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INTRODUCTION 

Let E be a vector space over a field K. A linear operator A in 
E will be called a Jordan operator if there exists a non-null polyno­
mial P (,\.) = ao + al'\ + ... with coefficients in K such that 

peA) -'-ao + alA + ... =0 (1) 

'We present in this paper a result on these operators (Theorem 
1.2). It is established for the case K = real or complex numbers, 
E a Banach 'spacer A a bounded operator, although it is easily seen 
to be valid, with an additional assumption, for general K, E and A. 
(See the observations after the proof). Theorem 1.2 is proved with 
the help of a result in [5] (Theorem 15) which, for the sake of 
completeness, is'inCluded here together with Lemma 14 as Theorem 1.1 
and Remark 1 respectively. vYe establish next a version of Theorem 
1.2 for certain unbounded operators A (Theorem 2.2) and point out 
its connections with control theory. Theorem 2.2 is a generalization 
of Theorem 2.2 of [4] from the case in which the "control" space fi1 

has dimension 1 to the case of arbitrary finite dimension. 
Paragraph § 1 is fairly self contained and' makes use only of 

elementary notions of linear topological algebra; paragraph § 2 is 
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of Mathematical Sciences, New York University, with the support of a Ford 
Foundation Pre-Doctoral E'ellowship. 
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closely related to [4], Section § 2 and uses notations, definitions 
and results in that paper. 

§ 1. The case of bounded A 

We shall suppose throughout this paragraph (unless otherwise 
stated) that K is the field of real (complex) numbers, E is a real 
(complex) Banach space and A is a bounded operator. 

Theorem 1.1. Assume that for every u f E there exists a poly­
nomtial peA) = p(u;A) # 0 such that p(A)u = O. Then A is a Jor­
dan operator. 

Proof: Let p (1t ;>..) be the minimal polynomial of A at u, i.e. 
the generator of the ideal Iu (of the ring of polynomials in one in­
determinate with coefficients in K) consisting of all polynomials 
peA) with p(A)u = O. Recall that p(u;A) is uniquely defined, sa­
ve by multiplication by a nonzero element of K. We have 

p ( cu ; A) = p ( u ; A) , c f K , c # 0 (1.1) 

p(u;A) P (v;A) is divisible by 1) (u+v;>..) (1.2) 

(1.1) is clear; (1. 2) follows from the relation 
p(u; A) p (v; A) (u + v) = p(v; A) p(u; A)u + 

+p(u;A)p (v;A)v =0 

Let us observe next that the degree of p (u; >..) is bounded in­
dependently of u. In fact, let 
EN= { ufE I deg p(u;A) <N'} ,and let fUn 1 be a sequence 
in some EN convergent to some element u € E. 
Normalize p (1t n ; A) = ao", + al,n A + . .. by, say, the condition 
I ao,n I + I al,n I + .... = 1. By passing, if necessary to a subse­
quence we can suppose that ak", -+ ak as 1L -+ 00 ; by the normali­
zation condition I ao I + I al I + ... = 1 and therefore peA) = ao + 
+ alA + ... # O. But 

p(A)u = lim p( 1[n; .fl)u" = 0 

hence deg p(tt;>") <deg peA) and 1[£EN • This shows that each 
EN is closed. Since UN EN = E the category theorem of Baire im-
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plies that some EN contains a sphere, say { U fE Ilu -1(0 I < p 1 
But if v is any element of E p(V;A) =p(pv/lvl ;A) divides 
p(uo-pv/ I v I ;A) p(uo; A) which shows that 

deg p(v; A) < 2N. 

