
NOTES ON THE MEASURE EXTENSION PROBLEM, 

by J. C. MERLO and R. PA.NZONE 

1. INTRoDuccr6N. The so called measure problem has been 
proposed by Lebesgue in 1904 ([L]) and solved by Vitali ([V]) 
the next year, and asks for a traslation invariant finite measure in 
']> ({0,1», (see next paragraph for the nomenclature). 

Vitali's theorem asserts that the only solution is m = 0, (a 
proof of it can be seen in [H], p. 70). Observing that the condi­
tions on which is enunciated the problem imply that every point 
must have measure zero, Banach and Kuratowski proposed the ge­
neralized measure problem: define in ']> ([0,1» a real valued, 
signed measure, null on every point. The same authors proved 
([BK]) the following: under the continuum hypothesis the only 
solution is m = 0. ' 

The problem was generalized even more by Ulam who proved: 
if X is a set whose power is weakly accesible, then, on ']> (X), 
may be defined only one 1"eal valued, signed meaS1tre, vanishing at 
each point: m = 0, (cf. [U] and [B)). 

Something more can be said if we impose more restrictive con­
ditions on m, and precisely: if X is a set whose power is strongly 
accesiblc, it cannot be defined on ']> eX) aO -1 valued measure, 
yanishing at every point and non trivial, (Ulam-Tarski, [U]), 

The problem can be more generally posed as follows, (cf, [B1] 
and [LM)): let (X, 03, P) be a probability space and sf{ a u -alge­
bra of 'j) (X) containing 93, Does the1'e exist a measure (hence, 

a probability) P on sIlsuch that P = P on C)3? 

(No generatlity is lost considering probabilities instead of fi­
nite signed measures as it follows immediately from Jordan-Hahn 
decomposition theorem for signed measures.), When 03 = {cp , X } 
and sIl = ']> (X) we are in the Ulam's case and when besides 
X = [0,1), in the case considered by Banach and Kuratowski. The-
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fefore, the problem has in general no non-trivial solution. Howe­
ver, if g.{ = C)3 V e, where e is a finite partition of X, there are 
infinite solutions (Los-Marcewski), and the same holds when e 
is denumerable partition (Bierlein). 

This paper is a set of notes on this problem and gives also 
a general view of if. 

2. NOMENCLATURE. By a measure we mean· a !T-additive, non 
negative set function P defined on a !T-algebra of subsets of a set X 
and a-finite. Whenever P(X) = 1, it will be called a probability. 

A measure algebra is said to be purely atomic if the Boolean 
algebra of its sets mod. null sets (its Boolean algebra associated) 
is generated by a denumerable family of atoms. A measure will 
be called purely atomic (atomic) if its measure algebra associated 
is purely atomic (has atoms), and it will be called discret if all 
its mass is concentrated on a finite or count ably infinite set of 
points. Finally, a measurable set S will be said indecomposable if 
and only if for every measurable T c S, T = cf> or T = S. 

If C)3 and e are algebras of subsets of X, l7J V e indicates the 
a ·algebra generated by them. 

I will designate the half-closed unit interval [0,1) and '}J (X) 

the family of subsets of the set X. f3 X will mean theStone-Cech 
compactification of X, if X has a completely regular topology. 

Apha will indicate the a-the infinite cardinal. We shall not 
enter into the definitions of weakly and strongly accesible cardinal 
numbers; it will suffice to us to observe shat Aphl is weakly acce­
sible and every Apha < c = the continuum power, is strongly acce­
sible. 

3. AUXILIARY RESULTS. a) Assume (Oi, stli), i = 1,2, are mea-
surable spaces and T: 0 1 -- O2, is a measurable application such 
that T-l (stl2) = g.{l. Assume P 2 is a probability measure on 
Q2. Then, PI (T-l B) = P2 (B), B € stl z, defines a probability 
PIon g.{1 if and only if P2* (T (01» = 1, (Doob). 

The proof is straightforward. 
b) Let (0, g.{, P) be a probability space and C)3 a a -algebra, 

CJ3 ~ stl Suppose (0, CJ3,P) is not purely atomic. Let B be asubs­
pace of L 00 (0, g.{ ,P) such that every function of Ll (0, CJ3 ,P) 

verifies: 

II fill = supremum f fbdP 
II b II 00 = 1, b € B 
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Then, there exists b* f B'" ,such that for any f f L1 (0, stl, P), 
it is possible to find b £ B with : 

b* (b) =F f f b dP . 

