REMARKS ON COMPACT GROUPS WITH
ORDERED DUALS

by T. W. GAMELIN

INTRODUCTION

Here we will study some of the results and problems which were
~discusseed by Helson in [3]. Our aims are two-fold. ‘

In the first part we extract from Helson’s work a proof that
H<= (do) is a weak-star maximal subalgebra of L® (d ). This re-
sult belongs to a cirele of theorems which are of a simpler nature than
‘the classification of invariant subspaces in terms of cocycles. The
theorems in the chain leading to the maximality theorem. can be ob-

, - tained, in turn, as simple consequences of the maximality theorem.

It would be useful to construet a proof of the maximality theorem
-analogous to the Hoffman-Singer proof for the dise, and obtain these
other theorems as corollaries.

None of the ideas in this first part are new — they are all due
‘to Helson or to Helson and Lowdenslager in conjunction. We are
interested here in the organization of these results, and in pr0v1d1ng
‘the setting for the diseussion of cocycles.

In the second part we discuss the classification of invariant
subspaces via cocycles. Here the main result is a eanonical expres-
sion for a cocycle, modulo coboundaries, which is contained in theo-
rem 6. This is used to settle affirmatively a question of Helson as to
whether there exist real cocycles which are not coboundaries. We
-also identify the cocycle corresponding to the invariant subspace ge-
nerated by an arbitrary element feL* (do).

2. Weak-star mazximality

Let A be a uniform algebra on X, and let ¢ be a non-zero eom-
plex-valued homomorphlsm of A.4, will be the kernel of ¢. A
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Szego measure for ¢ is a representing measure dm on X for ¢ suche
that Szegd’s theorem is valid: For any function 0 < weL! (dm),

inffll——ﬂzwdm:exp{flogwdm}.
340

dm is a Szegd measure for ¢ if and only if dm has the following pro--
perty: If du is a representing measure for ¢ which is absolutely
continuous with respect to dm, then du = dm.

For 0 < p < «, let H?(dm) be the closure of 4 in LP(dm).
H=(dm) is the weak-star closure of 4 in L*(dm).H*(dm) can
be considered as an algebra of functions on the spectrum of L= (dm) .
dm is a Szegd measure if and only if H=(dm) is a logmodular al-
gebra. In particular, if dm is a Szegé measure, the H? —theory de-
veloped in [7] applies.

Also, everey Szegé measure is a Jensen measure, 1. e.,

) log | ffdm| < flog |f|dm

for all feA. A standard approximation argument shows that (1)
continues to hold for functions fe H*(dm).

Theorem 1: Suppose that dm is a Szegé measure for ¢. Themr
the following conditions are equivalent:

(i) H=*(dm) is a maximal weak-star closed subalgebra of
L= (dm). _

. (ii) Whenever heL®(dm) and f==0 are such that h"feH"
(dm) for all integers n = 0, then h e H* (dm).

Proof: Actually, the only fact we will need about Szeg6é measures.
is that if geL'(dm) is such that fghdm =0 for all heA, then
g e L'adm) . ,

Suppose that H= (dm) satisfies (i), and let h and f be as in
(ii). Let B be the subalgebra of L (dm) generated by H> (dm) and
h. Since fkfgdm = fEkfdm fgdm =0 for all keB and ged,,
B is not weak-star dense in L= (dm). Hence B =H<=(dm), and
heH=>(dm). ‘

Now suppose that the condition (ii) is valid. Let B be a subal-
gebra of L®(dm) which contains H*®(dm) but is not weak-star
dense in L= (dm). Choose 054 f e L*(dm) such that f fkdm =0 for
‘all keB. If heB and n>0 is an integer, then ffA"kdm =0,
keB. In particular, h"feH*(dm) for all n=0. Applying (ii),
heH*(dm) and B=H=(dm). QE.D. '
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+:A closed subspace M of L2(dm) is invariant if AMESM. If E
is a measurable subset of X, and Xz is the characteristic function
of E, then XzL2 (dm) is evidently an invariant subspace of L2(dm).