Let us pass now to the construction of the polynomial P in 
(1). Choose U f E such that 

deg p(U;A)= sup fdeg p(V;A) ; v€E} (1.3) 

We shall show that p(U;A) = peA). In flJ.ct, let W be any element 
of E such that p(W;A) =PO(A)''', m>l where PO(A) is an irredu­

cible polynomial. In view of (1. 2) we have 

p(ti+W;A)p (W;A) = P(U;A) q(A) (1.4) 

p(u; A) P (w; A) = p(u + w; A) r (A) (1.5) 

where q, r, are polynomials. We get from (1.4) and (1.5) that 

q(A) r (A) = P (W; A)2 = PO(A)2,,, 

so q(A) =PO(A)", rCA) = ]Jo(A)i, k,j>0,k+j=2m 

Then 

- m < h < m. By virtue of (1.3) h > 0. But then P (u; A) W = 
=Po (A)"p (u+w;A) (u+w) -]J (u;A.) 1(=0, so P (tiiA) is 
divisible by 1) (w; A). 

I.1et now v be any element of E, p(V;A) = IInl'~l Pic (A)mk where 
Ih, ... ]J" are different irreducible polynomials. It is plain that if 

w = III.=1oj ]J1c(A)rIlik , p(W;A) =,]Ji(A)mk By virtue of the precedings 
considerations p(u;A)is divisible by all the polynomials Pi (A)"'i, and 
hence by p (v i A) itself. This ends the proof of Theorem, 1. 

Remark 1 Clearly, Theorem 1.1 remains valid for general K, 
IE and A if we assume 

sup {deg ]J (u; A) ; U fE } < 00 (1. 6) 
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On the other hand, if (1. 6) is false the. conclusion of Theo­
rem 1.1 might. not hold. In fact, let E consist of all sequences 

{ ao, al , . .. } of elements of K such that ai, = 0. except for a fi­
nite number of indices, A {(to, aI, ... } = { aI, a.2, . .. } . Then for 
each U f E there exists n = n(u) such that A"u = 0.; however, it 
is easy to see that A is not a Jordan operator. 

Remark 2 We only need to assume in Theorem 1.1 the exis­
tence of a function f( U; ,\) for each U f E, analytic in u (A) such 
that f (A) U = 0. (2). In fact, any such f can be written f = gp, 
",-here 9 has no zeros in u(A) and P is a polynomial. Then 
f(A) = g(A)p(A) and, since g(A) is one-to-one f(A)u = 0. im­
plies p(A)u = O. 

Remark 3 It is clear from the proof of Theorem 1.1 that we 
need to assume the existence of p(u;,\) (or feu; ,\), see Remark 2) 
only for u in a subspace of the second category of E. 

Theorem 1.2 Letm::> 1. Assume that for every m - ple 

CUI' u 2 , •• , um ) there exists a m-ple of polynomials (Pl,'" Pm) 

not all zero such that ::smTe=1 PTe (.,t) Uk = o.. Then A is a Jordan 
operator. 

Proof: Let Em be the Banach space of all m-ples (Ul' U2, ... um ) 

of elements of E (pointwise operations)normed with, say, I (Ul' 
U2, ... um ) I = max (I Ul I , I U2 I , ... I Um I)· Let ENm = 1 (th, U2, 
... um) f Em such that there exists polynomials PI, P2, ... pm dOt 

all zero with ~m1c=l p1c(A)Uk = 0. and maXI, c1eg PTe < N }. It is easy 
to show like in the proof of Theorem 1.1 that each ENm is closed; 
thus by Baire's cathegory theorem some ENm contains a sphere. This 
implies again that the degree of the polynomials PI, P2, ... Pm in 
the statement of Theorem 1.2 can be supposed. bounded by a cons­
tant N independent of (Ul, Y'2, ... um ). 

vVe end now the proof by induction. If m = 1 we are in the 
case considered in Theorem 1.1. Let m > 1 and let (Ul' U2, ... Un,_l) 
be any (m -1) - pIe of elements of E. 

Consider the m-ple 

By the preceding considerations, there exists a m-ple (PI, P2, 
... Pm) of polynomials, not all zero and such tha t ~ ;~'=i Pk (A) Uk + 
+ (Pm-l (A) AN+I +p",(A))Um-l =0, maXTe deg Pk<N. Since 

(2) See [2], VII for the necessary notions of operational calculus. 
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deg Pm < N the polynomials above cannot be all zero, and thus 
onr indnctive step is achieved. Theorem 1.2 is proved. 

