NOTES ON THE MEASURE EXTENSION PROBLEM,

by J. C. MERLO and R. PANZONE

1. InTrRODUCCION. The so called measure problem has been
proposed by Lebesgue in 1904 ([L]) and solved by Vitali ([V])
the next year, and asks for a traslation invariant finite measure in
P ([0,1)), (see next paragraph for the nomenclature).

Vitali’s theorem asserts that the only solution is m =0, (a
proof of it can be seen in [H], p. 70). Observing that the condi-
tions on which is enunciated the problem imply that every point
must have measure zero, Banach and Kuratowski proposed the ge-
neralized measure problem: define in - P ([0,1)) a real valued,
signed measure, null on every point. The same authors proved
([BK]) the following: under the continuum hypothesis the only
solution is m = 0.

The problem was generalized even more by Ulam who proved:
if X is o set whose power is weakly accestble, then, on P (X),
may be defined only one real valued, signed measure, vanishing at
each point: m =20, (cf. [U] and [B]).

Something more can be said if we impose more restrictive eon-
ditions on m, and precisely: if X is a set whose power is strongly
accesible, it cannot be defined on ? (X) a0 —1 valued measure,
vanishing at every point and non trivial, (Ulam-Tarski, [U]).

The problem can be more generally posed as follows, (ef. [B1]
and [LM]): let (X, 9B, P) be a probability space and ¢ @ o -alge-
bra of P (X) containing V3. Does there exist ¢ measure (hence,
a probability) P on A such that P =P on B ?

(No generatlity is lost considering probabilities instead of fi-
nite signed measures as it follows immediately from Jordan-Hahn
decomposition theorem for signed measures.). When B ={¢,X}
and f = P (X) we are in the Ulam’s case and when besides
X = [0,1), in the case considered by Banach and Kuratowski. The-
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refore, the problem has in general no non-trivial solution. Howe-
ver, if of = 9PV @, where @ is a finite partition of X, there are
infinite solutions (Los-Marcewski), and the same holds when
is denumerable partition (Bierlein).

This paper is a set of notes on this problem and gives also

a general view of if.
2. NOMENCLATURE. By a measure we mean a o-additive, non

negative set function P defined on a o-algebra of subsets of a set X
and o-finite. Whenever P(X) =1, it will be called a probability.

A measure algebra is said to be purely atomic if the Boolean
algebra of its sets mod. null sets (its Boolean algebra associated)
is generated by a denumerable family of atoms. A measure will
be called purely atomic (atomic) if its measure algebra associated
is purely atomic (has atoms), and it will be called discret if all
its mass is concentrated on a finite or countably infinite set of
points. Finally, a measurable set S will be said indecomposable if
and only if for every measurable T €8, T=¢ or T =S.

If 93 and @ are algebras of subsets of X, )} V @ indicates the
o -algebra generated by them.

I will designate the half-closed unit interval [0,1) and 2 (X)

the family of subsets of the set X. X will mean the Stone-Cech
compactification of X, if X has a completely regular topology.

Aphe ‘will indicate the a-the infinite cardinal. We shall not
enter into the definitions of weakly and strongly aceesible cardinal
numbers; it will suffice to us to observe shat Aph; is weakly acce-
sible and every Aphg =< ¢ = the continuum power, is strongly acce-
sible. '

3. AUXILIARY RESULTS. a) Assume (Q;, i), + =1, 2, are mea-
surable spaces and T:Q;— Q. is a measurable application such
that T-! (o.) = of,. Assume P, is a probability measure on
(s. Then, Py (T-'B) = P, (B), Be 9l,, defines a probability
P, on o, if and only if Po* (T (1)) =1, (Doob).

The proof is straightforward.

b) Let (Q, o, P) be a probability space and B a o -algebra,
B c A Suppose (2, 93,P) is not purely atomic. Let B be a subs-
pace of L* (Q, A,P) such that every function of L, (2, <)3,P)
verifies :

I flly = supremum [ fbdP
b]]lo=1beB
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Then, there exists b* ¢ B¥ such that for any feL! (Q, A, P),
it is possible to find b ¢ B with :

b* (b) £ [ fbdP.