Theorem 2: Suppose H=(dm) is a maximal weak-star closed
subalgebra of L<(dm). Suppose M is an invariant subspace of
L? (dm) which is not of the form XzL2 (dm). If heL*(dm) and
hM < M, then h e H* (dm).

Proof: The family B of functions & e L= (dm) such that hM S M
forms a weak-star closed subalgebra of L= (dm) containing H* (dm).
It B=L=(dm), evidently M is of the form X L2 (dm). In the
other case, B=H>(dm), and I eH* (dm). Q.E. D.

3. Almost periodic functions

Let T be a subgroup of R; the real numbers with the discrete
topology, such that I' is dense in the real numbers with the ordi-
nary topology. Let G be the compact character group of I. Let
X\ be the character of G determined by AeT, and let 4 be the

closed subalgebra of C (G) generated by the set of characters,
(G :AeT,A>0).

The spectrum 3(A4) of A4 is topologically the product G X [0,17,
with the slice G X {0 identified to a point. For 0 < r <1, the
homomorphism corresponding to (z, r) is given by $ra(%y) =
= rA ¥ (). The homomorphism corresponding to r = 0 is the Haar
homomorphism ¢,(f) = ffdo.

Each real number s determines a character e, ¢ @ defined by
es (L) = e =1, (e5 ). The correspondence s — ¢, embeds the real
line R isomorphically as a dense subgroup L of G.

Considered as functions on the line L, each of the functions

feA can be extanded to be analytic and bounded in the upper half-
plane, and

<o

f(s + it) _—[ f(s+u) 53— t2+ 5= (rs [) () = re, (f)>

tdu
x (12 4 u?)

where d u, = and t =—1logr.

Trough each point x e @ passes the coset z + L, and the fune-
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tions f ¢ A are analytic on the half-plane “above” x + L. The repre-
senting measure for ¢, is supported on the line z ++ L, and

tm

If f, is the restriction of f to the slice corresponding to r, then
(2) : fr=pm*Tf.

Since A 4+ A is dense in C(@), every ¢e3(A) has a unique
representing measure on G. So each of the measures p,, and o is in
particular a Szegé measure and a Jensen measure. From (2) and
Jensen’s inequality, we obtain

(3) log | f+| < pr * log |f|

Multiplying T' by a constant, if necéssary, we can and will
assume that 27 ¢T. Set K ={yeG:y(2r) =1}. K is a compact
subgroup of G. Since e;(27) = €™, ¢, belongs to K if and only
if s is an integer.

Consider the map T from the locally compact abelian group
K X R to G, defined by T(y,s) =y -+ ¢. T is a homomorphism
from K X R onto @, and the kernel of T is the discrete subgroup
{(é_,,, n) :n=0,1,2 ...}. T is a covering map with fundamen-
tal domain D = { (¥,s) :yeK, 0<<s<1}. K is obtained from
D by identifying (y,1) with (y 4 e,0), ye K. If dr is the Haar
measure for K, then the Haar measure d o of G, regarded as a mea-
sure on D, is the product measure d o =d = X ds.

ds
1452
We say that a measurable function f on K X R is automorphic if
fly+e , s—1) = f(y,8)a.e.dv. f is then determined almost
everywhere by its values on D. Conversely, every measurable fune-
tion on D determines an automorphic measurable function on
K X R. \

If feL?(dv), then its restriction to D belongs to L°(do).
Conversely, if feL?(d o), then its automorphic extension is in
L?(dv). The norms of L?(de¢) and L?(dv) are equivalent on the
subspace of automorphic functions, so we can regard L’(d o) as a
subspace of Lf(dv).

On K X R we define the finite measure dv=d = X
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In [4], p. 186, it is shown that if g nom the charac-
teristic - function of. a set of positive Haar measure on @,
then p, * g > 0a.e.d 0. This is equivalent to the following, which
is fundamental in our development.

Basic lemma: Let f be a measurable automorphic function on
K X R such that for almost all y ¢ K, f(y, .) is constant a.e.ds.
Then f is constant a.e.d r X ds.