In other words, there exists a bounded linear functional in 
B* not representable as a function of L1 (0, g{, P), 

The proof of this results is given in § 6, [NP], although the 
statement is slightly different. 

c) If fn is a non-negative submartingale sequence and f f L1 
closes it on the right, then f n converges to fa. e. and in' L1. Besi­
des, f n is uniformly integrable if and only if f" converges in pro­
bability to f which closes the submartingale on the right and 
f fn dP ~ f f elP. (Uniformly integrable means f fndP~ 0 {fn:::=: a} 
uniformly in n, when a ~ 00). (cf [Le] p. 394 and p. 528). 

4. The measure problem for finitely additive measures. We 
want to exhibit now the several possibilities that appear combining 
algebras, u -algebras, finitely additive an u -additive measures. 

PROBLEM. Let X be a set, and :s an algebra or u -algebra of sets 
of X. Let <I> be another sub algebra of ']> (X) and ~ the algebra 
generated by :s and <1>. Let m be a finitely additive or u -additive 
signed measure of bounded variation defined on:S. Define a signed 
measure of bounded variation mon :s such that on :S, m = m. 

The problem has many subcases which we designate with we 
designat~ with (a, blc, d) where a, b, c, d, stand for the numbers 
0,1, and with the following convention: a (b) represents :s (:S) and 
will be equal to 0 if :s (j) is an algebra and 1 if it is a u -algebra; c (d) 

l'eprcsentsm(rn) with value 1 or 0 depending whether or not m is 
u -additive. The decomposition theorems associated to the names of 
Hahn alld Jordan (cf. [D S] pp. 98 and 129; [Le], pp. 86-87) assert 
that for any values of a and b, it is sufficient to solve the problem for 
non-negative measures. Hence, :lVe suppose that m and m are ~ 0, 
and besides that m(X) = 1. 

Oustanding results in this situation ate the following theorems. 

BANACH-HAUSDORFF THEOREM. Let Rn be the euclidean space 
of dimension n. For n = 1(2), they can be defined on ']> (Rn) two 
finitely a¢lditive positive measures p., -;, traslation (and rotation) 
invariant, taking the same values on intervals and such that p. is 
an extension of Lebesgue measure and -;; is not, ([Bch]); for 
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n> 2 the only finitely additive measure on ']J (RIl) , vanishing 
at each point and rotation invariant, is the trivial one, ([ H f] , 
p. 469). 

ALEXANDROFF THEOREM. Let X be a compact space and m a 
finitely additive and regular measure defined on an algebra ~, 

then m is a -additive, and therefore admits a unique extension to 
the a -algebra generated by ~, (cf [DB], p. 138). 

For a generalization of this result cf. T. 3 B, [B 1]. With the 
problem of determining in what case a finitely additive measure in 
a Boolean algebra is a -additive deal Kelley's results (cf. [K] and 
[Lu], § 6). The same type of result is of great importance in the 
theory of measures in topological vector spaces. Cf. for example 
[G V], chapter IV. 

CARATHEDORY 'fHEOREl\L Every a-additive measure on an alge­
bra admits a unique extension to the a -algebra generated by ~. 

These theorems are examples of the cases (00/00), (00/01), 
and (01/11), respectively. Example for the case (11/11) is the 
result of Los and Marcewski already mentioned in the introduction. 

Suppose that d = 1, i.e. m € a -additive. Then, a case (a 0/e1) 
admits a solution whenever it is already a case type (a1/e1), and 
in this last case it admits a solution if there is also a solution after 
replacing ~ by its generated a -algebra (as one can see applying 
Caratheodory's extension theorem). That is, .a case . (a1/ e1) is 
always reduced to a case (a 1/11). Another application afCara­
theodory's theorem shows that a case (a 1/11) can be reduced to 
a case (11/11). 

Therefore, any case (a 0/e1) can be reduced to a case (11/11), 
and every case of this last type is also type (aO/e1). Concluding, 
any measure problem with d = 1 is finally reduced to two pro­
blems. First, to determine that P on ~ is a -additive as in Alexan­
droff, theorem, second, solve a problem of type (11/11). In this pa­
per we shall be essentially concerned with the case (11/11). 

