SOME REMARKS ON THE POINTWISE
CONVERGENCE OF SEQUENCES OF
MULTIPLIER OPERATORS

by C. P. CALDERON *

Introduction. The purpose of the present paper is to give
some sufficient conditions for the pointwise convergence of op­
erators of the form
\[
\int_{\mathbb{R}^m} K_n(x - y) f(y) \, dy
\]
The kernels \(K_n \) need not belong to \(L^1 \). Some classes of singular in­
tegrals as well as a large family of Féjer-like kernels may be re­
garded as particular cases of theorems 1, 2, 3. The main results
are contained in theorems 1, 2 and 3 and some corollaries ard exam­
plles are given thereafter.

Definitions and Notation.

1) \(f \ast g \) will denote the convolution between \(f \) and \(g \); namely
\[
\int_{\mathbb{R}^m} f(x - y) g(y) \, dy = \int_{\mathbb{R}^m} f(x_1 - y_1, \ldots, x_m - y_m) \, dy_1 \cdots dy_m
\]
\(\mathbb{R}^m \) denotes the euclidean \(m \)-dimensional space.

2) By \(L^p \) we shall denote the class of all measurable functions
defined on \(\mathbb{R}^m \) such that \(\int_{\mathbb{R}^m} |f|^p \, dx = ||f||_p^p < \infty; p \geq 1 \).

3) By \(E(f > \lambda); f \geq 0 \), we shall denote the set of points of
\(\mathbb{R}^m \) such that \(f > \lambda \) and by \(|E(f > \lambda)| \) its measure.

4) A multiplier operator (*) acting from \(L^2 \) to \(L^p \) is a linear
operator such that \(T(f) = k \ast f \) for all \(f \in L^2 \).
\[
f(u) = \int_{\mathbb{R}^m} \exp (-i <u, x>) f(x) \, dx; <u, x> = \sum_{j=1}^{m} x_j u_j
\]

* Avenida Quintana 369 - 1* - San Luis.
(*) we shall be concerned with multiplier operators acting always from L^2 into L^2.

5) By H_{ϵ_0}, H, H_α we shall denote respectively the classes of bounded functions ϕ defined on \mathbb{R}^m homogeneous of degree zero, such that

a) $\phi \in C^\omega$ if $x \neq 0$; b) ϕ is the symbol of a singular integral operator K acting continuously from L^p into L^p for all $p > 1$; c) No further restriction is imposed on ϕ.

By $K(f)$ we shall always denote the operator defined by the multiplier ϕ. In cases a) and b) the corresponding K is a singular integral operator.

1) Theorem. Let $T_n = T$ be a sequence of multiplier operators and $k_n(u) = k_{n_1, \ldots, n_m}$ their corresponding multipliers; suppose that

i) There exists a function ϕ, bounded and homogeneous of degree zero such that

\[
\int_{\mathbb{R}^m} |k_n(u) - \phi(u)|^2 |g(u)|^2 \, du \to 0 \quad \text{as } n \to \infty
\]

(for all g belonging to L^2)

ii) There exists a sequence $\epsilon_n = (\epsilon_{n_1}, \ldots, \epsilon_{n_m})$ of real and positive parameters such that

a) $\epsilon_n \to \infty; \epsilon_{n_j} \neq 0$ for all n_j and for all j.

b) The functions $\Psi_n(u) = k_{n_1, \ldots, n_m}(\epsilon_{n_1} u_1, \ldots, \epsilon_{n_m} u_m) \phi^{-1}(\epsilon_{n_1} u_1, \ldots, \epsilon_{n_m} u_m)$ have the following compactness property

\[
\left\| \frac{\partial^{s_1 + \ldots + s_m} \Psi_n}{\partial^{s_1} u_1 \cdots \partial^{s_m} u_m} \right\|_{p_0} \leq M
\]

for some p_0 such that $1 < p_0 \leq 2$ and for all $s = (s_1, \ldots, s_m)$ submitted to the conditions $0 \leq s_1 + \ldots + s_m \leq m$, where each s_j can take the values 0 or 1 only. The constant M does not depend on n and the derivatives are taken in the distributions sense.
Under the above assumptions we have