In other words, there exists a bounded linear functional in
B* not representable as a funection of L' (Q, f, P),

The proof of this results is given in § 6,[NP], although the
statement is slightly different.

¢) If f, is a non-negative submartingale sequence and feL!
closes it on the right, then f, converges to fa.e. and in L'. Besi-
des, fn is uniformly integrable if and only if f, converges in pro-
bability to f which ecloses the submartingale on the right and
S fadP— f{dP. (Uniformly integrable means [ f, dP— 0 {f, = a}
unifounly in n, when @ — ). (c¢f [Le] p. 394 and p. 528).

4. The measure problem for finitely additive measures. We
want to exhibit now the several possibilities that appear combining
algebras, o -algebras, finitely additive an o -additive measures.

ProBLEM. Let X be a set and = an algebra or o -algebra of sets
of X. Let & be another subalgebra of P (X) and 3 the algebra
generated by 3 and ®. Let m be a finitely additive or o -additive
signed measure of bounded vamatwn defined on 3. Define a szgned
measure of bounded variation m on 3 such that on 3, m = m.

The problem has many subcases which we designate with we
designate with (a, b/c,d) where a,b,c,d, stand for the numbers
0,1, and with the following convention: a(b) represents 3 (3) and
will be equal to 0 if X (3) is an algebra and 1 if it is a o -algebra; ¢(d)
represents m(m) Wlth value 1 or 0 depending whether or not m is
o -additive. The decomposition theorems associated to the names of
Hahn and Jordan (ef. [D S] pp. 98 and 129; [Le], pp. 86-87) assert
that for any values of a and b, it is sufficient to solve the problem for
non-negative measures. Hence, we suppose that m and m are =0,
and besides that m(X) = 1.

Oustanding results in this situation are the following theorems.

BanacH-HAUSDORFF THEOREM. Let R™ be the euclidean space
of dimension n. For n = 1(2), they can be defined on ¥ (R") two
finitely additive positive measures p, v, traslation (and rotation)
invariant, taking the same values on intervals and such that u is
an extension of Lebesgue measure and v is not, ([Bch]); for
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n > 2 the only finitely additive measure on P (R"), vanishing
at each point and rotation invariant, is the trivial ome, ([Hf],
p. 469).

ALEXANDROFF THEOREM. Let X be a compact space and m a
finitely additive and regular measure defined on an algebra I,
then m is o -additive, and therefore admits a unique extension to
the o -algebra generated by 3, (ef [DS], p. 138),

For a generalization of this result e¢f. 7.3 B, [B1]. With the
problem of determining in what case a finitely additive measure in
a Boolean algebra is o -additive deal Kelley’s results (ef. [K] and
[Lu], § 6). The same type of result is of great importance in the
theory of measures in topological vector spaces. Cf. for example
[G V], chapter IV.

CARATHEDORY THEOREM. Every o-additive measure on an alge-
bra admits a unique extension to the o -algebra generated by 3.

These theorems are examples of the cases (00/00), (00/01),
and (01/11), respectively. Example for the case (11/11) is the
result of Los and Marcewski already mentioned in the introduction.

Suppose that d =1, ie. ‘m e o -additive. Then, a case (a0/cl)
admits a solution whenever it is already a case type (el/cl), and
in this last case it admits a solution if there is also a solution after
replacing 3 by its generated o-algebra (as one can see applying
Caratheodory’s extension theorem). That is, a case ‘(al/cl) is
always reduced to a case (¢1/11). Another application af Cara-
theodory’s theorem shows that a case (a1/11) can be reduced to
a case (11/11).

Therefore, any case (¢ 0/cl) can be reduced to a case (11/11),
and every case of this last type is also type (a0/cl). Concluding,
any measure problem with d =1 is finally reduced to two pro-
blems. First, to determine that P on 3 is ¢ -additive as in Alexan-
droff, theorem, second, solve a problem of type (11/11). In this pa-
per we shall be essentially concerned with the case (11/11).

