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INTRODUCTION 

Here we will study some of the results and problems which were 
-discusseed by Helsonin [3]. Our aims are two-fold. 

In the first part we extract from Helson's work a proof that 
.H'" (dO") is a weak-star maximal subalgebra of L'" (du). This re­
sult belongs to a circle of theorems which are of a simpler nature than 

-the classification of invariant subspaces in terms of cocycles. The 
theorems in the chain leading to the maximality theorem can be ob-

. -tained, in turn, as simple consequences of the maximality theorem. 
It would be useful to construct a proof of the maximality theorem 
-analogous to the Hoffman-Singer proof for the disc, and obtain these 
other theorems as corollaries. 

None of the ideas in this first part are new - they are all due 
-to Helson or to Helson and Lowdenslager in conjunction. Weare 
interested here in the organization of these results, and in providing 
-the setting for the discussion of cocycles. 

In the second part we discuss the classification of invariant 
subspaces via cocycles. Here the main result is a canonical expres­
sion for a cocycle, modulo coboundaries, which is contained in theo­
rem 6. This is used to settle affirmatively a question of Helson as to 
whether there exist real cocycles which are not cobo1,lndaries. We 

.also identify the cocycle corresponding to the invariant subspace ge­
nerated by an arbitrary element f I:: La (d u) . 

:2. Weak~star maximality 

Let A be a uniform algebra on X, and let cp be a non-zero com­
plex-valued homomorphism of A.Ao will be the kernel of cpo A 
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$zego measure for cp is' arepresenting measure dm on X for cp such. 
that Szego's theorem is valid: For any function 0 ~ w "Ll (dm), 

in! f \1 - ! \2 W d m = exp {f log w dm } • 
'3..40 

dm is a Szego measure for cp if and only if dm has the following pro­
perty: If dp, is a representing measure for cp which is absolutely 
continuous with respect todm, then dp, = dm. 

For 0 < p < 00, let HP (dm) be the closure of A in Lp ( dm) . 
H 00 (dm) is the weak-star closure of A in L 00 (dm) . H 00 (dm) can 
be considered as an algebra of functions on the spectrum of L 00 (dm) .. 
dm is a Szego measure if and only if Hoo (dm) is a logmodular al­
gebra. In particular, if dm is a Szego measure, the HP - theory de­
veloped in [7] applies. 

Also, everey Szego measure is a Jensen measure, i. e., 

(1) log \ f fdm \ ~ f log I 1 I dm 

for all f" A. A standard approximation argument shows that (1) 
continues to hold for functions I" Hl (dm) . 

Theorem 1: Suppose that dm is a Szego measure for cpo Then 
the· following conditions. are equivalent: 

(i) Hoo (dm) is a maximal weakcstar closed subalgebra of 
Loo (dm). 

(ii) Whenever h"LOO(dm) and 1$0 are such that hnf"Hl' 
(dm) for all integers n?O, then h"Hoo(dm). 

Proof: Actually, the only fact we will need about Szego measures, 
is that if g" L1 (dm) is such that f ghdm = 0 for all h" A, then 
g"VAdm) . 

Suppose that H 00 (dm) satisfies (i), and let hand 1 be as in 

(ii). Let B be the subalgebra of L 00 (dm) generated by H 00 (dm) and 
h. Since f kfgdm ::= f kldm f gdm = 0 for all k" Band g" Ao>­
B is not weak-star dense in L 00 (dm). Hence B = H 00 (dm), and 
h "Hoo (dm). 

Now suppose that the condition (ii) is valid. Let B be a sub al­
gebra of Loo (dm) which contains Hoo (dm) but is not weak-star 
dense in L 00 ( dm). Choose 0 ¢ f " L1 (dm) such that f fkdm = 0 for' 
~an k" B. If h" Band n? 0 is an integer, then flhnkdm = 0, 
k"B. In particular, hnf"Hl(dm) for all n?O. Applying (ii),. 
hEHOO(dm) and B=H;"(dm). Q.E.D. 
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. A closed subspace JJ1 of L2 (dm) is invariant if AM ~JJ.f. If E 
is a measurable subset of X, and 'I.E is the characteristic function 
of E, then XEL2 (dm) is evidently an invariant subspace of V(dm). 

