Weyl's theorem. For example, 
the wave function X (42) is given by 

( 42) = I az + ( 1 ) 
X az +(2) 

(5) 

Young tableaux corresponding to the representation (42) of the SU3 group. 

where I 0 > indicates the state in which the four particles are in 
the ground state of the harmonic oscillator. The Young tableaux 
associated with the representation (42) is given in fig. 1. 
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In the Schrodinger representation X «AP.») is expresed as a 
linear combination of products of four harmonic oscillator func­
tions. In the spherical basis it becomes 

XfJ (A f-t) = Z; a) cpfJ (11 v1) cpfJ (l2 v 2) cpfJ (l3 v3) cpQ (14 v4) = 
v,l 

(6) 

by evaluating the Hill-Wheeler integral we obtain 

2L+ 1 f L tP ((A f-t) L M K) = c ((A f-t) L, K) DMJ( (D) XfJ (A /-t) d Q 

2L+1 I = c ((A f-t) L, K) ~ a) :; [ DMKL Dy1m111* Dy2m212* Dy3m3l'J* 

Dy4m414*] cp(llm1) CP(l2 Tn2)CP(l3 Tn3) cp(14 Tn4) 

(7) 

The second equation is deduced from the symmetry properties of 
the rotation matrices D. 

The following step is to reduce the obtained set of functions 
with respect to the symmetric group lIn. We use the Young opera­
tors in order to perform this calculation. 

The totally antisymetric wave functions can be expressed by 

'l1 «Ap.),L,M=O,K,S=O,Ms = 0) = 

= -V~ {'l1([f] (Ap.),L,M=O,Klrl)cp([f]S=O,Ms=O!rl) 

(8) 

where ri states for a particular standard tableaux. 
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The nonorthogonality of the wave functions labelled by different 
K in the (42) representation has been overcome through a Schmidt 
orthogonalization process. 

We then diagonalize the proposed Hamiltonian 

(9) 

in the basis given by the complete set of functions (8). 
The quadrupole component of the Hamiltonian is given by 

HQ=-K ~ ~ (_)mri2rj2 Y2m ((};<pj)Y2- m «()j<pj) (9a) 
i,j m 

and the pairing component H p is defined by the non-vanishing ma­
trix elements 

< (li m;) (lj 'YItj) I V ij I (l'i m'i) (l'j m/j) > = 
- G8 8" a 8" ( )li+l'i+mi+m'i - - mi,-rnj Tn i,-nt j li lj 1 i lj -

(9b) 

The quadrupole interaction is diagonal in the chosen basis, 
meanwhile the pairing force mixes the states with the same L but 
belonging to different prepresentations (i\p.~. 

We obtain the energies and the corresponding eigenfunctions 

for different values of the ratio ~ between the strenghts of the 
K 

forces. The results are given in Table 2 in which we have indicated 
with (42) K = 2 the eigenvector coefficient corresponding to the 
wave function which is orthogonal to the (42) K = 0 one. 

We know that for -~ = 00 we have the seniority scheme and 
K 

that for ~ = 0 we obtain the rotational extreme. With the re­
K 

sults corresponding to intermediate values it is possible to deter­
mine the regions in which the nuclear motion can be interpreted in 
terms of the different collective models. 

In fig. 2 we give the resulting energies as a function of 

~. The error is estimated to be 0.2 % for each level because the 
K 

obtained trace for the L = 0 matrix in the pairing extreme is 
- 13.97 G and it must be -14 G(2). 
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3. DISCUSSION 

The levels obtained in the quadrupole extreme correspond to 
a rigid rotator as can be seen in fig. 2. Applying expressions of re­
ference (7), the three inertial parameters result equal. We may 
assume that for a sufficiently small departure from rigid rotator, 
the rotational behaviour will remain valid with a perturbation term 
of the form 

H'= bL4 

In references (7, 8), the coefficient b has been given the same value 
to all the levels of the same rotational band. We have found that a 
unique value of b does not give agreement with our results, however 

G 
small is the departure from the extreme - = O. 

K 

In no case an axially symetric rotation can be obtained for the 
ground state. 

The triplet predicted by the vibrational model appears for the 

value of !i = 25, the center of gravity of the 0, 2, 4 levels being 
K 

12 % lower than twice the energy of the first 2 + level. However 
the presence of a 3 + level at this energy disturbs the vibrational 
picture. 