The case d = 0 cannot be discused as before and it is vincula-
ted with a set of astonishing results, ef. for example [B T], [v N],
[Bchl, [Hf], and Hadwiger’s book, [H r]. To show the difference
of both cases it is enough to compare the theorem of Ulam and
Tarski with the following result due also to Tarsgki: for any inifite
set X there exists a non-diseret, finitely additive, 0-1 valued measu-
re, defined on P (X). Let us prove it.
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THEOREM 1. Le 93 be an algebra of subsets of X and P a fini-
tely additive measure on €)3. There exists o finitely additive measu-
re P on P (X) such that P=P on Q8. If P is 0—1 valued, P
can be chosen 0 —1 wvalued.

Proof. There is a lattice isomorphism between the family of
(real valued) bounded functions on X and the space of continuous
functions in C (B8 X). Under this isomorphism the space of boun-
ded €3 measurable functions is in correspondence with a subs-
pace S of C (BX) . P induces a bounded linear functional on
L» (X, (3, P) and therefore on S, which can be extended to
C (BX). By the Riesz representation theorem this extension can
be represented by a regular Borel measure p. The restriction of u
to the clopen sets of B8 X is a finitely additive measure. By a result

v

of Cech two sets of X are disjoint if and only if the clopens which
are their closures are disjoint. Therefore, the restriction po of u
to the clopen sets can be also understood as defined on P (X), and
defining there a finitely additive measure 2. From the cons-
truction it follows that P=P on 3. Let K be the support of
p on BX. By definition of support, every clopen set intersecting
K has p-positive measure. If P is 0-1 valued, every clopen which
is the closure of a set of ()3, must contain K or be disjoint to it.

Let v be the &-measure corresponding to a point of K. v is als¢
an extension of the linear funectional associated to P and its res

trietion to P (X) is 0-1 valued.

Suppose B is an indecomposable infinite positive set of 3, Tts
closure on B X contains a point y in B X — X. Take a S-measure
concentrated on y and of magnitude P (B) and proceed as above
for P restricted to X — B. The union of these two partial exten-
sions is an extension of P, P, whose restriction is null on every
point of B. (Naturally, it is not s-additive). Q.E.D.

5. EXTREME cASE. We consider in this section the case with
B={X,¢} and g{ =P (X). We note with Q the first infinite
non-countable ordinal.

TaOREM 2. Assume |X | = Aph,.

I) There exists a family of subsets of X,{A%},i,k=1,

2, ..., such that AiyxAAi; = ¢ if k£ j, whatever be i; 5 Aty —
=1

and | ﬁl(Ail 4+ ...+ A%i) = Apho whatever be the sequence
e
k1, ko, ..., (Banach-Kuratowski).
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II) There exists a family F of sequences of positive imtegers
with | 7| = Aphy and such that for any sequence of pbsitive‘ -
tegers 8 = (Sy, 82, ...), it holds: -

|4 (84, to ) e Fi ti=<si, for every i} | = Apho, (Banach-
Kuratowski). ‘
_ I_II) There exists o sequence of functions | fa }, defined on
X, such that Oﬁfn =<1, fu(x) converges to 0 for each zeX, and
if Y © X is a set where f, converges uniformly then |Y | = Aph,
(Sierpinski) .

1) It does not exist a mon-discret probability measure defined
on_ P (X), (Ulam). a

9) There exists a denumerable family of subsets of X, { Ay}
such that the generated o-algebra O3 ({ Aa}) contains the one-point
sets and cannot be the domain of definition of a mon-discret proba-
bility measure, (Bierlein).

3) It is possible to define on X a real valued function f such
that 3 (f) = the least o-algebra on which f is measurable, con-
tains the onepoint sets and is not domain of definition of @ non-
discret probability measure.