Theorem 2: Suppose H co (dm) is a maximal weak-star closed 
subalgebra of Leo ( dm). Suppose 111 is an invariant subspace of 
L2 (dm) which is not of the formXE£2 (dm). If h £ Leo (dm) and 
hM ~ M, then h£H"'(dm). 

Proof: The family B of functions h £ L 00 (dm) such that hM eM 
forms a weak-star closed subalgebra of L 00 (dm) containing H 00 (dm). 
If B = L 00 (dm), evidently M is of the form XE £2 (dm). In the 
other case, B =Hoo(dm), and h£H'" (dm). Q.E. D. 

3. Almost periodic functions 

Let r be a subgroup of R d, the real numbers with the discrete 
topology, such that r is dense in the real numbers with the ordi­
nary topology. Let G be the compact character group of r. Let 
X A. be the character' of G determined by ,\ £ r, and let A be the 
closed sub algebra of C (G) generated by the set of characters: 
{XI.. :'\£ r, ,\ ;;? 0 } . 

The spectrum ~(A) of A is topologically the product G X [0,1]'" 
with the slice G X {O I identified to a point. For 0 < r ~ 1, the' 
homomorphism corresponding to (x, r) is given by CPrilJ(X,.) = 
= rA XI.. (x). The homomorphism corresponding to r = 0 is the Haar 
homomorphism cpo (f) = f f d CT. 

Each real number s determines a character e8 £ G defined by 
es (,\) = ei ),8 = Xi.. (e,q ). The correspondence s ~ e8 embeds the real 
line R isomorphic ally as a dense subgroup L of G. 

Considered as functions on the line L, each of the functions 
f £ A can be extanded to be analytic and bounded in the upper half­
plane, and 

tdu 
where d /Lr = 7r (t2 + u2) and t = - log r. 

Trough each point x £ G passes the coset x + L, and the func-
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tions f f A. are analytic on the half-plane "above" x + L. The repre­
senting measure for cf>T>' is supported on the line x + L, and 

If f, is the restriction of f to the slice corresponding to r, then 

(2) fr = p'r * f· 
Since A. + A. is dense in C ( G), every cf> f ~ (A.) has a unique 

representing measure on G. So each of the measures p'rx and u is in 
particular a Szego measure and a Jensen measure. From (2) and 
Jensen's inequality, we obtain 

(3) log Ifrl ~P'r * log If!, ffA.. 

Multiplying r by a constant, if necessary, we can and will 
assume that 271"fr. Set K= {YfG:'y(271") =1}. K is a compact 
subgroup of G. Since es (271") = e21l:iS, es belongs to K if and only 
if s is an integer. 

Consider the map T from the locally compact abelian group 
K X R to G, defined by T(y, s) = y +es• T is a .homomorphism 
from K X R onto G, and the kernel of T is the discrete subgroup 
t (Lm n) : n = 0, 1, 2, ... } . T is a covering map with fundamenc 

taldomainD= { (y,s) :YfK, O~s<l}. K is obtained from 
D by identifying (y,l) withey + el'O), Y f K. If d T is the Haar 
measure for K, then the Haar measure du of G, regarded as a mea­
sure on D, is the product measure d u=d T X ds. 

ds 
On K X R we define the finite measure d v = d T X--..,---

1 + S2 

We say that a measurable function f on K X R is automorphic if 
f(y+e 1 , s-l) = f(y,s)a.e.dv. f is then determined almost 
everywhere by its values on D. Conversely, every measurable func­
tion on D determines an automorphic measurable function on 
KXR. 

If f f £P ( d v), then its restriction to D belongs to LP ( d u) . 

Conversely, if f f LP (d u), then its automorphic extension is in 
LP(dv). The norms of LP(du) and LP(dv) are equivalent on the 
subspace of automorphic functions, so we can regard LP ( d u) as a 
:subspace of LP (d v) . 
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In [4], p. 186, it is shown that if 9 nom the charac­
teristic function of, a set of positive Haar' measure on G, 
then JLr * 9 > ° a.e.d(]". This is equivalent to the following, which 
is fundamental in our development. 

Basic lemma: Let [ be a measurable automorphic function on 
K X R such that for almost all y £ K, f( y, .) is constant a. e. ds. 
Then [ is constant a. e. d T X ds. 

