A NOTE ON THE UNIQUENESS OF THE INVARIANT FACTORS

por ENZO R. GENTILE

Universidad de Buenos Aires

Let R denote a commutative ring with identity. We say that a R-module M has a principal representation if there exist ideals

$$a_1, a_2, \ldots, a_n$$
 of R

satisfying

i) $R \neq a_1 \supset a_2 \supset \ldots \supset a_n \neq 0$

ii) $M \cong R/a_1$ (+) R/a_2 (+) ... (+) R/a_n where \cong denotes *R*-module isomorphism.

Under these conditions we say simply that (a_1, a_2, \ldots, a_n) is a principal representation of M.

In this Note we intend to give an elementary proof of the following known result on the uniqueness of the ideal a_i 's. See: Bourbaki, N., Algèbre, Chap. 7, 1964, Prop. 2 § 4, n° 1).

THEOREM: Let (a_1, a_2, \ldots, a_n) and $(\beta_1, \beta_2, \ldots, \beta_m)$ be principal representations of an *R*-module *M*. Then

m1) m=n, and

m2) $a_i \equiv \beta_i$ for all $i, i \equiv 1, \ldots, m$.

It is a well known and classical result that if R is a principal ideal domain then there is, for any finitely generated torsion module, a principal representation associated to it. The ideals a_i 's are then called the *invariant factors* (or also the torsion factors) of the module.

The present proof avoids the use of exterior algebras (loc. cit.) and only assumes known the following properties of tensor product of modules $((\times)$ denotes tensor product)

t1 (\times) commutes with finite direct sums

t2 If a and β are ideals of R, there is a natural isomorphism

$$R/a (X) R/\beta \cong R/(a + \beta)$$

When R is particularized to Z, the ring of rational integers, this proof turns out to be remarkably easy.

PROOF OF THE THEOREM

Let a be an ideal of R. We define, for $x \in R$

Considering the natural R-module structure of R/a we have the easy

LEMMA: There is a natural isomorphism

$$R / (a : x) \cong x. (R / a)$$

Proof : The following diagram

where f is the canonical homomorphism

 p_x the multiplication by x in R

 p'_x the multiplication by x (as operator) in R/a, is commutative. Therefore

$$x. (R/a) = p'_x (f(R)) = f(p_x(R)) \cong R/\operatorname{Ker} (f. p_x)$$

and since

 $\operatorname{Ker}_{a}(f, p_{x}) = (a : x)$

our contention, follows.

We now assume an isomorphism

(1) $R/a_1(+) \ldots (+) R/a_n \simeq R/\beta_1(+) \ldots (+) R/\beta_m$

be given.

Let τ be a maximal proper ideal of R containing a_1 . Tensoring both sides of (1) by R/τ and using the fact that $a_i + \tau = \tau$, for all $i = 1, \ldots, n$, gives the isomorphism

(2) $R/\tau(+) \ldots (+) R/\tau \cong R/(\beta_1 + \tau) (+) \ldots (+) R/(\beta_m + \tau)$ We now observe that (2) is also a R/τ isomorphism and being the quotient R/τ a field, (2) is an isomorphism of vector spaces over R/τ .

By the invariance of the dimension and the fact that

 $R/(\beta_i + \tau) = R/\tau$ or 0, for all $i, i = 1, \ldots, m$

we have the inequality

$$n \leqslant m$$

By the same argument we get

 $m \leqslant n$

Therefore n = m, and this proves the first part of the theorem. Let now $x \in a_1$. The multiplication by x on both sides of (1) and the Lemma give the isomorphism

(3)
$$R/(a_1:x)(+) \dots (+) R/(a_m:x)$$

 $\cong R/(\beta_1:x)(+) \dots (+) R/(\beta_m:x)$

Notice that (3) gives also isomorphic principal representations and so by the first part of the theorem we must have the same number of terms on both sides. Since $R/(a_1:x) = 0$, there must be at least an index $i, 1 \leq i \leq m$, for which

$$R/(\beta_i:x)=0$$
, that is $x \in \beta_i$

As $\beta_i \subset \beta_1$, wen can conclude that

 $a_1 \subset \beta_1$

By the same argument we get

$$\beta_1 \subset a_1$$

Therefore $a_1 \equiv \beta_1$.

Let us assume now the equalities

$$a_i \equiv \beta_i$$
 for $i < k \leq m$

If $x \epsilon a_k$ we have

$$(a_i : x) = (\beta_i : x) = R$$
 if $i < k$
and $(a_k : x) = R$.

Multiplying on both sides of (1) by x, we are, by the same argument as before, led to

$$(\beta_k : x) = R$$
, that is $x \in \beta_k$

It follows that $a_k \subset \beta_k$. In analogous way we get that $\beta_k \subset a_k$.

Therefore $a_k = \beta_k$. By an inductive argument we can conclude that $a_i = \beta_i$ for all i, i = 1, ..., m. The theorem is now proved.

The case R = Z.

Modules are then abelian groups and to say that M has a principal representation means that there exist positive integers d_1, \ldots, d_m satisfying

- i) $1 < d_1$ and $d_i \mid d_j$ if $i \leq j$
- ii) $M \cong Z / (d_1) (+) \dots (+) Z / (d_m)$

where the bar | refers, as usual, to divisibility, and (d_i) denotes the ideal generated in Z by d_i .

Let (d_1, \ldots, d_n) and (s_1, \ldots, s_m) be sets of positive integers satisfying condition i). Let us assume an isomorphism

(4) $Z / (d_1) (+) \dots (+) Z / (d_n) \cong Z / (s_1) (+) \dots (+) Z / (s_m)$

We get, after tensoring both sides of (4) by $Z/(d_1)$:

(5)
$$Z/(d_1)$$
 (+)...(+) $Z/(d_1) \cong Z/((s_1, d_1))$
(+)...(+) $Z/((s_m, d_1))$

where (s_i, d_1) denotes the g.c.d. of s_i and d_1 .

By cardinality arguments applied to (5) we get

(6)
$$d_1^n = (s_1, d_1) \dots (s_m, d_1)$$

Since $(s_i, d_1) \leq d_1$, (6) gives at once

 $n \leqslant m$

In the same way we get

$$m \leqslant n$$

Therefore n = m.

But then (6) implies that $d_1 \leq s_1$ and by the same reasons $s_1 \leq d_1$. Therefore $d_1 = s_1$. By an inductive argument we prove that $d_i = s_i$ for all *i*.