4) Let P be a probability on 3 c¢ P (X). If P 1s extendable to
P (X) there exists a subspace B of L* (X, P (X),P) determi-
ming for L' (X, 8, P) (*) such that dual B* of B is equal to
L' (X, 9%3,P). |

5) For any o-algebra 3 c¢ P (X), any measure on )3 ex-
tendable to P (X) is purely atomic.

, ' 'Then, the propositions 1), II), and III), are equavalent and
they wmply 1), 2), 8) and 4), which are equivalent and true.

Asuming the continuum hypothesis, 1) holds. The equivalen-
ce of 1), II) and III) also holds for | X | =c.

Proor. I) & II): ef. [B K], pp. 130-131. I) & III): [S], p.
279. In the proofs no use is made of the magnitude of the power
of X. I) holds- assuming the continuum hypothesis: cf. [B K],
p. 130. III) —1): suppose P is a non-discret probability on
P(X). Without loss of generality we can assume that P ( {fx}) =0
for every « « X, and therefore, the countable sets will have measure
zevo. If f,— 0 pointwise, by Egoroff theorem, f, converges uni-

(*) If means that Il f i = sup {J']'gdP; lgl.=1, geB}.
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formly on a set of measure 1—¢ and hence on a set of power
Aphy, contradicting III).

2) = 1) : trivial. 1) = 2): ef. [B1], p. 33.2) & 3): cf. [B1],
Th. 1B, p. 32, where the equivalence is proved using a useful re-
sult of Banach (see [Mi] ). 1) is proved in [U]. Let us see that
4) is equivalent to 1) and 5).

1) = 4): from the hypothesis, it follows that (X, 93, P) is
purely atomic, and therefore, there is a determining subspace
B (in L= (X, 8, P)) for L' (X, 93, P) such that B* = L' (“the
space of bounded sequences tending to zero when n— o ).
4) —5) —1). Assume that P is a probabiliy measure on 93 and
extendible to @ (X) and suppose that it is not purely atomie.
From §3,b), it follows that every determining subspace for
L' (X, 9B, P) admits a linear functional which is not representa-
ble as a function of L! (93), contradicting 4). Hence (X, B, P)
is purely atomic.

Extending it to a probability on P (X) and using the theo-
rem of Ulam-Tarski mentioned at the introduction, it follows that
P is a discret measure. (We can assume Ulam-Tarski theorem sin-
ce its proof is independent of the proof of Ulam theorem).

6. GENERAL EXTREME CASE. It has been proved by Luxemburg
(ef. [Lu], T. 4.5), that a complete Boolean algebra with the Ego-
roff property has at most a denumerable set of atoms, if it is assu-
med the continuum hypothesis. We shall not enter into the defini-
tion of Egoroff property.

It will suffice for us to say that every Boolean measure al-
gebra has Egoroff property. A corollary of Luxemburg’s result
is that any eomplete Boolean measure algebra is isomorphic to the
family of subsets of a denumerable set. However this result is tri-
vial. The following theorem is in close connection with Luxem-
burg’s result.

TueOREM 3. @) If (X, P (X),P) is a probability space and
the continuum hypothesis holds(or better, ¢ is weakly accesible),
then P is purely atomic. b) If besides X is strongly accesible, then
P s a discret measure.

~ Proor. b) follows from a) using Ulam-Tarski theorem. Let us
prove a). If P is not purely atomic, then we can assume, without
loss of generality, that it is not atomie, 7.e., it has no atom. There-
fore, it can be constructed a family of sets A, r, s, rational num-
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bers, » < s, which can be put in a one-to-one, measure and inelu-
sion preserving, correspondence with the rational intervals of I,

{[r,s] }. Let D be the family of sets D which are maximal with
respect to the property of beeing contained or disjoint to every
Ays. Then, |D | =< c. Since P is defined on P (X), it is a fortiori
defined on the family of subsets § having the property De D
and SAD=s£¢—>8 2 D.