A) If $p_0 < 2$ and ϕ belongs to the class H_ϕ or H then

$A_1)$ \[\| T_n f - K(f) \|_p \to 0 \text{ for all } f \in L^p; \quad p > p_0. \]

$A_2)$ If $f \in L^p$, $p > p_0$ then $T_n f$ converges a.e. to $K(f)$; furthermore the operator \[\sup_{n_1, \ldots, n_m} |T_{n_1} \cdots T_{n_m} f| = T^* f \] verifies

$|| T^* f ||_p < C(p) \| f \|_{p_0} \| p > p_0$ where $C(p)$ depends on p only.

B) If ϕ belongs to H_ϕ and $p_0 < 2$ then

$B_1)$ \[\| T_n f - K(f) \|_2 \to 0 \text{ for all } f \in L^2. \]

$B_2)$ $T_n f$ converges a.e. to $K(f)$ and furthermore, if \[\sup_n \| T_n f \| = T^* f \] we have \[|| T^* f ||_2 < C \| f \|_2. \]

C) Limiting Cases. Let $p = p_0$ and ϕ belong to H or H_ϕ; if $f \in L^p$ and \[\| K(f) \|_{p_0} \log^+ (K(f))^{m-1} \text{ belongs locally to } L^1 \]

$C_1)$ \[T_n f \text{ converges a.e. to } K(f). \]

$C_2)$ If $|E| < \infty$ we have, for $1 \leq s < p_0$

\[\int_E |T^* f|^s \, dx \leq \int_E \left(\int_E |K(f)|^{p_0} (\log^+ |K(f)|)^{m-1} \right) \, dx. \]

$C_3)$ If \[\| K(f) \|_{p_0} \log^+ (K(f))^{m} \text{ belongs locally to } L^1 \text{ and } |E| < \infty, \]

then \[\int_E (T^* f)^{p_0} \, dx < A_1 (|E|) \]

$+ A_2 (|E|) \int_E |K(f)|^{p_0} \log^+ (K(f))^{m} \, dx. \]

D) If $p_0 = 2$ and ϕ belongs to H_ϕ, the same conclusions of C are valid.

E) If the sequence $\varepsilon_n = (\varepsilon_{n_1}, \varepsilon_{n_2}, \ldots, \varepsilon_{n_m})$ of ii) is such that each ε_{n_j} is strictly increasing to ∞, then

$E_1)$ If ϕ belongs to H or H_ϕ, we have

\[\| E \{ T^* f > \lambda \} \| < (C/\lambda^{p_0}) \int_{R^m} \| f \|_{p_0} \, dx, \quad f \in L^p_0 \]

and consequently $T_n f$ converges a.e. to $K(f)$.

$E_2)$ If ϕ belongs to H_ϕ and $p_0 = 2$ we have that the same conclusions of E_1 are valid.

F) For ϕ belonging to H or H_ϕ, $T_n f$ admits the representation

$F_1)$ \[T_n f = \int_{R^m} K_n(x-y) f(y) \, dy \quad \text{for all } f \in L^p; \quad p \geq p_0; \quad K_n \text{ belongs to } L^{p_0} \text{ for all } n; \quad 1/p_0 + 1/p^{*0} = 1. \]

$F_2)$ If ϕ belongs to H_ϕ and $f \in L^2$, we have

\[T_n f = \int_{R^m} K_n(x-y) f(y) \, dy \text{ where } K_n \in L^2 \text{ for all } n. \]

G) The kernels K_n belong to L^1 and \[\| K_n \|_1 \leq M \text{ if and only if } \phi \text{ reduces to a constant.} \]
H) If \(\mu \) is a regular measure with bounded variation, defined on the Borel subsets of \(\mathbb{R}^m \) then the following multipliers
\[
\bar{k}_n(u) = \int_{\mathbb{R}^m} \bar{k}_n(u-x)(u-x) \, d\mu (x) = T_{1, \ldots, m}^n
\]
verify \(A, B \) and also \(F \) with
\[
\bar{T}_nf = \int_{\mathbb{R}^m} K_n(x-y) \, g(x-y) \, f(y) \, dy
\]
where the \(K_n(x) \) are those associated to \(\bar{k}_n \) and \(g(x) \) is the Fourier Transform of \(\mu \).

