ON JORDAN OPERATORS AND RIGIDITY OF LINEAR CONTROL SYSTEMS

by H. O. FATTORINI * University of Buenos Aires

INTRODUCTION

Let *E* be a vector space over a field *K*. *A* linear operator *A* in *E* will be called a *Jordan operator* if there exists a non-null polynomial $P(\lambda) = a_0 + a_1 \lambda + \ldots$ with coefficients in *K* such that

 $P(A) = a_0 + a_1 A + \ldots = 0$ (1)

We present in this paper a result on these operators (Theorem 1.2). It is established for the case K = real or complex numbers, E a Banach space, A a bounded operator, although it is easily seen to be valid, with an additional assumption, for general K, E and A. (See the observations after the proof). Theorem 1.2 is proved with the help of a result in [5] (Theorem 15) which, for the sake of completeness, is included here together with Lemma 14 as Theorem 1.1 and Remark 1 respectively. We establish next a version of Theorem 1.2 for certain unbounded operators A (Theorem 2.2) and point out its connections with control theory. Theorem 2.2 is a generalization of Theorem 2.2 of [4] from the case in which the "control" space F has dimension 1 to the case of arbitrary finite dimension.

Paragraph § 1 is fairly self contained and makes use only of elementary notions of linear topological algebra; paragraph § 2 is

^{*} Most of the results of this paper were obtained at the Courant Institute of Mathematical Sciences, New York University, with the support of a Ford Foundation Pre-Doctoral Fellowship.

closely related to [4], Section § 2 and uses notations, definitions and results in that paper.

\S 1. The case of bounded A

We shall suppose throughout this paragraph (unless otherwise stated) that K is the field of real (complex) numbers, E is a real (complex) Banach space and A is a bounded operator.

Theorem 1.1. Assume that for every $u \in E$ there exists a polynomial $p(\lambda) = p(u;\lambda) \neq 0$ such that p(A)u = 0. Then A is a Jordan operator.

Proof: Let $p(u;\lambda)$ be the *minimal* polynomial of A at u, i.e. the generator of the ideal I_u (of the ring of polynomials in one indeterminate with coefficients in K) consisting of all polynomials $p(\lambda)$ with p(A)u = 0. Recall that $p(u;\lambda)$ is uniquely defined, save by multiplication by a nonzero element of K. We have

$$p(cu; \lambda) = p(u; \lambda) , c \in K , c \neq 0$$
 (1.1)

 $p(u; \lambda) p(v; \lambda)$ is divisible by $p(u+v; \lambda)$ (1.2)

(1.1) is clear; (1.2) follows from the relation p(u;A) p(v;A) (u+v) = p(v;A) p(u;A)u + p(u;A)p(v;A)v = 0

Let us observe next that the degree of $p(u; \lambda)$ is bounded independently of u. In fact, let

 $E_N = \{ u \in E \mid \text{deg } p(u; \lambda) \leq N \}$, and let $\{ u_n \}$ be a sequence in some E_N convergent to some element $u \in E$.

Normalize $p(u_n; \lambda) = a_{0,n} + a_{1,n} \lambda + \dots$ by, say, the condition $|a_{0,n}| + |a_{1,n}| + \dots = 1$. By passing, if necessary to a subsequence we can suppose that $a_{k,n} \to a_k$ as $n \to \infty$; by the normalization condition $|a_0| + |a_1| + \dots = 1$ and therefore $p(\lambda) = a_0 + a_1\lambda + \dots \neq 0$. But

$$p(A)u = \lim p(u_n; A)u_n = 0$$

hence deg $p(u; \lambda) \leq deg p(\lambda)$ and $u \in E_N$. This shows that each E_N is closed. Since $\bigcup_N E_N = E$ the category theorem of Baire im-

plies that some E_N contains a sphere, say $\{ u \in E \mid |u - u_0| \leq \rho \}$ But if v is any element of $E p(v;\lambda) = p(\rho v / |v|;\lambda)$ divides $p(u_0 - \rho v / |v|;\lambda) p(u_0;\lambda)$ which shows that

deg
$$p(v; \lambda) \leq 2N$$
.