The overlaps of the functions belonging to the (42) represen­
tation are 

< (42) 200 (42) 202 > = 0.06285 

< (42) 400 (42) 402 > = 0.29786 

To realize the influence of the nonorthogollality in the label [{ 
we perfomed the diagonalization with the nonorthogonal wave 
functions and the results are compared with the correct ones in fig. 3. 

As Elliott states, t.he lowest states have the main contribution 
from the (42) representation. However, there is a rather impor­
tant part corresponding to higher representations, which increases 

G 
as - does. 

K 

We want to thank Dr. Rebeca Ch. de Guber for kindly making 
available to us the computing facilities of the Instituto de Calculo 
(Universidad de Buenos Aires). 
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Plot of the results of the diagonalization for the nonorthogonal wave functions 
(b), compared with the correct ones (a). 

TABLE 1 

[I] L 

[22] (42) 0 0, 2, 4 

---

2 2, 3, 4, 5, 6 

---

(31) 1 1, 2, 3, 4 

(04) 0 0, 2, 4 

I 
(20) 0 0, 2 

II 
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TABLE 2 

L Energy (42)K=0 (42)K=2 (04) (31) (20) 

Quadrupole extreme 

0 0.8889 0 0 1 

0 0.4444 0 1 0 

0 0 1 0 0 

1 0.5555 . 1 

2 1 0 0 0 0 1 

2 0.6296 0 0 0 1 0 

2 0.5555 0 0 1 0 0 

2 0.1111 0 1 0 0 0 

2 0.1111 1 0 0 0 0 

3 0.7407 0 1 
3 0.2222 1 0 

4 0.8889 0 0 0 1 

4 0.8184 0 0 1 0 
4 0.3703 0 1 0 0 
4 0.3703 1 0 0 0 
5 0.5555 1 

6 0.7778 1 

G 
=4 

K 

0 0.8737 -0.026 -0.017 1.000 
0 0.4559 -0.047 -0.999 -0.D18 
0 0 -0.999 0.048 -0.025 
1 0.5826 1 
2 1 -0.005 -0.002 -0.003 0.000 1.000 
2 0.6351 0.002 0.019 -0.172 -0.985 0.000 
2 0.5725 -0.017 0.011 0.985 -0.172 0.003 
2 0.1601 -0.391 0.920 -0.D13 0.019 0.000 

2 0.1369 0.920 0.391 0.013 0.007 0.005 
3 0.7569 0 1 
3 0.2690 1 0 

4 0.8923 0.000 -0.019 0.045 -0.999 

4 0.8241 0.000 0.018 0.999 0.045 

4 0.4083 -1.000 -0.002 0.000 0.000 

4 0.3849 0.002 -1.000 0.018 0.020 

5 0.5826 1 
6 0.7917 1 
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TABLE 2 (Cont.) 

L En61'gy (42)K =0 (42)K =2 (04) (31) (20) 

~=7 
K 

0 0.8645 -0.044 -0.031 0.999 
0 0.4655 -0.077 -0.996 -0.035 

0 0 -0.996 0,078 -0.042 

1 0.6016 1 
2 1 0.009 0.003 0.005 0.000 -1.000 
2 0.6422 0.007 0.030 -0.309 -0.950 -0.001 

2 0.5822 -0.029 0.024 0.950 -0.309 0.005 
2 0.1943 0.391 -0.920 0.024 -0.034 0.001 
2 0.1556 -0.920 -0.391 -0.022 -0.012 -0.009 
3 0.7682 0 1 
3 0.3018 1 0 
4 0.8952 0.000 -0.031 0.078 -0.997 
4 0.8306 0.000 0.032 0.997 0.077 
4 0.4350 -1.000 -0.001 0.000 0.000 
4 0.3953 0.001 0.999 0.030 0.034 
5 0.6016 1 
6 0.8015 1 

~=10 
" 

0 0.8568 -0.062 -0.047 0.997 
0 0.4753 -0.101 -0.993 -0.053 

0 0 -0.993 0.104 -0.057 

1 0.6194 1 

2 1 0.012 0.004 0.007 0.000 -1.000 

2 0.6515 0.014 0.039 -0.429 -0.902 -0.003 

2 0.5892 -0.040 0.042 0.902 -0.428 0.006 

2 0.2262 0.390 -0.919 0.036 -0.051 0.001 

2 0.1736 0.920 0.391 0.030 0.017 0.013 

3 0.7788 0 1 

3 0.3326 1 0 

4 0.8982 0.000 -0.042 0.108 -0.993 

4 0.8368 0.000 0.046 0.993 0.106 

4 0.4600 -1.000 -0.001 0.000 0.000 

4 0.4053 -0.001 0.998 -0.041 -0.047 

5 0.6194 1 

6 0.8106 1 
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TABLE 2 (Cont.) 