Hence, P induces a measure @ on (Y =X/, P (¥Y)). From
the construction it follows that there is a one-to-one corresponden-
ce 7 between Y and a subset Z of real numbers, of Lebesgue exte-
rior measure equal to one. Moreover, since @ is defined on P (¥),
it means that the measure induced by the Lebesgue measure m on
Z can be extended to P (Z). Now, defining m(A) =0 if A is a
subset of I—Z and m (4) = Q (r—* (4)) if A € Z, we get an
extension to P (I) of the Lebesgue measure, (recall that
m* (Z) =1). Then, a) follows from the assumption of weakly
accessibility of ¢ and the Ulam’s theorem, Q.J.P.

From the proof it follows that the continuum hypothesis in
theorem 3 could be omited, if the following problem had a nega-
tive solution.

ProsLEM 1. Is it possible to find a probability measure which
extends the Borel measure to- P (I)?

And so, the problem for X, at least for non atomic measures,
is reduced to the same problem for the unit interval. Observe that
any sucho extension must be non-atomic and therefore taking into
account Maharam theorem ([M]), it turns out that problem 1 is
equivalent to the following;:

ProsuEM 2. Is it possible to find a homogeneous probability which
extends Lebesgue measure to P (I)?

We leave the details to the reader, (cf. Banach-Hausdorff
theorem in § 4).

7. CRITERIONS FOR MEASURE EXTENSION. Let (X, <3, P} be a
probability space and C an algebra of subsets of X. Our purpose
is now to discuss some methods to extend P to @, in other words,
to extend P to of = P v (.

In relation with the first and second method cf. [B 1], spe-
cially Ths. 34 and 2B.

We shall agree in this section that any o-algebra <53 on which
a measure is defined separates points, i.e., for any two points z, ¥,
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there exists B e 93 such that zeB = y. This is not an essential res-
triction since except for atoms, the condition is satisfied by the
completion of the measure and in a non--one-point atom several
solutions are at hand. For example, if the atom has only a denu-
merable set of points we can add a non denumerable set of them
problem and is of immediate application in the extreme cases.

7.1. CONSISTENCY CRITERION. F' () will design a family of
‘8 -measurable functions such that the least o-algebra on which
the functions of F (9)3) are measurable ir <3 itself. I (78) will
design a product of real lines: I { Ry; feF (B)}. Let @ (%) be
the application related to F () and I (%3) defined by
®(z) =C(..,f(x),...) e W(B), feF (). Then (I (NB), J,
P ®=1(93) is a probability space, (=5 is the family of Borel stts).

THEOREM 4. A necessary and sufficient condition for the exis-
tence of a probability P on o=\ C with P/93 = P is the exis-
tence of a probability w on (I (W) X I(C), ) such that:
1) (o) (X) = (2(B), ® (C))(X) is of exterior u-measure one;
2) 1ts projection on I (3) coincides with P ®—1(9)3).

Proor. The sufficiency follows from a), § 3. The necessity is
trivial.

A necessary and sufficient condition for the existence of a
probability p on II( ¢f) is the existence of consistent finite dis-
tributions on _III" Rs, X I’" By, 5 gie F(C)y, foeF (W), (Kol-
mogoroff theorem). The projection of w on I (93) will coincide
with P &1 (€)3) whenever the u-probability of any set A defined
on II" Ry, , whatever be f; and n, is equal to P((fy,...,fa) "2(4)).

7==1

F==

CoroLLARY. a) Let (X,CR3, P)be o probability space and A a
non-measurable subes tof X. There exists (infinitely many indeed)
@ probability P which extends P to O3 \/ {41}, (Los-Marcewski).

b) Let | Ay} be a family of disjoint subsets of X such that

the complement of a denwmerable family { A, } n Z 1s is contained

in a set M of interior measure zero. Then, there exist a measure
Pon BviA, } such thet P. extendeds P, (Bierlein).