The limit operator is defined by the multiplier
\[
\bar{\phi}(u) = \int_{\mathbb{R}^m} \phi (u-x) \, d\mu (x).
\]

The key to the most important part of the proof of the above Theorem is the following lemma.

2) Lemma. Let \(F_n(x) = F_{n_1, \ldots, n_m}(x_1, \ldots, x_m) \) be a denumerable family of measurable functions defined on \(\mathbb{R}^m \), and let \(\lambda_n = (\lambda_{n_1}, \ldots, \lambda_{n_m}) \) be an \(m \)-dimensional sequence of real positive parameters such that the auxiliary functions
\[
\Psi_n = F_{n_1, \ldots, n_m}(\lambda_{n_1} x_1, \ldots, \lambda_{n_m} x_m) \prod_{j=1}^m (\lambda_{n_j}^2)
\]
verify the following compactness property
\[
(2.1) \quad \| \Psi_n \prod_{j=1}^m |x_j|^{s_j} \|_{p_0} \leq M, \quad p_0 > 1
\]
where \(M \) does not depend on \(n \) or \(s = (s_1, \ldots, s_m) \) and each \(s_j \) can take the values 0 or 1 only. Then, if \(f^* = \sup |F_n \ast f| \) we have

i) \(\| f^* \|_{p_0} < C(p) \| f \|_{p_0} \) for all \(p > p_0^* \); \(1/p_0 + 1/p_0^* = 1 \).

ii) If \(|f| \in L^{p_0^*} \) and \(|f|^{p_0^*} (\log^+ |f|)^{m-1} \) belongs locally to \(L^1 \); then, for all measurable set \(E \) such that \(|E| < \infty \) we have
\[
\int_E f^{p_0^*} \, dx \leq A(r, |E|) + B(r, |E|) \int_E |f|^{p_0^*} (\log^+ |f|)^{m-1} \, dx
\]
where \(1 \leq r < p_0^* \).

iii) If \(f \in L^{p_0^*} \) and \(|f|^{p_0^*} (\log^+ |f|)^{m} \) belongs locally to \(L^1 \); then, for all measurable set \(E \) such that \(|E| < \infty \)
\[
\int_E f^{p_0^*} \, dx \leq A'(|E|) + B'(|E|) \int_E |f|^{p_0^*} (\log^+ |f|)^{m} \, dx
\]

iv) If the \(\lambda_{n_j} \) are strictly decreasing to 0 for each \(j \), we have
\[
|E(f^* > \lambda)| < (C_0/\lambda^{p_0^*}) \int_E |f|^{p_0^*} \, dx
\]

Proof. Without loss of generality we may assume that the \(F_n \) are zero on the complement of the set \(\{ x_1 \geq 0, x_2 \geq 0, \ldots, x_m \geq 0 \} \).
Let \(f \) be a continuous and compact supported function; then, by a change of variables we have

\[
\int_{\mathbb{R}^m} F_n(x - y) f(y) \, dy = \int_{\mathbb{R}^m} \Psi_n(y) f(x - \lambda_n y) \, dy =
\]

\[
= \int_{\mathbb{R}^m} \Psi_n(y_1, \ldots, y_m) f(x_1 - \lambda_n y_1, \ldots, x_m - \lambda_n y_m) \, dy_1 \ldots dy_m
\]

The modulus of the last integral is dominated by

\[
\sum_{\nu = 0}^{\infty} \int_{S_{k_1} \ldots S_{k_m}} |\Psi_n(y)| \, |f(x - \lambda_n y)| \, dy
\]

The sets \(S_{k_1}, \ldots, S_{k_m} \) are defined in the following way

\[
S_{k_1}, \ldots, S_{k_m} = [2^k_1, 2^k_1 + 1] \times \ldots \times [2^k_m, 2^k_m + 1] \text{ for } k_j > 0,
\]

\(j = 1, \ldots, m \). If \(k_j = 0 \) the corresponding interval is \([0, 2]\).