4. HP - spaces, 

We denote by HP(x + L) the HP - spaces associated with the 
representing measure JLr!J)' HP (x + L) does not depend on 
r £ (0,1). It depends only on the line x + L. Each of the functions 
in HP (x + L) has analytic extensions to the upper half-plane 
above x + L satisfying certain growth conditions HP (x + L) coin­
cides with the transplant of the usual HP-spaces of the unit disc 
under the conformal map of the disc onto the upper half-plane. 
In particular, H 00 (x + L) consists of hall bounded analytic func­
tions in the upper half-plane. According to a theorem of Hoffman 
and Singer, Hoo (x + L) is a maximal weak-star closed sub algebra 
of L 00 ( d JL.rlJ])' 

By "almost all lines" we mean lines of the form x + L for 
(]" - almost all X £ G, or equivalently, lines which pass through K 
in a subset of T - measure 1. 

If [n E A. converges to [ in ,LP (d (]"), then [n converges to [ in 
LP (x + L) for almost all limes, and [E HP (x + L) for almost all 
lines. In particular, if [£HP(d u) we obtain, in view of Jensen's 
inequality (1) for the measure JLrm, the following extension of (3): 

log I }J-r * [ I ~ }J-r * log I [ I a. e., [ £ Hl (d (]") . 

This is Malliavin's inequality. 
The converse of the above statement is true, as proved by 

Helson in [3]. We will give another mo~e direct proof, which is 
also due to Helson. 

Theorem 3 : Let 0 < p ~ 00, and let [£ LP ( d(]" ) • Then 
[ £ HP (d (T) if and only if [E HP (x + L) for almost all lines. 

Proof: We have already discussed the forward implication. 
Helson's proof of the reverse implication operates in L2 (d (T). 

Let [ E V (d (]") such that [ E HP (x + L) for almost all lines. Let g 
be the orthogonal projection of [on H2.(d(]"), 9 belongs to JJ2(x + L) 
for almost all lines. Since [-g ..1 H 2 (d (T), it follows that [-g E H2 (d (T) ~ 



-102-

and f -g also belongs to H2 ( + L) for almost all lines. Hence f-g 
is constant a.e., on almost all lines. By the basie lemma, f-g is a 
constant. Hence f belongs to H2 (d 0") • 

Now let f E LV (dO") be such that It: H2 (x +L) for almost allli­
nes. Fix x E G such that I f (x) I < 1/2. Ifl t I < 1/2, log IIx) + 
+.tl < O. 

'I. 1", , 

Also flog I f (x) + tid t > f log I sid s~ 2,and so f I f IX) I <>;. 
-'I. ' I-

f I t I < 'I. log I f (x) + tid t dO" (x) > - 2. 
Interchanging orders of integration, we see that for almost all 

t, log I f (x) + t I is 0" - integrable over the set where I I( x) I'~ 1/2. 
It is always 0" - integrable ower the set where I f (x) I ;::::' 1/2. Hence 
there always exists a real numbert such that log I f + t I is 0" - intec 

grable. Replacing f by f + t, we can assume that log I n is inte­
grable. 

Let g be the outer function in H'" (dO") whose modulus is 
1 g I = min (1, I f I ). gf E L'" (d 0"), and gf belongs to H'" (x + L )' 
for almost all lines. By the L2 - theorem, gf EH'" (d 0"). Since g is 
the pointwise limit of a sequence of invertible functions g" EH'" Cd 0") 
such that I g" I;:::: I f I, f = lim fg/gn belongs to' HV (dO"). Q.E.D. 

Theorem 4: H '" (d u) is a maximal weak-star closed su balge­
bra of L'" (d 0" ). -

Proof: We will verify condition (ii) of theorem 1. 
Suppose hELoo (dO") and O'¢=-iEHl (dO") satisfy hft:Hl(du) 

for all positive integers n.Then hn f E Hl (x + L) for almost all 
lines. Since H'" (x + L) is weak -star maximal, h t: H'" (x + L) for 
almost all lines. Hence hEH'" (du). Q. E. D. 

5. Invariant subspaces 

Invariant subspaces are of essentially three kinds. We say that 
M is doubly invariant if X)..M ~ M for all A € r. In this case, 
M = XE V (d 0") for some measurable set E. Otherwise, we will say 
that M is singly invariant. Let If be a measurable function which 
is of modulus 1 a. e. Then If H2 and If H02 are singly invariant 
subspaces. If H2 are If H2o are regarded as different versions of 
the same. invariant subspaces. We shall call subspaces of this type 
discontinuous. Singly invariant subspaces which are not disconti­
nuous we call continuous. 

