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Let R denote a commutative ring with identity. We say that a 
R-module M has a principal representation if there exist ideals 

satisfying 

i) R =1= al :::> a2 :::> . •• :::> an =1= 0 

ii) M-:::::.R/at (+) R/a2 (+) '" (+) R/an 
where -:::::. denotes R-module isomorphism. 

Under these conditions we say simply that (aI, a2, ... , an) is a 
principal representation of M. 

In this Note we intend to give an elementary proof of the follo
wing known result on the uniqueness of the ideal ai'S. See: Bourbaki, 
N., Algebre, Chap. 7,1964, Prop. 2 § 4, nQ 1). 

THEOREM: Let (al, a2, ... , an) and (f3I, 132, ... , 13m) be principal re
presentations of anR-module M. Then 

m1) m=n, and 

m2) ai = f3i for all i, i = 1, ... , m. 

It is a well known and classical result that if R is a principal 
ideal domain then there is, for any finitely generated torsion mo
dule, a principal representation associated to it. The ideals ai's are 
then called the invariant factors (or also the torsion factors) of the 
module. 

The present proof avoids the use of exterior algebras (loc. cit.) 
and only assumes known the following properties of tensor product 
of modules « X) denotes tensor product) 
t1 (X) commutes with finite direct sums 
t2 If a and 13 are ideals oiR, there is a natural isomorphism 

R/a (X) R/f3 -:::::. R/ (a + 13) 
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When R is particularized to Z, the ring of rational integers, this 
proof turns out to be remarkably easy. 

PROOF OF THE THEOREM 

Let a be an ideal of R. We define, for x f R 

(a : x) = } r I r f Rand r. x fa} 

Clearly (a: X) is an ideal of R and satisfies 
(a : X) - R if and only if x fa. 

Considering the natural R-module structure of Ria we have the easy 

LEMMA: There is a natural isomorphism 

R I (a : x) :::::: x. (R I a) 

Proof: The following diagram 

f 

where f is the canonical homomorphism 
PIC the multiplication by x in R 
P'IC the multiplication by x (as operator) in Ria, 

is commutative. Therefore 
x. (Ria) = p'" (f(R) ) = f(plJJ(R) ) :::::: RIKer (t.PIC) 

and since 
Ker (f.p,,) = (a : x) 

our contention, follows. 

VIe now assume an isomorphism 

be given. 
Let T be a maximal proper ideal of R containing al. Tensoring both 
sides of (1) by Rjr and using the fact that ai + T = T, for all i = 1, 
... , n, gives the isomorphism 

(2) RIT(+) ... (+)RIT::::::RI(,81 + T).(+) ... (+)RI(,8rn+T) 
We now observe thfit (2) is also a RIT isomorphism and being the 
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quotient R/T a field, (2) is an isomorphism of vector spaces over 
R/T. 
By the invaria~ce of the dimension and the fact that 

R/«(3i+T) = R/Tor O,foralli,i= 1, ... ,m 

we have the inequality 

n~m 

By the same argument we get 

m~n 

Therefore n = m, and this proves the first part of the theorem. 
Let now x £ ai' The multiplication by x on both sides of (1) and the 
Lemma give the isomorphism 

(3) R/(a1 :x)(+) ... (+)R/(am :x) 
::::::. R/ «(31 : x) (+) ... (+) R/ «(3m : x) 

Notice that (3) gives also isomorphic principal representations and 
00 by the first part of the theorem we must have the same number of 
terms on both sides. Since R/(a1 : x) = 0, there must be at least an 

index i, 1 ~ i ~ m, for which 

R/ «(3i : x) = 0, that is x € (3i 

As (3i C (31, wen can conclude that 

a1 C (31 

By the same argument we get 

Therefore ai = (31' 
Let us assume now the equalities 

for i < k ~ m 

If x £ ak we have 

(ai : x) = «(3i : x) = R if i < k 
and (ak : x) = R. 

M.ultiplying on both sides of (1) by x, we are, by the same argu
ment as before, led to 

,that is x £ (370 

It follows that ak C (37,. In analogous way we get that (3k C ILk· 
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Therefore ak = 13k. By an inductive argument we can conclude that 
ai = f3i for all i, i = 1, ... , m. The theorem is now proved. 

THE CASE R = Z. 

Modules are then abelian groups and to say that M has a 
principal representation means that there exist positive integers 
dl , ••• , dm satisfying 

i) 1 < dl and d i I d; if i ~ j 

ii) M::::: Z I( d l ) (+) ... (+) Z I (dm ) 

where the bar I refers, as usual, to divisibility, and (di ) denotes the 
ideal generated in Z by d i . 

Let (dl>"" d,,) and (Sl"'" Sm) be sets of positive integers 
satisfiying condition i). Let us assume an isomorphism 

We get, after tensoring both sidE:)s of (4) by Z I (dl ) : 

(5) Z I (~) (+) ... (+) Z I (dl ) ::::: Z I «sl,dl )) 
( + ) ... ( +) Z I « Sm, d l ) ) 

where (Si, d l ) denotes the g. c. d. of Si and ~. 

(6) 

By cardinality arguments applied to (5) we get 

dl " = (Sl> dl ) ••• (.'1m, dl ) 

Since (Si' d l ) ~ d l , (6) gives at once 

n~m 

In the same way we get 

'l'herefore n = m. 

But then (6) implies that dl ~ Sl and by the same reasons 
Sl ~ dl •. Therefore dl = Sl. By an inductive argument we prove 
that m. = Si for all i. 