By an application of Hölder's inequality, the series (2.3) is dominated by

\[
\sum_{\nu = 0}^{\infty} \int_{S_{k_1} \ldots S_{k_m}} (|\Psi_n| \, dy)^{1/\nu} (\int_{S_{k_1} \ldots S_{k_m}} |f(x - \lambda_n y)\nu^* dy)^{1/\nu^*}
\]

Estimates for the terms \(t_{k_1}, \ldots, t_m = (\int_{S_{k_1} \ldots S_{k_m}} |\Psi_n| \, dy)^{1/\nu} \)

If \(k_j > 0, j = 1, \ldots, m \); then

\[
2^{k_1 + \ldots + k_m} t_{k_1}, \ldots, t_m \leq \left\{ \int_{S_{k_1} \ldots S_{k_m}} (|\Psi_n| \prod_{j=1}^{m} |x_j|)^{\nu} \, dx \right\}^{1/\nu} \leq M_0
\]

The last inequality holds from Hypothesis (2.1). Then we must have

\[
\sum_{\nu = 0}^{\infty} \int_{S_{k_1} \ldots S_{k_m}} (|\Psi_n| \prod_{j=1}^{m} |x_j|)^{s_j} \, dx \right\}^{1/\nu} \leq M_0
\]

If the \(m \)-tuple \((k_1, \ldots, k_m)\) contains zeros in its coordinates, according to Hypothesis (2.1) we have

\[
2^{k_1 + \ldots + k_m} t_{k_1}, \ldots, t_m \leq M_0 2^{k_1} - k_2 - \ldots - k_m
\]

\(k_j \) must be a finite number. Then we can conclude that in every case

\[
\sum_{\nu = 0}^{\infty} \int_{S_{k_1} \ldots S_{k_m}} (|\Psi_n| \prod_{j=1}^{m} |x_j|^{s_j} \, dx \right\}^{1/\nu} \leq M_0 \text{ where } s_j = 1 \text{ if } k_j \neq 0, s_j = 0 \text{ if } k_j = 0.
\]

Now we conclude that in every case
(2.9) \[t_{k_1}, \ldots, t_{k_m} \leq M_0 2^{-k_1} \ldots 2^{-k_m}. \]

Estimates for the terms \(\left(\int_{s_{k_1} \ldots s_{k_m}} |f(x - \lambda_n y)| \, d\nu^* \, dy \right)^{1/\nu^*} \)

(2.10) \(\left(\int_{s_{k_1} \ldots s_{k_m}} |f(x - \lambda_n y)| \, d\nu^* \, dy \right)^{1/\nu^*} \leq \left(\int_{s_{k_1} \ldots s_{k_m}} \ldots \int_{s_{k_1} \ldots s_{k_m}} |f(x - \lambda_n y)| \, d\nu^* \, dy \right)^{1/\nu^*} \)

The second (right hand) member of (2.10), by a change of variables, is readily seen to be equal to

(2.11) \[
\left(\frac{\lambda_1}{2}, \ldots, \frac{\lambda_k}{2}, \ldots, \frac{\lambda_m}{2} \right) \left(\frac{\lambda_1}{2}, \ldots, \frac{\lambda_k}{2}, \ldots, \frac{\lambda_m}{2} \right) \left(\frac{\lambda_1}{2}, \ldots, \frac{\lambda_k}{2}, \ldots, \frac{\lambda_m}{2} \right) \left(\frac{\lambda_1}{2}, \ldots, \frac{\lambda_k}{2}, \ldots, \frac{\lambda_m}{2} \right)
\]

If \(M(f) \) is the maximal operator of the strong differentiation (see [4], pp. 306-307) we have