One way to construct singly invariant subspaces is as follows. 
We start with a function If on G such that, on every line, If is mea-
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~urabkand I If I = 1 a.e. Let MF be the set of "alL f E L~ (d u) such 
that on each line x + L, If f E H2 (x + L). MF is then an invariant 

"'subspaceofL2 (du). If If is u-measurable, then MF.--:-FH2 (du), 
in view of theorem 3. 

It will be convenient to fix determinations of all functions of 
modulus 1 a.e. so that they are of modulus 1 .everywhere. Measura­
bility will always be in the sense of Borel. 

Given a function of If of modulus 1, we assign to each x E.G the 
function determined by If on the line through x, but normalized to 

"assume the value 1 at x. This function is B (x, t) = If (x) If (x + et). 
~ satisfies the following conditions: 

(i) I B {x, t) I = 1, x E G, t E R 
( ii) B (x, 0) = 1, x E G 

=-:-----:: 
(iii) B (x+es,t) =B (x,s) B (x,s+t), XEG, s,tER. 

A function B satisfying (i), (ii) and (iii) wil becalled a cocycle. 
Every cocycle determines a function of modulus 1 on each line, 

"providing we agree to identify two functions of modulus 1 when 
they ar~ constant multiples of each other. If B (x, s) is measurable 
"as a function of s for each fixed x, we say that B is linearly measu~ 
"rable'. Each linearly measurable cocycle B comes from a function If 
>of modulus 1 which -is measurable on each line. The invariant subs­
"pace it determines will be denoted by MB • 

We say that a cocycle B is measurable if the map (x, t) -+ 

B (x, t) of G X R into ,the circle is measurable. In particular; a 
-measurablecocycle is linearly measurable. 

Lemma: If B is a measurable cocycle, the functions B (. ,t) 
"move continuously with t in L2 (d u) . 

Proof: The distance between B ( ., t) and B (., to) in L2( d u) 

is given, with the aid of Fubni's theorem. by. 
1 

f fIB(y+es,t)-B(y+es,t o ) 12 dsdT(Y)· 
KO 

Using (i) and (iii) this expression becomes 
1 

f fIB(y,s+t) -B (y,s + to) 12 dsdT(y) 
KO 

For fixed y E K, the inner integral tends to zero as t -+ ItO. By the 
bounded pointwise convergence theorem, the double integral tends 
-to zero. Q.E.D. 

This shows that measurable cocycles are cocycles . in the sense 
.of Helson. Hence every invariant subspace of L2 (d u) which is not 
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. doubly-invariant is MB for some uniquely determined (up to sets or: 
measure zero) measurable co cycle B. 

The product of two cocycles is a cocycle that is measurable if 
the factors are measurable, and linearly measurable if the factors~ 
are linearly measurable. 

A co'Cycle is analytic if B (x, . ) £. H 00 (x + L) for almost all 
lines. 

'l'he following lemma is a slight generalization of one of Rel-­
son's theorems in the sense that it allows one of the cocycles to not 
be measurable. 

Lemma : Let A be a linearly measurable cocycle and B a measu­
rable cocycle;\ Then JJ1A 2. MB if and only if AB is analytic. 

Proof: Analyticity of AB implies inmediately that lilA ~ MB • 

Suppose that MA 211lB • MAB contains all products of bounded 
functions in MA with bounded functions in ME, According to [3],. 
products of bounded functions in MB with bounded functions in ME' 
are dense in H 0 2 (d (J). Hence 11'1 Ail':J H 02 (d (J). It suffices then to 
prove that if C is a linearly measurable cocycle such that 
M 0 ':J H 0 2 (d (J), then C is analytic. 

For each 0 < A € r, XA € 1I1e, so C (x, t) eiAt extends analytically 

to the upper half - plane, providing x does not lie in a set E(A)' 
of measure zero. If x € E (A), then 

00 

(4) fC (x,t) (l-it)-l eiut dt=O 

for almost all values of u > A. Now let 0 < An ( r be a sequence­
such that An -'+ 0, and let E = U E (An). For each xi E, (4) holds 
for almost all u > O. Hence except for x in a set of measure zero, 
C (x, . ) € H2 (x + L). Q.E.D. 

