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INTRODUCTION

Let E be a vector space over a field K.A linear operator 4 in
E will be called a Jordan operator if there exists a non-null polyno-
mial P (M) =ao+ a1 A+ ... with coefficients in K such that

P(A) =ap+aA+ ... =0 (1)

‘We present in this paper a result on these operators (Theorem
1.2). It is established for the case K = real or complex numbers,
E a Banach space, 4 a bounded operator, although it is easily seen
to be valid, with an additional assumption, for general K, E and A.
(See the observations after the proof). Theorem 1.2 is proved with
the help of a vesult in [5] (Theorem.15) which, for the sake of
completeness, is included here together with Lemma 14 as Theorem 1.1
and Remark 1 respectively. We establish next a version of Theorem
1.2 for certain unbounded operators A (Theorem 2.2) and point out
its connections with control theory. Theorem 2.2 is a generalization
of Theorem 2.2 of [4] from the case in which the “control” space F
has dimension 1 to the case of arbitrary finite dimension.

Paragraph §1 is fairly self contained and makes use only of
elementary notions of linear topological algebra; paragraph §2 is
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closely related to [4], Section § 2 and uses notations, definitions
and results in that paper.

§ 1. The case of bounded A

We shall suppose throughout this paragraph (unless otherwise
stated) that K is the field of real (complex) numbers, E is a real
(complex) Banach space and A is a bounded operator.

Theorem 1.1. Assume that for every weE there ewists a poly-
nomial p(A) = p(u;A) 5% 0 such that p(A)u=0. Then A is a Jor-
dan operator.

Proof: Let p(u;A) be the minimal polynomial of A at w, ie.
the generator of the ideal I, (of the ring of polynomials in one in-
determinate with coefficients in K) consisting of all polynomials
p(A) with p(4)u = 0. Recall that p(u;\) is uniquely defined, sa-
ve by multiplication by a nonzero element of K. We have

pleu; A) =p(uzA) , ceK , c540 (1.1)

p(u;A) p (v;A) is divisible by » (w4 v;A) (1.2)

(1.1) is clear; (1.2) follows from the relation
p(u; A) p (v;4) (w+v) =pv;4) p(u; A)u+
+p(u; A)p (v;A)v =0

Let us observe next that the degree of p(u;A) is bounded in-
dependently of . In fact, let
Ey={ ueE | deg p(u;0) =N}, and let { u, } be a sequence
in some Ey convergent to some element ueE.
Normalize P (tn;A) = oy + @,n A+ ... by, say, the condition
| doyn | + | @1n | + .... =1. By passing, if necessary to a subse-
quence we can suppose that @, — ax as n—> o« ; by the normali-
zation condition | @ |+ | @ |+ ... =1and therefore p(r) = a0 +
—+ a4+ ... 540. But

p(A)u = lim p(un; A)up =0

hence deg p(u;A) =deg p(A) and wueEy. This shows that each
Ey is closed. Since Uy Ey = E the category theorem of Baire im-
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plies that some Ey contains a sphere, say { weE ||lu—uo| =p}

But if v is any element of E p(v;A) =p(pv/|v|;A) divides
p(uo—pv/|v]|;A) p(uo; A) which shows that

deg p(v;A) = 2N.

Let us pass now to the construection of the polynomial P in
(1). Choose u ¢ E such that

deg p(u;A) = sup {deg p(v;A) ; veE} (1.3)

We shall show that p(u;A) = P(A). In fact, let w be any element
of E such that p(w;A) = pe(A)™, m =1 where po(A) is an irredu-
cible polynomial. In view of (1.2) we have

p(u+w;A)p (w;A) = p(u;A) g(A) (1.4)
Pus;A) p (w;A) = p(u—+w;A) r(A) (1.5)

where q,r, are polynomials. We get from (1.4) and (1.5) that

gA) r (A) = p (w;A)2=po(r)2™

$0 q(A) =po(M)*, r(A) = po(N)T, k,j=0k+j=2m
Then

p (u; ) =p (w4 w; ) po (M),

—m =h =m. By virtue of (1.3) h=0. But then p (u;4) w=
=po (A)"p (u+w;A) (w4 w) —p (u;A) u=0, so p (u;A) is
divisible by p (w;)).

Let now v be any element of E, p(v;A) = II"—, pi (A)™+ where
D1, ... Pn are different irreducible polynomials. It is plain that if
W = Iy pu(A)™k, p(w;A) = p;(A)™ By virtue of the precedings
considerations p(u;\)is divisible by all the polynomials p; ()™, and
hence by p(v;A) itself. This ends the proof of Theorem 1.

Remark 1 Clearly, Theorem 1.1 remains valid for general K,
E and 4 if we assume

sup {deg p(u;A) ; uel } < (1.6)
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On the other hand, if (1.6) is false the conclusion of Theo-
rem 1.1 might. not hold. In fact, let E consist of all sequences
{ @ao,ai,... } of elements of K such that a; = 0 except for a fi-
nite number of indices, 4 {dg, @1, ... } ={ a1, 02 ... }. Then for
each weE there exists n = n(u) such that A"w = 0; however, it
is easy to see that A is not a Jordan operator.