Proor. Set V the sample space (II(9)3), &, P@®~1(3) and
W = V X R, where R denotes the real line. Let us define p and
apply next the preceding theorem. Call K(K’) the measurable hull
of A (X—A). T Be)P,and BCX —K,put p(BXX {0})=
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=P(B),if BCeX—K,u(BX{1}) =P(B) andif BE KN\ K’
define p (B X {1 }=aP(B), p( X{0}) = (1—a)P(B), where
o will be fixed at once. Condition 2) of theorem 4 is then fulfilled..
Set now @ (o) = (2(PB), X 4), i.e, 2(A)(2) =2 (V) (#)X
{0} for zed, and & (A)(X) = @ (P) (v) X {1} forz e 4.

Choosing now o verifying:

P(K) = P*(4) = p (K X {1}) == P, (4)=P(X—K’), (*¥)
it follows condition 1) of Th. 4. Observe that (**) is a neceassary
condition. The same procedure applies for corollary b). We shall
restriet curselves to the definition of . One way of doing it is
s0. Set & () (&) = ®( J(z) X {n} if zed, n=01,..,
with 4dg = M. Let K, be the measurable hull of A, If Be B
and B € K, — ”ul K, ne23,..., define u (BX{n}) = P(B),
if B Ky, p(B >< {1}) = P(B).

7.2. ConprTioNAL ExprcraTioN METHOD. Suppose that ()3 € of
and (X, of, P) is a probability space. Then, the eonditional expec-
tation operator E(./C3) has the following properties: 1)
E(./9) :L* (o) —» L= (93)is a contraction operator and pre-
serves L' -norms; 2) ; A; = Ao implies

J=1
E(34;/PB)=3E (4;/ V) =E (4e/WB); 3) E(O/B)=
=0.EQ1/B)=1ae.. _

Trying to use the conditional expectation operator to extend

a measure, one gets:
TueoreM 1. Let < be a family of <)3- -measurable functwns

such that: '
a) fe F —1=f= 0 a.e.,b) there exits an application <
from of2 B3 into F such that » (@) =1 ¢ (¢) =0 and

o(34;) =3 (4)), ) AcQB = o (A) =x(4), ac. If there
1 1

is @ probability P on O3, then P (A) = f o (A) dP defines a pro
bability P on of with P/ <3 =P.

The proof is trivial. From this theorem easily follows the co-
rollary of section 7.1, (ef. [B1]).

7.3. MARTINGALE CRITERION. Assume that 93 <93, .

n=1,2, ..., is a denumerable set of non-decreasing o -subalgebras
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of P(X) P,, @, are probabilities measures defined on <3, Suppose

the P’s admit a common extension P to A = \/ B4 . The problem

n==1
is to establish conditions on the @’s so that they also admit .a common
extension to of. It holds:

THEOREM 6. Under the hypothesis wmantioned above, if
Qni1/ Bro=0Q, and Q, << P, n=1,23, ..., then, the follo-
wing propositions are equivalent.

1) there exist Q << P defined on o such that Q/ B = Qn
for every n.

2) { fa=4d@n/dP,} 1is martingale closed on the right with
o closure function in L' (X, A, P).

3){ fa | is fundamental in L1,

4) { fa 18 uniformly integrale.

In these cases, f, = dQ,/dP, converges a.s. and in L' (X, g{,?)
to dQ/dP.

Proor. If { f,} is L' -fundamental then it is uniformly inte-
grable (cf. [Le], p. 163). Observe now that the conditional expec-
tation E (fay1/ “Ba) is a.e. equal to fn, and therefore that { fa} is a

nartingale sequence. Using ¢), §38, f»—f and f closes the martin-
'I,‘,

gale on the right and belongs to Ly (P). If | {, } is a martingale
closed on the right by an L, (P) -function, then again by ¢), § 3,

1 — —
fn—>f. Henee, 2), 3) and 4) are equivalent. Defining Q(4) = { f dP,
A

they, trivially, imply 1). Assume that 1) holds. Then, from
fn is closed on the right by dQ/dP ¢ L* (P), Q.I.D.

Similar results can be obtained if one asks instead of
Qni1/Pn=Qn that Qi1 (B) > Q. (B) for every Be93. In this
case, dQ, = f, is a submartingale sequence.
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