Now let f be a function in L2 (d (J) such that p'r * log I f I > 
- OCJa.·e. i. e., such that log I f I € Vex + L) for almost all lines. 
On almost all lines, we can write f = F' g, where I F' I = 1 and g 

is an outer function in HZ (x + L). F' is uniquely determined, 
up to a constant multiple of modulus 1 on each line. So F' uniquely 
determines a cocycle, also denoted by F', which we call the inner 
part of f. F' is a linearly measurable cocycle. 

111 f will denote the invariant subspace generated by f, i. e ., the 
closure of f r1 in L 2 (d (J) . 

Theorem 5: Let f € £2 (d (J) be such that p'r * log I f I > -
- OCJ _ a. e. Then the inner part F' of f is a measurable cocycle, and 
M f = MF • 
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Proof: Suppose Mf = MB for the measurable cocycle B. Since' 
F g is analytic on each line for all g E Mj, MJI' 2. MB • By the lemma, .. 
F B is analytic. Since f E MB• Bf is analytic on almost all lines, so 
B jj is analytic. Hence F B is constant on almost all lines, so· 
F =B. Q.E.D. 

6. Structure of cocycles 

The measurable cocycles with operation multiplication form a 
group, which we will denote bye. The cocycles which correspond 
to discontinuous invariant subspaces are those cocycles of the form. 

(5) B(x, t) = F (x) F (x + ed 

for a measurable unit function F on G. Such cocycles we call co­
boundarias. The set 93 of coboundaries forms a subgroup of e. 
If two measurable cocycles belong to the same coset of ej93 we say 
the cocycles are cohomologous. Cohomologous cocycles correspond 
to invariant subspaces which are equivalent, in the sense that one 
can be obtained from the other by multiplication by a unit function. 

If B is a cocycle, then in particular B. satisfies the following 
conditions: 

(i)'IB(y,t) 1=1, YEK, tER 

(ii)' B (y,O) = 1, y E K 
-=--:------:-:--

(iii)' B (y+el,t) =B (y,l) B (y,t+l), YEK, tER. 

A function on K X R satisfying (i)', (ii)' and (iii)' will be called 
a cocycle on K. A cocycle B on K determines on each line a func­
tion of modulus 1 which is unique up to a constant multiple. Hen-· 
ce B determines a co cycle on G, which is realized explicitly by defi-

ning B(y + e., t) = B(y, s) B(y, s + t), y E K, s, t E R. Hence we can 
regard cocycles as being either cocycles on K or on G. B is measu-· 
rabIe, es a cocycle on G, if and only if B is measurable as a cocycle 
on K. 

If B is a coboundary, then from (5) we obtain 

(6) B(y, t) =F(y) F(y + et), Y E K, t E R, 

for some measurable unit function F' on G. Conversely, if there 
is a measurable unit function F' on G which satisfies (6), B is the 
coboundary of P. 
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It will .be convenient in the future not to distinguish bet­
'ween cocycles on .G and cocycles on K .. 

Let CU. be the family of measurable unit functions on K, identi­
fying as usual two .functions which agree· almost everywhere. Endo­
wed with the operation multiplication, CU \ becomes a group. Let 7> 

-be the subgroup of CZf. of functions of the form hey) = F(y) 
fey + e1 ) for some f e CU . 

Every h € CZf. determines a cocycle Bh via the formula 

Here [t] .is the largest integer which does not exced f. Bh is a mea­
surable co cycle which is constant on each interval n ·:::;;t < n + 1, 
n an integer. 

The correspondence h -""Bh is a monomorphism of CU into e;. 
If Bh is the coboundary of F, then F(y, t) is also constant on each 
interval n:::;; t <.n + 1. In particular, if f(y)=F(y,O), then 

.. h(y) = Bh(y, 1) = f(y)f(y + e1). Hence he 7>,. Conversely, if 
,h e Ji, Bh is the coboundary of the function F defined by F (y + 
+ es ) = fey), y e K, 0:::;; ~ < 1. 

Theorem 6: The monomorphism h -"" Bh induces an isomorphism 
of e/93 and CUI']). 