The case d = 0 cannot be discused as before and it is vincula­
ted with a set of astonishing results, cf. for example [B T], [v N], 
[B e h}, [H 11, and Hadwiger's book, [H r]. To show the difference 
of both cases it is enough to compare the theorem of Ulam and 
Tarski with the following result due also to Tarski: for any inifite 
set X there exists a non-discret, finitely additive, 0-1 valued n;teasu­
re, defined on ']J (X). Let us prove it. 
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THEOREM 1. Le c)3 be an algebm of subsets of X and P a fini­
tely additive measure on 93. There exists a finitely additive measu-

re P on 1> (X) such that P = P on 93. If P is 0 -1 valued, P 
can be chosen 0 - 1 valued. 

Proof. There is a lattice isomorphism between the family of 
(real valued) bounded functions on X and the space of continuous 
functions in C (13 X). Under this isomorphism the space of boun­
ded 93 measurable functions is in correspondence with a subs­
pace S of C (13 X) . P induces a bounded linear functional on 
L~ (X, 93, P) and therefore on S, which can be extended to 
C (f3 X). By the Riesz representation theorem this extension can 
be represented by a regular Borel measure p.. The restriction of p. 

to the clop en sets of 13 X is a finitely additive measure. By a result 

of Cech two sets of X are disjoint if and only if the clop ens which 
are their closures are disjoint. Therefore, the restriction p'o of p. 

to the clop en sets can be also understood as defined on 'j) (X), and 
defining there a finitely additive measure 7>. From the cons­
truction it follows that P = P on 03. Let K be the support of 
p. on 13 X. By definition of support, every clopen set intersecting 
K has p.-positive measure. If P is 0-1 valued, every clop en which 
is the closure of a set of 03, must contain K or be disjoint to it. 
Let v be the 8 -measure corresponding to a point of K. v is alsQ 
an extension of the linear functional associated to P and its res' 
triction to 1> (X) is 0-1 valued. 

Suppose B is an indecomposable infinite positive set of 03. Its 
closure on 13 X contains a point y in f3 X-X. Take a 8~measure 
concentrated on y and of magnitude P (B) and proceed as above 
for P restricted to X-B. The union of these two partial exten­
sions is an extension of P, P, whose restriction is null on every 
point of B. (Naturally, it is not u-additive). Q.E.D. 

5. EXTREME CASE. We consider in this section the case with 
Cf3 = { X, cP I· and gl = 'J> (X). We note with n the first infinite 
non-countable ordinal. 

THOREM 2. Assume I X I = Aphl . 
I) There exists a family of subsets of X, { A i k ) ,i, k == 1, 

.~ 

2, ... ,suchthatAi"I\Aij=cp if k=l=j, whatever be i;:SAi,,=X 
k~l 

." 
and I n (Ail + .. _ + Ai7~i) < Apho whatever be the sequence 

i~l 

kl' k2' ... , (Banach-Kuratowski). 
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II) There exists a family '.J: of sequences of positive integers 
with I. :7 I >: Aph1and such that for any sequence of positive in­
tegcrs 8 = (81, S2, .•. ), it holds: 

11 Ctr, t2, .•• ) € }; t, <: Si, fO?' every i } I <: Apho, (Banach-
.Kuratowski). 

III) There exists a sequence of /tmctions f f n }, defined on 
X, such that O<:f,,<:::l, f,,(x) converges to 0 for each x€X, and 
if Y c X is a set where fn converges uniforrnly then I Y I < Apho, 
(Sierpinski) . 

1) It does not exist a non-discr'et probability measttre defined 
on}) (X), (Ulam). 

2) There exists a denumerable family of subsets of X, {An} 
such that the gener'ated a-algebra 13 ( { An } ) contains the one-point 
sets and cannot be the domain of definition ofa non-discret proba­
bility meaS1lr"e, (Bierlein). 

3) It is possible to define on X a real valued ftmction f such 
,that C)3 (f) = the least a-algebra on which f is measurable, con­
.tains the one-point sets and is not domain of definition of a non­
discret probability measure. 

4) Let P be a probability on 93 _c 1> eX). If P is extendable to 
1> (X) there exists a s'ubspace B of L''' (X, 1> eX), P) detenni­
ming for V (X, 93, P) (*) such that dualfF of B is equal to 
£1 eX, 93, P). 

5) For any a-algebra !CJ3 c 1> (X), any measure on CJi3 ex­
tendable to :P (X) is purely atomic. 