4. HPF - spaces .

We denote by H”(x + L) the HP -spaces associated with the
representing measure ;.. HP(x -+ L) does not depend on
re (0,1). It depends only on the line x 4 L. Each of the functions
wm H® (x -+ L) has analytic extensions to the upper half-plane
above x -+ L satisfying certain growth conditions H”(x + L) coin-
cides with the transplant of the usual HP-spaces of the unit dise
under the conformal map of the disec onto the upper half-plane.
In particular, H= (x 4+ L) consists of hall bounded analytic fune-
tions in the upper half-plane. According to a theorem of Hoffman
and Singer, H*(x + L) is a maximal weak-star closed subalgebra
of L*(d prs).

By “almost all lines” we mean lines of the form x4 L for
o- almost all X ¢ G, or equivalently, lines which pass through K
in a subset of 7 - measure 1.

If faeA converges to f in L(d o), then f, converges to [ in
L?(x + L) for almost all limes, and feH?(x + L) for almost all
lines. In particular, if feH?(d ¢) we obtain, in view of Jensen’s
inequality (1) for the measure u,,, the following extension of (3):

log [pr #f | < p *log|f|ace., feH (do).

This is Malhavm s inequality.

The converse of the above statement is true, as proved. by
Helson in [3]. We will give another more direct proof, which is
also due to Helson. .

Theorem 3: Let 0<p<< oo, and let feLP(do). Then
feH?(dg) if and only if fe H?(x + L) for almost all lines.

Proof: We have already discussed the forward implication.

Helson’s proof of the reverse implication operates in L?(d o).
Let feL*(d o) such that f e H® (x -+ L) for almost all lines. Let g
be the orthogonal projection of f on H%(d o), g belongs to H?(x + L)
for almost all lines. Since f-g 1 H2(d o), it follows that f-g e H? (d o),
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and f-g also belongs to H?( + L) for almost all lines. Hence f-g

is constant a.e., on almost all lines. By the basie lemma, f -g iis- a

constant. Hence f belongs to H? (d o). .

‘ Now let feLP (do) be such that-fe H?(x + L) for almost all li-
nes. Fix ¢ @ such that. lf(:c) | < 1/2 If |t I < 1/2 log |fx) -+

+ 1| < 0.

Also flog [f(x)—l—t]dt>j'10g |slds—~'—2 andsof|j",ac)|<1/2

F oo log £ (2) +t|dtde (o) > —2. o

Interchanging-orders of integration, we see that for almost all
t, log |f () 4 t|is o -integrable over the set where |f (x) | < 1/2.
It is always o - integrable ower the set where |f () | = 1/2. Hence
there always exists a real number ¢ such that log | f 4t | is o - inte:
grable. Replacing f by f -+ t, we can assumé that 10g |f| is mte-
grable.

Let g be the outer function in H* (do) whose modulus is
lgl=min (1, |f|). gf e L (d o), and gf belongs to H* (z 4 L)’
for almost all lines. By the L2-theorem, gf e H* (d o). Since g is
the pointwise limit of & sequence of invertible functions g, e H* (d o)
such that | g, | = |f |, f =1im fg/g. belongs to H? (do). Q.E.D.

Theorem 4: H* (do) is a maxunal weak-star closed subalge-
bra of L® (da)."

Proof: We will verify condition (ii) of theorem 1.

Suppose he L* (do) and 0z=f e H* (d 0) satisfy hfeHl (d o)
for all positive integers m. Then A" feH* (x + L) for almost all
lines. Since H* (xz + L) is weak-star maximal, he H* (x + L) for
almost all lines. Hence he H* (d o). Q. E. D.

5. Invariant subspaces

Invariant subspaces are of essentially three kinds. We say that
M is doubly imvarient if IAM S M for all AeT. In this case,
M =%= L% (d o) for some measurable set E. Otherwise, we will say
that M is singly inveriant. Let F be a measurable function which
is of modulus 1 a. e. Then F H? and F H,* are singly invariant
subspaces. F' H? are F H?, are regarded as different versions of
the same invariant subspaces. We shall call subspaces of this type
discontinuous. Singly invariant subspaces which are mot disconti-
nuous we call continuous.
- One way to construct singly invariant subspaces is as follows.
We start with a function F on G such that, on every line, F is mea-
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surableand | F | =1 a.e. Let My be the set of-all feL? (do) such
that on each line x + L, FfeH?® (x+ L). My is then an invariant
- -subspace of L2 (d o). If F is o - measurable, then Mp — FH? (d o‘),
in view of theorem 3.