Remarks 1 and 3 after Theorem 1.1 have evident generaliza­
tions to this case. A.s regards to Remark 2 we only need to assume 
in Theorem 1.2 for each (nI, ... tt.m) € Em the existence of m func­
tions flJ ... fm' analytic in a domain D::::> 0' (ll) (independent or 
(UlJ ... um», not all zero, such that ~fk(A)Uk=O. The proof is 
substantially similar to that of Theorem 2.2 below. 

§ 2. Rigidity of linear control systems 

We consider in this pal'agraph lineal' control systems 

tt' (t) = .11(.(t) + Bt(t), t 2::: 0 (2.1 ) 

Here A is the infinitesimal generator of a strongly continuous 
semigr01lp T (t) of bounded operatOl's in the complex Banach space 
E, u(i) is a point in the space E describi.ng the state of the system 
at the time t, f(t) is a function (the inp1£t or control) with values 
in some other Banach space F and the linear bounded operator 
B : F -). E is a "transmission mechanism" through which facts 
on (2.1). 

We shall understand by a solution of (2.1) with initial data 
u(O) = 1£~E and input f in some space ~O(O, 00 ; F), 1 <p< 00, 

the expression 

t 
net) = T(t)u + f T(t-s) Bf(s) ds (2.2) 

o 

where T(t) is the semigroup generated by A (see [4]) 
A. point v € E will be called reachable front 1£ if there exists f 

such that the solution net) of (2.1) starting at n (say, for t - 0) 
satisfies u (t) = v for some t > O. 

Definition The linear control system (2.1) will be called rigid 
if any point v, reachable from another point n in the time t by 
means of some control f is not reachable from 1(, in the same time 
by any control different from f. 

It follows easily from the representation (2.2) for the solu-
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tion of (2.1) (and the replacement of t~s by s in the integral) 
that the system (2.1) will be rigid if and only if the map 

t 
f~ f T(s) Bf(s) .ds 

o 

from LP(O, t; F) to E is one-to-one for all t > 0 

(2.3) 

Let us pass now to establish the relation between these notions 
and the results in § 1. In view of the last observation in the proof 
of Theorem 2.2 in [4] we need only to consider the case p = 2. 
Observe next that if F is m-dimensional unitary space, the space 

)2 (F; E) (3) of all linear bounded operators from F to E can 
be algebraically and topologically identified with the space Em 
defined in the proof of Theorem 1.2 by means of the correspon­
dence that assigns to the element (Ul,.'" ttm) E Em the operator 
in )2 (F; E) 

It is a conseq1;lence of the functional calculus for infinitesimal 
generators (see [4J, § 2) that if 

and B is the operator (2.4) 

t 
f T(s) Bf(s) ds 
u 

A A 

where the functions fk (the Fourier transforms fk(A) = 
f fkCS) exp (AS) ds of f,,) belong to the space H2 of the left half-pla­
ne (see [4], § 2 and [3]) 

Finally, let us recall the notion of operator' of admissible mero­
rnorphic type, generalization of that of Jordan operator for the 
unbounded case. An infinitesimal generator A is said to be of admis­
sible mel'omorphic type if the resolvent R (A; A) is a merom orphic 
function with poles of order rn/, at points Ak and 

(see again [4], § 2). The preceding considerations make clear the 
equivalence of 

(~) We endow E (F; E) with the unifOl'll topology of operators. 
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.' Theorem 2.1. Let A be an infinitesimal generator satisfying 
conditions (2.1.a), (2.1.b) of [4], § 2. Ass1lme A is not of admissi­
ble meromorphic type. Then the linear control system (2.1) is rigid 
for all operatm's B € E (F; E) except for those in a snbset of the 
first category of E (F;E) 

and 
A uxiliat"y Theorem 2.2 Let A satisfy the same conditions of 

Theorem 2.1. Assume the1"C exists a subset L of the second category 
of Em such that for every (1tl' ... , 1l'/Il) € L there exist m functions 

/1, .. ;, fm in IP, not all zeroancl such that :$;:~~'lh(A)ul.' = O. Then 
A is of admissible meromorphictype. 