Let us pass now to the construction of the polynomial P in (1). Choose $u \in E$ such that

$$\deg p(u; \lambda) = \sup \{ \deg p(v; \lambda) ; v \in E \}$$
(1.3)

We shall show that $p(u;\lambda) = P(\lambda)$. In fact, let w be any element of E such that $p(w;\lambda) = p_0(\lambda)^m$, $m \ge 1$ where $p_0(\lambda)$ is an *irreducible* polynomial. In view of (1.2) we have

$$p(u+w;\lambda)p(w;\lambda) = p(u;\lambda) q(\lambda)$$
(1.4)

$$p(u;\lambda) p(w;\lambda) = p(u+w;\lambda) r(\lambda)$$
(1.5)

where q, r, are polynomials. We get from (1.4) and (1.5) that

$$q(\lambda) r(\lambda) = p(w; \lambda)^2 = p_0(\lambda)^{2m}$$

so $q(\lambda) = p_0(\lambda)^k$, $r(\lambda) = p_0(\lambda)^j$, $k, j \ge 0, k+j = 2m$

Then

$$p(u; \lambda) = p(u+w; \lambda) p_0(\lambda)^h$$

 $-m \leq h \leq m$. By virtue of (1.3) $h \geq 0$. But then $p(u; A) w = p_0(A)^h p(u+w; A)$ (u+w) - p(u; A) u = 0, so $p(u; \lambda)$ is divisible by $p(w; \lambda)$.

Let now v be any element of E, $p(v;\lambda) = \prod_{k=1}^{n} p_k (\lambda)^{m_k}$ where p_1, \ldots, p_n are different irreducible polynomials. It is plain that if $w = \prod_{k \neq ij} p_k(\lambda)^{m_k}$, $p(w;\lambda) = p_j(\lambda)^{m_k}$ By virtue of the precedings considerations $p(u;\lambda)$ is divisible by all the polynomials $p_j(\lambda)^{m_j}$, and hence by $p(v;\lambda)$ itself. This ends the proof of Theorem 1.

Remark 1 Clearly, Theorem 1.1 remains valid for general K, E and A if we assume

$$\sup \{ \deg p(u; \lambda) ; u \in E \} < \infty$$
(1.6)

On the other hand, if (1.6) is false the conclusion of Theorem 1.1 might not hold. In fact, let E consist of all sequences $\{a_0, a_1, \ldots\}$ of elements of K such that $a_k = 0$ except for a finite number of indices, $A \{a_0, a_1, \ldots\} = \{a_1, a_2, \ldots\}$. Then for each $u \in E$ there exists n = n(u) such that $A^n u = 0$; however, it is easy to see that A is not a Jordan operator.

Remark 2 We only need to assume in Theorem 1.1 the existence of a function $f(u; \lambda)$ for each $u \in E$, analytic in $\sigma(A)$ such that $f(A)u = 0(^2)$. In fact, any such f can be written f = gp, where g has no zeros in $\sigma(A)$ and p is a polynomial. Then f(A) = g(A)p(A) and, since g(A) is one-to-one f(A)u = 0 implies p(A)u = 0.

Remark 3 It is clear from the proof of Theorem 1.1 that we need to assume the existence of $p(u; \lambda)$ (or $f(u; \lambda)$, see Remark 2) only for u in a subspace of the second category of E.

Theorem 1.2 Let $m \ge 1$. Assume that for every m-ple (u_1, u_2, \ldots, u_m) there exists a m-ple of polynomials (p_1, \ldots, p_m) not all zero such that $\Sigma^{m_{k=1}} p_k (A)u_k = 0$. Then A is a Jordan operator.

Proof: Let E^m be the Banach space of all m-ples (u_1, u_2, \ldots, u_m) of elements of E (pointwise operations) normed with, say, $|(u_1, u_2, \ldots, u_m)| = \max (|u_1|, |u_2|, \ldots, |u_m|)$. Let $E_N^m = \{ (u_1, u_2, \ldots, u_m) \in E^m$ such that there exists polynomials p_1, p_2, \ldots, p_m not all zero with $\Sigma^m_{k=1} p_k(A)u_k = 0$ and $\max_k \deg p_k \leq N \}$. It is easy to show like in the proof of Theorem 1.1 that each E_N^m is closed; thus by Baire's cathegory theorem some E_N^m contains a sphere. This implies again that the degree of the polynomials p_1, p_2, \ldots, p_m in the statement of Theorem 1.2 can be supposed bounded by a constant N independent of (u_1, u_2, \ldots, u_m) .

We end now the proof by induction. If m = 1 we are in the case considered in Theorem 1.1. Let m > 1 and let $(u_1, u_2, \ldots, u_{m-1})$ be any (m-1) — ple of elements of E.

Consider the *m*-ple

$$(u_1, u_2, \ldots, A^{N+1}u_{m-1}, u_{m-1})$$

By the preceding considerations, there exists a *m*-ple (p_1, p_2, \dots, p_m) of polynomials, not all zero and such that $\sum_{k=1}^{m-2} p_k(A) u_k + (p_{m-1}(A) A^{N+1} + p_m(A)) u_{m-1} = 0$, max $_k$ deg $p_k \leq N$. Since

(2) See [2], VII for the necessary notions of operational calculus.

deg $p_m \leq N$ the polynomials above cannot be all zero, and thus our inductive step is achieved. Theorem 1.2 is proved.