It will be convenient to fix determmatmns of all functions of
modulus 1 a.e. so that they are of modulus 1 everywhere. Measura-
‘bility will always be in the sense of Borel.

Given a function of F' of modulus 1, we assign to each x e G the
-funetion determined by F on the line through x, but normalized to
:assume the value 1 at x. This function is B (x, ) = F(2)F (x + et).
B satisfies the following conditions:

(i) |B(z,t) |=1,zeG,teR

(ii) B (2,0) =1, 2@

(iii) B (x 4+ es,t) =B (x,8) B (x,s + 1), xe@, s,teR.

A function B satisfying (i), (ii) and (iii) wil becalled a cocycle.

Every cocycle determines a function of modulus 1 on each line,
providing we agree to identify two functions of modulus 1 when
they are constant multiples of each other. If B (z,s) is measurable
-as a funection of s for each fixed x, we say that B is linearly measu-
rable. Each linearly measurable cocycle B comes from a funection F
of modulus 1 which is measurable on each line. The invariant subs-
‘pace it determines will be denoted by Mp.

‘We say that a cocycle B is measurable if the map (x,?) —
B(xz,t) of G X R into the circle is measurable. In particular, a
‘measurable coeycle is lihearly measurable.

Lemma: If B is a measurable cocyele, the functions B (., 1)
‘move continuously with ¢ in L? (d o). ,

Proof: The distance between B(-,t) and B (-,%,) in L? (d )
is given, with the aid of Fubni’s theorem, by.

1
I{Of |B (y+es7t)_B (y+es;to) ’2d8d'r(y).

Using (i) and (iii) this expression becorﬁes
1
I{O/IB(%S-{-#) —B (y,s+ 1) [*dsdr (y)

For fixed y ¢ K, the inner integral tends to zero as t — t,. By the
‘bounded pointwise convergence theorem, the double integral tends
‘to zero. Q.E.D.

This shows that measurable cocycles are cocycles in the sense
-of Helson. Hence every invariant subspace of L* (d ¢) which is not
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- doubly-invariant is Mz for some uniquely determined (up to sets of’
measure zero) measurable cocycle B. S o
The product of two cocyecles is a cocycle that is measurable if
the factors are measurable, and linearly measurable if the factors:
are linearly measurable.
A cocycle is analytic if B(zx,-) e H® (x -+ L) for almost all
lines. ‘ ‘
The following lemma is a slight generalization of one of Hel--
son’s theorems in the sense that it allows one of the cocycles to not
be measurable.
Lemma: Let A be a linearly measurable cocycle and B a measu--
rable cocycle: Then M, 2 Mj if and only if AB is analytic.
Proof: Analyticity of AB implies inmediately that M, 2 Ms.
Suppose that M4 2 My M 45 contains all produets of bounded
functions in M, with bounded functions in M3 According to [3],.
products of bounded functions in Mz with bounded functions in M3
are dense in H,? (d o). Hence M45 2 H,? (d o). It suffices then to
prove that if (' is a linearly measurable cocycle such that
M2 H? (do), then C is analytie.
For each 0 < AeT, Xy €M, so C (z,1) eiM extends analytieally
to the upper half - plane, providing x does not lie in a set E(A)
of measure zero. If xzé E (A), then

4) € (@, 1) (1—it)=t et dt=0

for almost all values of u > A. Now let 0 < A, e T be a sequence:
such that A, — 0, and let E = U E(\,). For each z¢E, (4) holds
for almost all 4 > 0. Hence except for 2 in a set of measure Zero,
C(x,.)eH? (x+ L). Q.E.D.