L Energy (42)K=0 (42)K=2 (04) (31) (20) 

~=25 
K 

0 0.8363 -0.142 -0.135 0.981 

0 0.5197 -0.170 -0.973 -0.159 

.0 0 -0.975 0.190 -0.115 

1 0.6921 1 
2 1 0.027 0.010 0.016 0.000 -:- 0.999 

2 0.7057 0.050 0.059 -0.693 -0.717 -0.009 

2 0.6125 -0.091 0.159 0.710 -0.680 0.010 

2 0.3529 0.382 -0.906 0.107 -0.151 0.003 

2 0.2504 0.918 0.389 0.063 0.035 0.030 

3 0.8218 0 

3 0.4587 1 0 

4 0.9129 -0.001 -0.080 0.231 -0.970 

4 0.8625 0.000 0.110 0.969 0.222 

4 0.5622 -1.000 -0.001 0.000 0.001 

4 0.4466 -0.001 0.991 -0.089 -0.103 

5 0.6921 1 

6 0.8477 1 

G 
-=<10 

K 

0 0.8336 -0.208 -0.225 0.952 

0 0.5503 - 0.188 -0.946 -0.265 

0 0 0.960 -0.234 0.154 

1 0.7436 1 

2 1 0.039 0.014 0.022 0.001 -0.999 

2 0.7509 0.077 0.070 -0.757 -0.646 -0.013 

2 0.6342 -0.150 0.308 0.618 -0.710 0.011 

2 0.4347 -0.363 0.868 -0.194 0.278 -0.006 

2 0.3070 - 0.916 -0.387 - 0.087 -0.048 -0.043 

3 0.8521 0 1 

3 0.5484 1 0 

4 0.9254 -0.001 -0.100 0.314 -0.944 

4 0.9080 0.000 0.234 0.898 0.373 

4 0.6349 -1.000 -0.001 0.000 0.001 

4 0.4757 -0.001 0.982 -0.123 -0.145 

5 0.7436 1 

6 0.8738 1 
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TABLE 2 (Cont.) 

L Energy (42)K =0 (42)K =2 (04) (31) (20) 

G 
= 55 

" 
0 0.8392 -0.258 -0.303 0.917 

0 0.5694 -0.183 -0.917 -0.354 

0 0 0.949 -0.259 0.181 

1 0.7812 1 

2 1 -0.049 -0.018 -0.027 -0.002 0.998 

2 0.7854 0.096 0.077 0.781 -0.612 -0.016 

2 0.6597 0.210 -0.448 -0.547 0.675 -0.011 

2 0.4851 -0.332 0.803 -0.281 0.408 -0.009 

2 0.3491 -0.931 -0.386 -0.104 -0.058 -0.054 

3 0.8742 0 1 

3 0.6139 1 0 

4 0.9354 -0.001 -0.112 0.369 -0.923 

4 0.8964 0.000 0.202 0.918 0.343 
4 0.6879 -1.000 -0.001 -0.001 0.001 
4 0.4964 0.001 -0.973 0.148 0.177 
5 0.7812 1 

6 0.8928 1 

G 
= 70 

" 
0 0.8482 0.296 0.364 -0.883 
0 0.5811 -0.170 -0.890 -0.423 
0 0 -0.940 0.275 -0.201 
1 0.8096 1 
2 1 0.057 0.021 0.031 0.002 -0.998 
2 0.8119 -0.110 -0.083 0.793 0.592 0.016 
2 0.6872 0.257 -0.563 -0.484 0.618 -0.011 
2 0.5152 0.297 -0.726 -0.348 -0.513 0.011 
2 0.3812 0.911 0.384 0.117 0.065 0.064 
3 0.8908 0 1 
3 0.6635 1 0 
4 0.9432 -0.002 -0.119 0.408 -0.905 
4 0.9080 0.000 0.234 0.898 0.373 

4 0.7280 -1.000 -0.001 -0.001 0.002 
4 0.5116 -0.001 0.9u5 -0.167 -0.202 

5 0.8096 1 
6 0.9070 1 
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TABLE 2 (Cont.) 