Then, the p1'opositions I), II), ancl II!), are equavalent and 
they imply 1), 2), 3) and 4), which are equivalent and true. 

Asuming the contin1lurn hypothesis, I) holds. The equival.en­
ce of I), II) and III) also holds fO?' I X 1= c. 

PROOF. I) B II) : cf. [B K], pp. 130-131. I) B III): [8], p. 
279. In the proofs no use is made of the magnitude of the power 
of X. I) holds assuming the continuum hypothesis: d. [B K], 
p. 130. III) -+ 1): suppose P is a non-discret probability on 
1>(X). Without loss of generality we can assume that P ( { x 1 ) = 0 
for e-v-ery x € X, and therefore, the countable sets will have measure 
zero. If fn -+ 0 pointwise, by Egoroff theorem, f" converges uni-

C) If means that II f 111 = sup {J f g d P ; II g 1100 2 1, g € B} . 
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formly on a set of measure 1 - £, and hence on a set of power 
Aphl, contradicting III). 

2) -+ 1) : trivial. 1) -+ 2) : cf. [B 1], p. 33.2) ~ 3) : cf. [B1], 
Th. 1B, p. 32, where the equivalence is proved using a useful re­
sult of Banach (see [Mi] ). 1) is proved in [U]. Let us see that 
4) is equivalent to 1) and 5). 

1) -+ 4): from the hypothesis, it follows that (X, 03, P) is 
purely atomic, and therefore, there is a determining subspace 
B (in L'" eX, C)3, P» for LI (X, c,3, P) such that B* = Ll ("the 
space of bounded sequences tending to zero when n -+ 00 "). 

4) -+ 5) -+ 1). Assume that P is a probabiliy measure on 03 and 
extendible to 9 eX) and suppose that it is not purely atomic. 
]'rom § 3, b), it follows that every determining subspace for 
£1 eX, 03, P) admits a linear functional which is not representa­
ble as a function of Ll (03), contradicting 4). Hence (St, 93, 9) 
is purely atomic. 

Extending it to a probability on 9 (X) and using the theo­
rom of Ulam-Tarski mentioned at the introduction, it follows that 
P is a discret measure. (We can assume Ulam-Tarski theorem sin­
ce its proof is independent of the proof of Ulam theorem) . 

. 6. GENERAL EXTREME CASE. It has been proved by Luxemburg 
(cf. [Lu], T. 4.5), that a complete Boolean algebra with the Ego­
roff property has at most a denumerable set of atoms, if it is assu­
med the continuum hypothesis. We shall not enter into the defini­
tion of Egoroff property. 

It will suffice for us to say that every Boolean measure al­
gebra has Egoroff property. A corollary of Luxemburg's result 
is that any complete Boolean measure algebra is isomorphic to the 
family of subsets of a denumerable set. However this result is tri­
vial. The following theorem is in close connection with Luxem­
burg's result. 

THEQREM 3. a) If (X, 9 (X), P) is a probability space and 
the continuum hypothesis holds( or better, c is weakly accesible) , 
then P is purely atom,ic. b) If besides X is st1'ongly accesible, then 
P is a discret measure. 

PROOF. b) follows from a) using Ulam-Tarski theorem. Let us 
prove a). If P is not purely atomic, then we can assume, without 
loss of generality, that it is not atomic, i. e ., it has no atom. There­
fore, it can be constructed a family of sets A rs, r, s, rational num-
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bers, l' < s, which can be put in a one-to-one, measure and inclu­
sion preserving, correspondence with the rational intervals of I, 
{ [r, s] I. Let If) be the family of sets D which are maximal with 
respect to the property of beeing contained or disjoint to every 
4rs. Then, Ilf) I <c. Since P is defined on 1) (X), it is a fortiori 
defined on the family of subsets S having the property D € If) 

and S /\ D =F cp -+ S .?_ D. 
Hence, P induces a measure Q on (Y=X/D, ']J (Y)). From 

the construction it follows that there is a one-to-one corresponden­
~e r between Y and a subset Z of real numbers, of Lebesgue exte­
rior measure equal to one. Moreover, since Q is defined on ']J (Y), 
it means that the measure induced by the Lebesgue measure m on 
Z can be extended to ']J (Z). NovY, defining meA) = 0 if A is a 

subset of I-Z and m (A) = Q (r- 1 (A)) if A. s:. Z, we get an 
extension to ']J (1) of the Lebesgue measure, (recall that 
m * (Z) = 1). Then, a) follows from the assumption of weakly 
accessibility of c and the Dlam's theorem, Q.E.P. 