Remarks 1 and 3 after Theorem 1.1 have evident generalizations to this case. As regards to Remark 2 we only need to assume in Theorem 1.2 for each $(u_1, \ldots u_m) \in E^m$ the existence of *m* functions $f_1, \ldots f_m$, analytic in a domain $D \supset \sigma(A)$ (independent of $(u_1, \ldots u_m)$), not all zero, such that $\sum f_k(A)u_k = 0$. The proof is substantially similar to that of Theorem 2.2 below.

§ 2. Rigidity of linear control systems

6

We consider in this paragraph linear control systems

$$u'(t) = Au(t) + Bf(t), t \ge 0$$
 (2.1)

Here A is the infinitesimal generator of a strongly continuous semigroup T(t) of bounded operators in the complex Banach space E, u(t) is a point in the space E describing the state of the system at the time t, f(t) is a function (the *input* or *control*) with values in some other Banach space F and the linear bounded operator $B: F \to E$ is a "transmission mechanism" through which f acts on (2.1).

We shall understand by a solution of (2.1) with initial data $u(0) = u_{\epsilon}E$ and input f in some space $L^{p}(0, \infty; F), 1 \leq p \leq \infty$, the expression

$$u(t) = T(t)u + \int_{0}^{t} T(t-s) Bf(s) ds \qquad (2.2)$$

where T(t) is the semigroup generated by A (see [4])

A point $v \in E$ will be called *reachable from* u if there exists f such that the solution u(t) of (2.1) starting at u (say, for t = 0) satisfies u(t) = v for some $t \ge 0$.

Definition The linear control system (2.1) will be called *rigid* if any point v, reachable from another point u in the time t by means of some control f is not reachable from u in the same time by any control different from f.

It follows easily from the representation (2.2) for the solu-

tion of (2.1) (and the replacement of t - s by s in the integral) that the system (2.1) will be rigid if and only if the map

$$f \to \int_{0}^{t} T(s) Bf(s) . ds \qquad (2.3)$$

from $L^{p}(0, t; F)$ to E is one-to-one for all t > 0

Let us pass now to establish the relation between these notions and the results in § 1. In view of the last observation in the proof of Theorem 2.2 in [4] we need only to consider the case p = 2. Observe next that if F is *m*-dimensional unitary space, the space $\mathcal{L}(F; E)$ (³) of all linear bounded operators from F to E can be algebraically and topologically identified with the space E^m defined in the proof of Theorem 1.2 by means of the correspondence that assigns to the element $(u_1, \ldots, u_m) \in E^m$ the operator in $\mathcal{L}(F; E)$

$$B(x_1,\ldots,x_m) \equiv \sum_{k=1}^m x_k u_k, \quad (x_1,\ldots,x_m) \in F \quad (2.4)$$

It is a consequence of the functional calculus for infinitesimal generators (see [4], \S 2) that if

 $f(s) = (f_1(s), \ldots, f_m(s)) \epsilon L^2(0, \infty; F)$

and B is the operator (2.4)

$$\int_{0}^{t} T(s) Bf(s) ds = \sum_{k=1}^{m} \hat{f}_{k}(\Lambda) u_{k}$$

where the functions f_k (the Fourier transforms $f_k(\lambda) = \int f_k(s) \exp(\lambda s) ds$ of f_k) belong to the space H^2 of the left half-plane (see [4], § 2 and [3])

Finally, let us recall the notion of operator of admissible meromorphic type, generalization of that of Jordan operator for the unbounded case. An infinitesimal generator A is said to be of admissible meromorphic type if the resolvent $R(\lambda; A)$ is a meromorphic function with poles of order m_k at points λ_k and

$$-\Sigma m_k \operatorname{Re} \lambda_k / (1 + |\lambda_k|^2) < \infty$$

(see again [4], \S 2). The preceding considerations make clear the equivalence of

(*) We endow $\mathcal{P}(F; E)$ with the uniform topology of operators.

Theorem 2.1. Let A be an infinitesimal generator satisfying conditions (2.1.a), (2.1.b) of [4], § 2. Assume A is not of admissible meromorphic type. Then the linear control system (2.1) is rigid for all operators $B \in \mathcal{Q}(F; E)$ except for those in a subset of the first category of $\mathcal{L}(F; E)$ and

Auxiliary Theorem 2.2 Let A satisfy the same conditions of Theorem 2.1. Assume there exists a subset L of the second category of E^m such that for every $(u_1, \ldots, u_m) \in L$ there exist m functions f_1, \ldots, f_m in H^2 , not all zero and such that $\Sigma_{k=1}^m f_k(A)u_k = 0$. Then A is of admissible meromorphic type.

For the proof, we shall make use of

Lemma 2.3. Let $\{f_n\}$ be a sequence in H^2 of the half-plane Re $\lambda \leq 0$ such that $|f_n|_{H^2} \leq 1$. Then there exists a subsequence $\{f_m\}$ such that:

(a) { f_m } converges weakly to a function $f \in H^2$, $|f|_{H^2} \leq v$

(b) $f_m(A)$ converges to f(A) in the uniform topology of operators.