Remark 2 We only need to assume in Theorem 1.1 the exis-
tence of a function f(u;A) for each ueE, analytic in ¢ (4) such
that f(A)u=0(2). In fact, any such f can be written f = gp,
where ¢ has no zeros in o(A) and p is a polynomial. Then
f(A) =g(A)p(A4) and, since g(A) is one-to-one f(A)u_O im-
phes p(A)u=0.

Remark 3 Tt is clear from the proof of Theorem 1.1 that we
need to assume the existence of p(u;A) (or f(u;A), see Remark 2)
only for u in a subspace of the second category of E.

Theorem 1.2 Let m=1. Assume that for every m-ple
(U, Usy ... Um) there exists a m-ple of polynomials (pi,. .. Dm)
not all zero such that 3™, pr (ADux = 0. Then A is a Jordan
operator. .

Proof : Let E™ be the Banach space of all m-ples (u1, us, ... Um,)
of clements of E (pointwise operations) normed with, say, | (uy,
Uy oo Um) | =max (Jus|, |uz|, ... |unl|). Let Ey™={ (s, usg,

. Up) e ™ such that there exists polynomials pi, pa, ... Pm =0t
all zero with 3"™_; pr(A)uy = 0 and max; deg pxy = N |. It is easy
to show like in the proof of Theorem 1.1 that each Ey™ is closed;
thus by Baire’s cathegory theorem some Ey™ contains a sphere. This
implies again that the degree of the polynomials pi, p2, ... Pm In
the statement of Theorem 1.2 can be supposed bounded by a cons-
tant N independent of (ug, %s, ... Un). ‘

We end now the proof by induction. If m =1 we are in the
case considered in Theorem 1.1. Let m > 1 and let (ug, uz, ... Um—1)
be any (m —1) — ple. of elements of E.

Consider the m-ple

(g, Uy . . S AT gy U — 1)

By the plecedmo cons1de1at10ns, there exists a m-ple (p1, P2

. pm) of polynomials, not all zero and such that Sy pre(A)ux +
+ (Pm—1 (A) A¥+* 4 ppu(A))Um—1 =0, maxy deg prz=N. Since

(®) See [2], VII for the necessary notions of operational caleulus.
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deg pn = N the polynomials above cannot be all zero, and thus
our inductive step is achieved. Theorem 1.2 is proved.

Remarks 1 and 3 after Theorem 1.1 have evident generahza-
tions to this case. As regards to Remark 2 we only need to assume
in Theorem 1.2 for each (u, ... un) ¢ E™ the existence of m fune-

tions fq, ... fm, analytic in a domain DD o (A) (independent of
(%1, ... Um)), not all zero, such that 3 fx(4A)ux =0. The proof is

substantially similar to that of Theorem 2.2 below.

§ 2. Rigidity of linear control systems

We consider in this paragraph linear control systems

w (1) = Au(t) + Bf(t),t=0 (2.1)

Here A is the infinitesimal generator of a strongly continuous
semigroup T(t) of bounded operators in the complex Banach space
E, w(t) is a point in the space E describing the state of the system
at the time ¢, f(¢) is a function (the input or control) with values
in some other Banach space F and the linear bounded operator
B :F—FE is a “transmission mechanism” through which f acts
on (2.1).

We shall understand by a solution of (2.1) with initial data
u(0) = wueE and input f in some space I7(0, 0; '), 1=p = oo,
the expression

w(t) =T+ [ T(t—s) Bf(s) ds (2.2)
0 . .

where T'(%) is the semigroup generated by A (see [4])

A point v e E will be called reachable from w if there exists f
such that the solution u(¢) of (2.1) starting at w (say, for t =0)
satisfies #(t) = v for some ¢ =0.

Definition The linear control system (2.1) will be called rigid
if any point v, reachable from another point 4 in the time ¢ by
means of some control f is not reachable from « in the same time
by any control different from f.

It follows easily from the representation (2.2) for the solu-
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tion of (2.1) (and the replacement of ¢ —s by s in the integral)
that the system (2.1) will be rigid if and only if the map

f——*of T(s) Bf(s).ds (2.3)

from L?(0,t; F) to E is oneto-one for all £ >0

Let us pass now to establish the relation between these notions
and the results in § 1. In view of the last observation in the proof
of Theorem 2.2 in [4] we need only to consider the case p =2.
Observe next that if F is m-dimensional unitary space, the space
L (F;E) (3) of all linear bounded operators from F to E can
be algebraically and topologically identified with the space E™
defined in the proof of Theorem 1.2 by means of the correspon-

dence that assigns to the element (ug, ..., un) ¢ E™ the operator
in 2 (F; E)
B(xly ey xm) = E;T;l.’l}]; Uk, (.ﬁEl, ey xm) el (24)

It is a consequence of the functional caleulus for infinitesimal
generators (see [4], § 2) that if

f(s) = (f1(8), «.sfm(s)) e L? (0, o0 ; F')
and B is the operator (2.4)