L Energy (42)K=0 (42)K=2 (04) (31) (20) 

G = 85 
K 

0 0.8581 -0.324 -0.410 0.853 

0 0.5884 -U.155 -0.866 - 0.475 

0 0 -0.933 0.286 -0.217 

1 0.8317 - 1 

2 1 -0.064 -0.023 -0.034 -0.003 0.997 

2 0.8327 -0.122 -0.088 0.801 0.520 0.019 

2 0.7139 0.288 -0.641 -0.434 0.563 - 0.010 

2 0.5336 0.267 -0.659 0.392 -0.584 0.013 

2 0.4062 0.909 0.383 0.128 0.071 0.072 

3 0.9036 0 1 

3 0.7021 1 0 

4 0.9495 0.002 0.124 -0.436 0.892 

4 0.9173 0.000 0.259 0.881 0.395 

4 0.7593 -1.000 -0.001 -0.001 0.002 

4 0.5231 -0.001 0.958 -0.182 -0.222 

5 0.8317 1 

6 0.9180 1 

G = 100 
K 

0 0.8677 -0.345 - 0.444 0.827 

0 0.5931 -0.141 -0.847 -0.513 

0 0 -0.928 0.293 -0.229 

1 0.8317 1 

2 1 -0.064 -0.023 -0.034 -0.003 0.997 

2 0.8495 0.131 0.091 -0.805 -0.571 -0.020 

2 0.7381 0.308 -0.691 -0.396 0.519 -0.009 

2 0.5454 0.244 -0.606 0.418 0.631 0.015 

2 0.4263 0.907 0.382 0.136 0.075 0.078 

3 0.9139 0 1 

3 0.7329 1 0 

4 0.9546 0.003 0.127 - 0.457 0.880 

4 0.9250 0.000 0.280 0.868 0.410 

4 0.7842 -1.000 -0.001 -0.001 0.003 

4 0.5321 0.001 -0.952 0.194 0.238 

5 0.8492 1 

6 0.9268 1 
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TABLE 2 (Cont.) 

L Energy (42)K=0 (42)K=2 (04) (31) (20) 

G = 550 
IC~~ 

0 0.9627 -0.449 -0.599 0.663 

0 0.6040 -0.031 -0.731 -0.681 

0 0 -0.893 0.326 -0.309 

1 0.9645 1 

2 1 0.124 0.046 0.046 0.000 -0.990 

2 0.9624 - 0.191 -0.122 0.817 0.530 0.009 

2 0.9331 0.366 -0.835 -0.250 0.326 - 0.005 

2 0.5908 0.147 -0.382 0.480 -0.776 0.023 

2 0.5587 0.890 0.374 0.193 0.108 0.138 

3 0.9802 0 1 

3 0.9362 1 0 

4 0.9891 -0.015 -0.141 0.568 -0.810 

4 0.9812 0.003 0.413 0.778 0.474 

4 0.9482 -1.000 0.002 -0.007 0.014 

4 0.5855 -0.001 0.900 -0.268 -0.345 

5 0.9645 1 

6 0.9833 1 

Pairing extreme 

0 0.9996 -0.471 -0.625 0.623 

0 0.6023 0.003 - 0.707 -0.707 
0 0 -0.882 0.331 - 0.335 
1 0.9996 1 
2 0.9996 -0.025 0.602 -0.209 -0.414 -0.650 
2 0.9996 0.426 -0.618 -0.333 0.120 -0.558 
2 0.9971 -0.150 0.012 0.754 0.413 - 0.489 

2 0.5996 0.635 -0.054 0.513 -0.563 0.119 

2 0.5996 -0.626 - 0.503 0.121 - 0.572 -0.116 

3 0.9996 0 1 

3 0.9996 1 0 

4 1 0.229 0.459 0.623 0.591 

4 0.9996 0.689 -0.029 -0.609 0.398 
I 

4 0.9983 0.691 -0.123 0.397 -0.591 
4 0.5996 - 0.001 0.880 -0.289 - 0.378 

5 0.9996 1 

6 0.9996 1 
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Explicaci6n de la Fig. 2 

Plot of the energy levels as a function of the ratio between the strength of 

G . . . f 1 (M W )-2 F h the forces. The values of -;- are gIven III umts 0 aT --k- . or eae va-

lue of -~ the energy unit is the difference between the lowest and the highest 

level. The states are characterized by the value of the angular momentum L. 
When two angular momenta are written in the Bame line, the corresponding 

levels are degenerated. 