For the proof, we shall make use of 
Lemma 2.3. Let { f n } be a sequence in HZ of the half-plane 

Re A <0 such that I fn I Ii2 < 1. Then there exists a subseq1tence 
{ 1m } stlch that: 

(a) { fm } C01We1"ges weakly to a /1mction f € H2, I f I Il2 <. v 
(b) fm(A) converges to f(A) in the uniform topology of ope­

rators. 
Proof: The fact that there exists a subsequence { fm } satisfying 

(a) is an elementary fact of the theory of H2 (in fact, Hilbert) 
spaces. To show (b), let us consider the representation (2.11) of [4] 

fm(A) = 2 ~ i J 1m (A) R (A;.!l) dA 
P(c, 0) 

(2.5) 

where P(c,O) is the contour c + I y I cotg () + iy, - 00 < y < 00 

for suitable c < 0, 8> 71"/2 (see [4], § 2). Cauchy's formula 

(2.6) 

and the weak convergence of { fn' f imply that ~ 1m } converg'~s 
uniformly on compacts of Re A < 0 to I. It is then clear that (b) 
will hold for { 1m} if we can show 

limn~" I f P(c,n,Odm (A) R (A; A) d A 1= 0 (2.7) 

uniformly with respect to m, where P (c, n, 8) is the intersection 
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of P (c,' 8) with the region I A I >n. But in view of (2.1. b) of [4] 

IR(A;A)I<C/IAI 

for AtOP (c, 0) and some constant C. Furthermore, (2.6) and the 
Cauchy-Schwarz inequality imply 

(2.9) 

for A to P (c, 8) and some constant C, uniformly with respect to m. 
(2.8) together with (2.9) imply2.7) and, a fortiori, .Lemma 2.3 

Proal 01 Theorem :2.2. Define subsets LM,N( M = 1, 2, 3, ... 
N = 1, 2, ... m) of L as follows: LM;N'-:'" (Ul,"" um.) to L such 
that there exist functions /I, 12, ... , 1m in H2, not all zero .and such 
that (a) max k Ilk I H2 < 1 (b) I IN(C) I > 11M, c a fixed point 

outside u (A), (c) l;;'_t!k(A)u/, = O. It is easy to see that every 
(Ub ... , um ) to L belongs to some LM,N (if the corresponding func­
tions 11, ... , 1m all vanish at c multiply them by a convenient po­
wer of (A--'--C)-l) and that each LM,N is closed (to do this we pro­
ceed in a way similar to that of Theorem 1. 2 and make use of 
Lemma 2.3) Again by an application of Baire's theorem we deduce 
that some LM,N has an interior point, and this can be easily seen 
to imply (possibly after a rearrangement of indices) that the 
functions lb' .. , 1m in the statement of Theorem 2.2 can be chosen 
in such a way that Im(c) ~ O. 

The proof ends now like that of Theorem 1. 2. Let (Ul' ... Urn-I) 

be any (m-1) -pIe of eiements .of E, and let g(A) = (A-C) 
(,\ + c) - 2 to H2. Then, if lb"" 1m are the functions correspon­
ding to the m-ple 

we have l'J:::~fk (A)Uk + ([rn-l (A) g (A) + 1m (A) Um-l = 0, the 
functions 11, ... , Im-2, Im-1g + Iii, not all zero. This allows us to re­
duce the case of m-ples to the case of (tn - 1) pIes, and when m - 1 
Theorem 2.2 reduces to Theorem 2.2 of [4]. 

Remark Theorem 1. 2 states that when A is not of admissible 
meromorphic type and ]I' is finite-dimensional then (2.1) is rigid 
for "most" operators B in 2 (]I'; E). The: situation changes when 
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F is of infinite dimension; for instance, if E = F it is not diffi­
cult to see that (2.1) is not rigid when B has a bounded inverse 
or is not one-to-one. 
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