From the proof it follows that the continuum hypothesis in 
theorem 3 could be omited, if the following problem had a nega­
tive solution. 

PROBLEM 1. Is it possible to find a pl'obability measure which 
extends the B01'el measure to ']J (1)? 

And so, the problem for X, at least for non atomic measures, 
is reduced to the same problem for the unit inte-rval. Observe that 
any sucho extension must be non-atomic and therefore taking into 
acco-unt lVIaharam theorem ([1I1J), it turns out that problem 1 is 
equivalent to the follo-wing;: 

PROBLEM 2. Is it possible to find a homogeneous probability which 
extends Lebesgtw measure to ']J (1)? 

We leave the details to the reader, (c£. Banach-Hausdorff 
theorem in § 4). 

7. CRITERIONS FOR MEASURE EX'IENSION. Let (X, C)3, P) be a 
probability space and e an algebra of subsets of X. Our purpose 
is now to discuss some methods to ex~nd P to e, in other words, 
to extend P to sIl = C)3 V e . 

In relation with the first and second method cf. [B 1], spe­
cially Ths. 3A and 2B. 

We shall agree in this section that any a-algebra 93 on which 
a measure is defined separates po-iuts, i.e., for any two points x, y, 
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there exists B € 93 such that x € B ::; y. This is not an essential res­
triction since except for atoms, the condition is satisfied by the 
completion of the measure and in a non--one-point atom several 
solutions are at hand. For example, if the atom has only a denu­
merable set of points we can add a non denumerable set of them 
problem and is of immediate application in the extreme cases. 

7.1. CONSISTENCY CRITERION. F' ( 93) will design a family of 
93 -measurable functions such that the least IT-algebra on which 
the functions of F (CIB) are measurable ir (;3 itself. n (-13) will 
design a product of real lines: n 1 Rj ; f € F (93)}. Let q, (95) be 
the application related to F (C)3) and n ( ) defined by 
q, ex) = ( .. ·,f(x), ... ) c n (C)3), feF (CI3). Then (n (Cf8), c5, 
Pq,-l (93) is a probability space, (:::5 is the family of Borel stts). 

THEOREM 4. A necessa1'y and sufficient condition for the exis­
tence of a probability p. on _dl = 93 V e with P / '13 = P is the exis­
tence of a probability p, on (n (93) X n ((?) , c5) such that: 
1) q,(g{') (X) = (q,( 93), q, ( e» (X) is of exterior p,-measure one; 
2) its projection on n (03) coincides with P q,-1(03). 

PROOF. The sufficiency follows from a), § 3. The necessity is 
trivial. 

A necessary and sufficient condition for the existence of a 
probability p, on n ( sIl) is the existence of consistent finite dis­
tributions on nn Rf i X nm RUi J gi € rg: (e), fp € '7 (Cfc3), (KoT-

i~l ;=~I 

mogoroff theorem). The projection of p, on n ( 93) will coincide 
with P q,-1 (03) whenever the p,-probability of any set A defined 

on nn Rf , whatever be fi and n, is equal to P( (!I, . . . ,f,,) -l(A». 
1=1 z 

COROLLARY. a) Let (X, 03, P) be a probability space and A. a 
non-measuntble subes tof X. 1'he1'e exists (infinitely many indeed) 

a probability P which extends P to C)3 V { f1 }, (Los-Marcewski). 
b) Let t Aa} be a family of disjoint subsets of X such that 

the complement of a denumerable family { An l 11. 00 l' is contained 

in a set JJf of interior meaSU1'e zero. Then, there exist a measure 

.p. on C)3 V { A x ~ stlch thet P. extendeds P, (Bierlein). 
PROOF. Set V the sample space (11 (C)3), c5, p q,-1 (C)3) and 

W = V X R, where R denotes the real line. IJet us define p, and 
apply next the preceding theorem. Call K(K') the measurable hull 
orA (X-A).IfB€CX~,andBs;X-K,pntp,(BXX {O})= 
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= PCB), if B ~X -K',p, (B X {1}) = PCB) and if B ~ K 1\ Ir' 
define p, (BX {I }-aP(B), p,( X{O}) = (l-a)P(B), where 
a will be fixed at once. Condition 2) of theorem 4 is then fulfilled. 
Set now Cf>(sfl.) = (Cf>( 03), st A), i.e., Cf>(sfl.) (x) - Cf> (03) (x)X 

{O} for x € A, and Cf> (9'l)( st) = Cf> (03) (x) X {l} for x € .fl. 