Now let f be a function in L2 (d o) such that w,*log|f]|>
— wa.-e.1.e., such that log |f|eL*(x + L) for almost all lines.
On almost all lines, we can write f =F g, where |F|=1 and ¢
is an outer funection in H? (x -+ L). F is uniquely determined,
up to a constant multiple of modulus 1 on each line. So F' uniquely
determines a cocyele, also denoted by F, which we call the tnner:
part of f.F is a linearly measurable cocyecle.

M; will denote the invariant subspace generated by f, i.e., the
closure of f A in L? (do).

Theorem 5: Let feL? (do) be such that p, % log |f|>—
— o a@.e. Then the inner part F of f is ¢ measurable cocycle, and.
Mf = MF.
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Proof: Suppose M; = My for the measurable cocycle B. Since
F g is analytic on each line for all ge M;, My 2 Mp. By the lemma,.
F B is analytie. Since feMp. Bf is analytic on almost all lines, so

BF is analytic. Hence F B is constant on almost all lines, so-
F =B. Q.E.D.

6. Structure of cocycles

The measurable cocycles with operation multiplication form a
group, which we will denote by €. The cocyecles which correspond
to discontinuous invariant subspaces are those cocycles of the form.

(5) B(x,t) =F (z) F (z + ¢:)

for a measurable unit function F' on G. Such cocycles we call co--
boundarias. The set 93 of coboundaries forms a subgroup of C.
If two measurable cocycles belong to the same coset of C/13 we say
the cocycles are cohomologous. Cohomologous cocyeles correspond.
to invariant subspaces which are equivalent, in the sense that one:
can be obtained from the other by multiplication by a unit funection.

If B is a coeycle, then in particular B satisfies the following-
conditions : ‘

V1B (4,1) | =1, yek, teR
(ii)’ B (y,0) =1, yeK
) B(y—}—el,t):B(y,l) B(y’t+1)7y5K; teR.

A function on K X R satisfying (i)’, (ii)’ and (iii)’ will be called
@ cocycle on K. A cocycle B on K determines on each line a fune-
tion of modulus 1 which is unique up to a constant multiple. Hen--
ce B determines a cocyele on @, which is realized explicitly by defi-
ning B(y + es,t) = B(y,s) B(y,s+1t),yeK,s, teR. Hence we can.
regard cocycles as being eitlier cocycles on K or on G. B is measu--
rable, es a cocyele on @, if and only if B is measurable as a cocyele:
on K, ,
If B is a coboundary, then from (5) we obtain

(6) B(y, t) :-F(y) F(y+ et)a yelf,teR,

for some measurable unit function # on . Conversely, if there-
is a measurable unit function F on G which satisfies (6), B is the-
coboundary of F.
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It will be convenient in the future mot. to distinguish bet-
“ween cocycles on & and. cocycles on K. - :

Let U be the family of measurable unit functions on K 1dent1-
fying as usual two functions which. agree almost.everywhere. Endo-
wed with the operation multiplication, <% becomes a group. Let
be the subgroup of U of functions of the form h(y) F (y)
f(y 4+ e1) for some fe U .

Every he Cl(f determmes a cbeycle B;, via the formula, _

| ! gﬂolh(y+e,), lchO t<1yeK
Bh(y;t): 1_1
Hi=[i]—1 h(y+e),t<0,yeK.0st< |,yeK.

‘Here [t].is the largest integer which does not exced ¢ . By is-a mea-
surable coeycle which is constant on' each interval # <t < n -1,
'n an integer. : . : .

The correspondence 7 — By, is a monomor*phlsm of (28 into @::
If Bj is the coboundary of F, then F(y,t) .is also constant on each
interval n <t <nm -+ 1. In particular, if f(y) =F(y,0), then
A(y) =Bu(y,1) =f(y) f(y + e1). Hence he?R. Conversely, if
-he P, By is the coboundary of the function F defined by F (y +
+e) =f(y), yeK, 0<s <1

Theorem 6: The monomorphism h — B, induces an 1somorphism
of C/B and U/P.