Proof: The fact that there exists a subsequence $\{f_m\}$ satisfying (a) is an elementary fact of the theory of H^2 (in fact, Hilbert) spaces. To show (b), let us consider the representation (2.11) of [4]

$$f_m(A) = \frac{1}{2 \pi i} \int_{P(c, \mathbf{q})} f_m(\lambda) R(\lambda; A) d\lambda \qquad (2.5)$$

where $P(c, \theta)$ is the contour $c + |y| \cot \theta + iy$, $-\infty < y < \infty$ for suitable c < 0, $\theta > \pi/2$ (see [4], §2). Cauchy's formula

$$f_m(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{f_m(it)}{it - \lambda} dt \qquad (2.6)$$

and the weak convergence of $\{f_m\}$ imply that $\{f_m\}$ converges uniformly on compacts of $Re \lambda < 0$ to f. It is then clear that (b)will hold for $\{f_m\}$ if we can show

$$\lim_{n\to\infty} \left| \int_{P(c,n,\theta)} f_m(\lambda) R(\lambda; A) d\lambda \right| = 0 \qquad (2.7)$$

uniformly with respect to m, where $P(c, n, \theta)$ is the intersection

$$|R(\lambda; A)| \leq C/|\lambda|$$

for $\lambda \epsilon P(c, \theta)$ and some constant C. Furthermore, (2.6) and the Cauchy-Schwarz inequality imply

$$||f_m(\lambda)|| \leq C / |\lambda|^{1/2}$$
(2.9)

for $\lambda \in P(c, \theta)$ and some constant C, uniformly with respect to m. (2.8) together with (2.9) imply 2.7) and, a fortiori, Lemma 2.3

Proof of Theorem 2.2. Define subsets $L_{M,N}$ (M = 1, 2, 3, ..., N = 1, 2, ..., m) of L as follows: $L_{M,N} = (u_1, \ldots, u_m) \in L$ such that there exist functions f_1, f_2, \ldots, f_m in H^2 , not all zero and such that (a) max $_k |f_k|_{H^2} \leq 1$ (b) $|f_N(c)| \geq 1/M$, c a fixed point outside $\sigma(A)$, (c) $\Sigma_{k=1}^m f_k(A)u_k = 0$. It is easy to see that every $(u_1, \ldots, u_m) \in L$ belongs to some $L_{M,N}$ (if the corresponding functions f_1, \ldots, f_m all vanish at c multiply them by a convenient power of $(\lambda - c)^{-1}$) and that each $L_{M,N}$ is closed (to do this we proceed in a way similar to that of Theorem 1.2 and make use of Lemma 2.3) Again by an application of Baire's theorem we deduce that some $L_{M,N}$ has an interior point, and this can be easily seen to imply (possibly after a rearrangement of indices) that the functions f_1, \ldots, f_m in the statement of Theorem 2.2 can be chosen in such a way that $f_m(c) \neq 0$.

The proof ends now like that of Theorem 1.2. Let (u_1, \ldots, u_{m-1}) be any (m-1) — ple of elements of E, and let $g(\lambda) = (\lambda - c)$ $(\lambda + c)^{-2} \epsilon H^2$. Then, if f_1, \ldots, f_m are the functions corresponding to the *m*-ple

$$(u_1, \ldots, u_{m-2}, g(A)u_{m-1}, u_{m-1})$$

we have $\sum_{k=1}^{m-2} f_k(A) u_k + (f_{m-1}(A) g(A) + f_m(A) u_{m-1} = 0$, the functions $f_1, \ldots, f_{m-2}, f_{m-1}g + f_m$ not all zero. This allows us to reduce the case of *m*-ples to the case of (m-1) ples, and when m = 1 Theorem 2.2 reduces to Theorem 2.2 of [4].

Remark Theorem 1.2 states that when A is not of admissible meromorphic type and F is finite-dimensional then (2.1) is rigid for "most" operators B in \mathcal{L} (F; E). The situation changes when

F is of infinite dimension; for instance, if E = F it is not difficult to see that (2.1) is not rigid when B has a bounded inverse or is not one-to-one.

BIBLIOGRAPHY

- [1] A. E. TAYLOR, Introduction to Functional Analysis, Wiley, New York, 1958.
- [2] N. DUNFORD and J. T. SCHWARTZ, Linear Operators, vol. 1, Interscience, New York, 1957.
- [3] K. HOFFMAN, Banach spaces of analytic functions, Prentice-Hall Inc., Englewood Cliffs, 1962.
- [4] H. O. FATTORINI, Control in finite time of differential equations in Banach space, Comm. Pure Appl. Math. XIX (1966) 17 - 34.
- [5] I. KAPLANSKY, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954.