Choosing now a verifying: 
P(K) = P*(A) :>: p, (I[ X f I}) = a >p .. (A)=P(X-K'), (>Y.'*) 
it follows condition 1) of Th. 4. Observe that (**) is a neceassary 
condition. The same procedure applies for corollary b). We shall 

restrict curselves to the definition of p,. One way of doing it is 
so. Set Cf> (siO (x) = Cf>( )(x) X {n} if xut n, n=O,l, ... , 

with Ao = 111. Let Kn be the measurable hull of r1n. If B € 03 
n-l 

andB~I[n- U Kj,n..:=2,3, ... ,definep,(Bx{n}) =P(B), 
1 

if B c Kit p, (B X {l }) = P(B). 
7.2. CONDITIONAL EXPECTATION METHOD. Suppose that 03 c 9'l 

and (X, sd, P) is a probability space. Then, the conditional expec~ 
tation operator E ( .1 03) has the following properties: 1) 

E ( . /03) : L~ (Sit) ~ Loo (C)3)is a contraction operator anc1pre-

serves Ll-norms; 2) ~ Aj = Ao implies 
j~l 

E (~Aj 103) =:E. E (Ad 03) =E (AoIC)3); 3) E (0103) = 

= 0 .E (1103) = 1, a.e .. 

Trying to use the conditional expectation operator to extend 

a measure, one gets: 
THEOREM 1. Let C:l be n fnmily of 93,measumbZe functions 

such that: 
a) f € Cf -+ 1,> f> 0 a.e., b) there exits an application 9 

from 9'l?- CJ() into 'j:such that 9 (n) = 1, 9 (cp) = 0 nnd 
on 

:p(~Aj)=~(Aj» c) A€C)3~ cp (A)=x(A), a.c .. If then 
1 1 

is n probability P on 03, then P (A) = f cp (A) dP defines a pro-

bability P on sll with P /03 = P. 
The proof is trivial. From this theorem easily follows the co­

rollary of section 7 .1, ( cf. [Bl]). 

7.3. MARTINGALE CRITERION. Assume that 03 n ~ c73 n+1; 

n = 1, 2, ... , is a denumerable set of non.;decreasing a -sub algebras 
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of P(X) P n, Qn, are probabilities measures defined on 93". Suppose 

the P's admit a common extension P to sIl = V Cj3 n. The problem 
,,~l 

is to establish conditions on the Q's so that they also admit a common 
extension to sIl. It holds: 

THEOREM 6. Under the hypothesis mantioned above, if 

Qn+Ii 93n = Qn and Qn < < P n, n = 1,2, 3, ... , then, the follo. 
wing propositions are equivalent. 

1) there exist Q < < P defined on sIl such that Q I Cj3 .. = Q" 
[01' every n. 

2) {fn = dQn/dP,,} is ma1·tingale closed on the 6ght with 
o closure function in £1 (X, sIl, P). 

3) {I'll I is fundamental in £1. 
4) { In J is uniformly integraZe. 

In these cases, fn = dQ,,/dPn converges (L.S. and in L1 (X,g{, P) 

to dQ/dP. 
PROOF. If { I'll} is £1 -fundamental then it is uniformly inte, 

grable (cf. [Le], p. 163). Observe now that the conditional expec­
tation E(fn+Ii 93,,) is a.e. equal to fn, and therefore that 1 { .. I is a 
,nartingale sequence. Using c), § 3, f n -+ f and f closes the martin-

gale on the right and belongs to L1 (P). Ifj in lis a martingale 
closed on the right by an L1 (P) -function, then again by c), § 3, 

1 

{'II -+ f. Hence, 2),3) and 4) are equivalent. Defining Q(A) =.f f dP, 
.ii 

they, trivially, imply 1) . Assume that 1) holds. Then, from 

fn is closed on the right by dQ/dP€£1 (P), Q.E.D. 
Similar results can be obtained if one asks instead of 

Qn+dC)3n = Qn that Qn+1 eB) > Qn eB) for every B €Cf3. In this 
case, dQn = f n is a submartingale sequence. 
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