Oft T(s) Bf(s) ds = zz;,ﬁ:(zl)uk

A A
where the functions fx (the Fourier transforms fi(A) =

f1u(s) exp (As) ds of fi) belong to the space H? of the left half-pla-
ne (see [4], § 2 and [3])

Finally, let us recall the notion of operator of admissible mero-
morphic type, generalization of that of Jordan operator for the
unbounded case. An infinitesimal generator 4 is said to be of admis-
sible meromorphic type if the resolvent E(A; A) is a meromorphic
funetion with poles of order m; at points A, and

—SmeRen/ (14| & |2) < o

(see again [4], §2). The preceding considerations make clear the
equivalence of

(® We endow 2 (F;E) with the uniform topology of operators.
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: Theorem 2.1. Let A be an infim'tesimal generator satisfying
conditions (2.1.a), (2.1.0) of [4], § 2. Assume A 1is not of admissi-
ble meromorphic type. Then the Zmear control system (2.1) s rigid
for all operators Be .2 (F; E) except for those in a subset of the
first category of 2 (F; E)
and

Auxiliary Theorem 2.2 Let A satisfy the same conditions of
Theorem 2.1. Assume there exists a subset L of the second category
of E™ such that for every (s, ..., un) e L there exist m functions

5 oo, fm i H2 mot all zero and such that 3] _fr(A)ur = 0. Then
A 1s of admissible meromorphic type.

For the proof, we shall make use of

Lemma 2.3. Let { f,} be @& sequence in H? of the half-plane
Rer=0 such that |f.| g =1. Then there exists a subsequence
{ fm } such that:

(a) { fm | converges weakly to a function feH? |f| m» =.V

(b) fu(A4) converges to f(A) i the uniform topology of ope-
rators.

Proof : The fact that there exists a subsequence { fn } satisfying
(@) is an elementary fact of the theory of H? (in fact, Hilbert)
spaces. To show (D), let us consider the representation (2.11) of [4]

Fm(A) = j f (\) R (A; 4) dA (2.5)
P(c,9)

where P(c, ) is the contour ¢+ |y |cotg 4 iy, — o0 <y <
for suitable ¢ < 0, 6 > x/2 (see [4], §2). Cauchy’s formula

fn(A) = i#;- (2.6)

and the weak convergence of { f, } imply that { f, } converges
uniformly on eompaects of ReA < 0 to f. It is then clear that (b)
will hold for { f, } if we can show

limn—->n I fP(c,n,Q) fm ()\) R (/\; A) d)\.l =0 (27)

uniformly with respeet to m, where P (¢, n,0) is the intersection
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of P (¢, #) with the region | A| = n. But in view of (2.1.b) of [4]
R (A A) |[=C/ ||

for AeP (¢,8) and some constant C. Furthermore, (2.6) and the
Cauchy-Schwarz inequality imply

[fm M) [ SC /0|12 (2.9)

for LeP (¢, ) and some constant C, uniformly with respect to m.
(2.8) together with (2.9) imply 2.7) and, a fortiori, Lemma 2.3

Proof of Theorem 2.2. Define subsets Ly, (M =1,2,3,...
N=1,2,...m) of L as follows: Ly,y= (U1, ..., un) eL such
that there exist functions fi, f2, ..., fm in H2, not all zero and such
that (a¢) max |fx|w2=1 (b) |fx(c) |=1/M, c a fixed point
outside o (4), (¢) Si_ife(A)ur = 0. It is easy to see that every
(U1, ..., Un) € L belongs to some Ly,y (if the corresponding fune-
tions fi, ..., fm all vanish at ¢ multiply them by a convenient po-
wer of (A—c¢)~1) and that each Ly,y is closed (to do this we pro-
ceed in a way similar to that of Theorem 1.2 and make use of
~ Lemma 2.3) Again by an application of Baire’s theorem we deduce
that some L,y has an interior point, and this can be easily seen
to imply (possibly after a rearrangement of indices) that the
funetions fy, ..., fn in the statement of Theorem 2.2 can be chosen
in such a way that f,(c) 5% 0.

The proof ends now like that of Theorem 1.2. Let (us, ... Un—1)
be any (m—1) —ple of elements of K, and let g(A) = (A —¢)
(A+c¢)~2eH? Then, if fi,...,fm are the functions correspon-
ding to the m-ple

(ul, ceey Um—2, g(A)um—ly um—l)

we have ST (A)ur + (fuosr (A) g (A) + fin (4) tm_y = 0, the
funetions fi, ..., fm_sz, fm—19 -+ fim not all zero. This allows us to re-
duce the case of m-ples to the case of (m — 1) ples, and when m =1
Theorem 2.2 reduces to Theorem 2.2 of [4].

Remark Theorem 1.2 states that when A is not of admissible
meromorphic type and F is finite-dimensional then (2.1) is rigid
for “most” operators B in .2 (F; E). The situation changes when
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F is of infinite dimension; for instance, if E = F it is not diffi-
cult to see that (2.1) is not rigid when B has a bounded inverse
or is not one-to-one.
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