Proof: It suffices to show that every measurable cocycle A is
-cohomologous to a cocycle of the form Bj;. For this we define
C(y,t) =A(y, [t]) A(y,t), yeK, teR. One verifies immediately
that C satisfies (i)’, (i1)’ and (iii)’, so C is measurable cocycle. Also
C(y,1) =1, yeK, so C(y +e1, t) = C (y,t +1). Hence the func-
‘tion F(y +e:) =C(y,t), yeK, teR, is well defined and measura-
ble on G. Since F(y) =1, y e K, we see from (6) that C is the co-
‘boundary of F. ’ '

Hence B(y,t) = A(y,[t]), ye K, t R, defines a ccoyele which
is cohomologous to A. B is measurable, and B is constant on each
interval of the form n <t <n 4 1. If h(y) =B(y,1), then he U
.and B = B;. Q.E.D.

7. Real cocycles

If we restrict ourselves to real cocyeles, we can carry this
isomorphism one step further. First we note that if h is a real
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.«coboundary, then & is the éoboundarv of a real unit funection p on

K. Indeed, if q is a unit function such that k(y) = q(v) q(y + el),
we can define, ,

Then h(y) = p(y) p(y + ).

~ Let U, denote the real functions in U, and %, the real func-
tions in P The preceeding remark shows that the cosets of U/
yield non-equivalent invariant subspaces of L? (do).

Let now N be the family of measurable subsets of K, modulo
null sets. Y is a group with operatlon Eo A E, = (E’o n E:° U
{Ey U Ey°). Sets of the form D A (D + e1), where D e M , will be
called caboundaries. They form a subgroup of Whlch we will
denote by I . ' ’

For each E e M we define. the functlon hge U by
} J —1 , YeE

l 1,y E

Theorem 7: The correspondence E — hy is an isomorphism of
‘W and ‘¥,. It induces an isomorphism of W/ and U,/ P

Proof: Sinee hp hy is —1 on D A E, the correspondence is a
;group homomorphism. Since he U, is uniquely determined by the
:set where it is — 1, £ — hy is an isomorphism. One verifies imme-
«diately that the image of N isP,. Q.E.D.

Theorem 8: Let K be a compact infinite abelian group with
Haar Measure dp. Let ee K generate a subgroup J which is
-dense in K. Then there is no measurable set FC K such that
K=FN\ [F —e).

Proof: Liet H be the quotient of K X R and the discrete sub-
.group Ho= { (—2ne,2n) :n=0,=1,... }. Topologically, H
is obtained from K X [0,2] by identifying (y,2) with (y -+ 2e, 0).
"The line s— (0,s)/H, is dense in H. Hence the character group
«0f H can be realized as a subgroup of R, and H is a group of the
type that we have been considering. In particular, we can apply
the basic lemma to H.

Now suppose K =F A (F —e), where F is measurable. In
other words, K=F U (F —e¢), and F n (F—e) is empty. In
-particular we have 7(F) = r(F —e) = 1/2.

] he(y) =
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Since F—2¢ = F, every line x + L either always meets K
in a point of F or never meets K in a point of F. The set
{ (y,8) :yeF, 0<s <2} is then measurable with measure 1/2,
and it contains every line that it intersects. This contradicts the:
basic lemma. Q.E.D.

Corollary: There exist real measurable cocycles whose inva--
riant subspaces are continous. One such cocyele is given by
B(z,t) = (—1)[*+*], where x =y + ¢; with and 0 <{s < 1.

' If E is a coboundary, then E A K = E¢ is cohomologous with:
K. Hence if E is any measurable subset of K, either E or E° is.
not a coboundary. - :

In order that E be cohomologous with K, it is necessary and
sufficient that E°¢ be a coboundary. To find sets E which are nei--
ther coboundaries nor cohomologous to K, we must find E such that
neither £ nor E° is a ecoboundary. To construct such sets, it suffices:
to find a measurable set £ and ¢ y ¢ K such that E A (y + E) = K.
This can always be accomplished. Clearly E and y + E are then:
simultaneously coboundaries or not coboundaries. Since E‘=(y+E),
at least one of them 1is not a coboundary. Hence E is a set of the:
desired type. ‘ ' '

It appears that U, P, is quite large.
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