Proof: It suffices to show that every measurable cocycle A is 
"cohomologous to a cocycle of the form Bh • For this we define 
O(y,t) =A(y, [t]) A(y,t), YeK, teR. One verifies immediately 
that 0 satisfies (i)', (ii)' and (iii)', so 0 is measurable cocycle. Also 
O(y,l) =1, yeK, so 0(y+e1, t) =0 (y,t+1). Hence the func­
tion F(y+et)=O(y,t), yeK, teR, is well defined and measura­
ble on G. Since F(y) = 1, y e K, we see from (6) that 0 is the co­
boundary of F. 

Hence B(y,t) =A(y,[t]), yeK, teR, defines a ccoycle which 
is cohomologous to A. B is measurable, and B is constant on each 
interval of the form n:::;; t <n +1. If hey) = B(y, 1), then he CZf. 

and B = B h• Q.E.D. 

7. Real cocycles 

If we restrict ourselves to real cocycles,we can carry this 
isomorphism one step further. First we note that if h is a real 
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.coboundary, then h is the coboundary of a real unit function p on 

K. Indeed, if q is a unit function such that hey) '" q(y) q(y + el), 
we can define. 

r 1; ° ~ arg q < 2 
p(y) = { 
. 1-1, 2 ~ arg q < 2 

Then hey) . p(y) p(?j+ e1 ). 

Let cu. r denote the real functions in CU, and ,]?, the real func­
tions in ']J. The prec~eding remark shows that the cosets of cUrl ']J,. 
yield non-equivalent invariant subspaces of L2 (dcr). 

Let now crt[ be the family of measurable subsets of K, modulo 
null sets. em is a group with operation Eo D El = (Eo. n E1C) U 
,{El U EoC). Sets of the form D D (D + el), where D € CYfl, will be 
called caboundaries. They form a subgroup of 07[ which we will 
denote by 01. . 

For each E € 0J[ we define the function hE € c;lr by 

I r -1 , yiE 
hE(y) = { . 

l 1, y€ E 

Theorem 7: The correspondence E ~ hE is an isomorphism of 
;cm. and lll,. It induces an isomorphism of 0J[j0L and o,jr/']Jr 

Proof: Since hn hE is -Ion D D E, the correspondence is a 
'group homomorphism. Since h € CU r is uniquely determined by the 
cSet where it is - 1, E ~ hE is an isomorphism. One verifies imme­
diately that the image of 0L is ']Jr. Q.E.D. 

Theorem 8: Let K be a compact infinite abelian group with 
Haar Measure d p.. Let e € K generate a subgroup J which is 

,dense in K. Then there is no measurable set Fe K such that 
K=F D (F-e). 

Proof: Let H be the quotient of K X R and the discrete sub­
:group Ho = { (-2ne, 2n) : n = 0 , ± 1, ... }. Topologically, H 
is obtained from K X [0,2] by identifying (y,2) with (y + 2e, 0). 
The line s ~ (0, s) / H 0 is dense in H. Hence the character group 

"of H can be realized as a subgroup of R, and H is a group of the 
type that we have been considering. In particular, we can apply 
the basic lemma to H. 

Now suppose K=F D (F-e), where F is measurable. In 
,other words, K = F U (F - e), and F n (F - e) is empty. In 
particular we have -reF) = -r(F - e) = 1/2. 
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Since F - 2e = F, every line x + L either always meets K' 
III a point of F or never meets K in a point of F. The set 
{ (y, s) : y £ F, 0 ~ s < ~} is then measurable with measure 1/2,_ 
and. it contains every line that it intersects. This contradicts the' 
basic lemma. Q.E.D. 

Corollary: There exist real measurable co cycles whose inva­
riant subspaces are continous. One such cocycle is given by 
B(x, t) = (-1) [s+tJ, where x = y + e"with and 0 ~ s < 1. 

If E is it coboundary, then E 6. K = EC is coh9mologous with! 
K. Hence \ if E is any measurable subset of K,either E or EC is, 
not a coboundary. 

In order that E be cohomologous with K, it is necessary and 
sufficient that EC be a coboundary. To find sets E which are nei­
ther coboundaries nor cohomologous to K, we must find E such that 
neither E nor EC is a coboundary. To construct such sets, it suffices' 
to find a measurable set E and a y £ K such that E 6. (y + E) = K. 
This can always be accomplished. Clearly E and y + E are then: 
simultaneously coboundaries or not coboundaries. Since EC= (y+ E) , 
at least one of them is not a cobottndary. Hence E is a set of the' 
desired type. 

It appears that CUr 'J>r is quite large. 
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