(2.12) \[
\left(\int_{s_{k_1} \ldots s_{k_m}} |f(x - \lambda_n y)| \, d\nu^* \, dy \right)^{1/\nu^*} \leq 2^{2m/\nu^*} 2^{(1/\nu^*) (k_1 + \ldots + k_m)}
\]

(2.13) \[
M \left(\left| f \right| \right)^{1/\nu^*} \leq \left(\sum_{0=0}^{\infty} \right) 2^{(1/\nu^*) (k_1 + \ldots + k_m)}
\]

Consequently

(2.14) \[
f^* \leq M_0 2^{2m/\nu^*} \left(\frac{\lambda_1}{2}, \ldots, \frac{\lambda_k}{2}, \ldots, \frac{\lambda_m}{2} \right) \left(\frac{\lambda_1}{2}, \ldots, \frac{\lambda_k}{2}, \ldots, \frac{\lambda_m}{2} \right) \left(\frac{\lambda_1}{2}, \ldots, \frac{\lambda_k}{2}, \ldots, \frac{\lambda_m}{2} \right)
\]

and \(f^* \leq C(p_0) \left(\left| f \right| \right)^{1/\nu^*} \)

If \(p > p_0 \) then \(p = rp_0 \) with \(r > 1 \), and from the Jessen-Marcinkiewicz-Zygmund Theorem (see [4], pp. 306-307) we have

(2.15) \[
||f^*||_p^p = \int_{\mathbb{R}_m} \left(\left| f^* \right| \right)^r \, dx \leq C(p_0) \int_{\mathbb{R}_m} \left(\left| M \left(\left| f \right| \right) \right| \right)^r \, dx \leq C(p_0) C(r) \int_{\mathbb{R}_m} \left(\left| f \right| \right)^r \, dx = C(r, p_0) \int_{\mathbb{R}_m} \left| f \right|^r \, dx.
\]

Now the inequality (2.15) can be extended by continuity to all \(L^p, p > p_0 \) (see [5], p. 165) and part i of the Thesis follows. Taking \(f \in L^\nu^* \), an application of the Jessen-Marcinkiewicz-Zygmund Theorem to the function \(\left| f \right| \nu^* \) also gives ii) and iii).
Part iv) requires a different technique. Let us return to (2.11) and consider

\[(2.16) \quad f^{(n)}_1, \ldots, f^{(n)}_m = \left(\frac{\lambda^{m/2} + \cdots + \lambda^{m/2}}{\lambda^{m/2} + \cdots + \lambda^{m/2}} \right) \int f(x-y) |p_0^* dy | \]

Putting \(f^{(n)}_1, \ldots, f^{(n)}_m = \sup_n f^{(n)}_1, \ldots, f^{(n)}_m \), we shall show that

\[(2.17) \quad E(f^{(n)}_1, \ldots, f^{(n)}_m) > \lambda \bigg| < (C/\lambda) \int f |p_0^* dx \]

where \(C \) does not depend on \(k_1, \ldots, k_m \) or on the function \(f \).

The \(\lambda_{ij} \) are strictly decreasing to zero for each \(j, j = 1, \ldots, m \).

Therefore we can construct a family of continuous and strictly decreasing to zero functions \(h_j(t) \), \(j = 1, \ldots, m \), such that there exists a sequence \(t_n \) of real numbers, strictly decreasing to zero, verifying

\[(2.18) \quad \lambda_{ij} = h_j(t_n) \quad (j = 1, \ldots, m) \]

Now, the differentiation operators of (2.16) are in the same conditions as those of [4], p. 310, (3.5); therefore (2.17) follows. Let us rewrite (2.5) taking into account (2.16); namely

\[(2.19) \quad |F_n f| \leq M_0 2^{-m/n_0^*} \sum_{k_1, \ldots, k_m} \int f^{(n)}_1, \ldots, f^{(n)}_m]^{1/n_0^*} \]

Calling \(a_k = 2^{(-1/n_0^*) (k_1 + \cdots + k_m)} \), we have

\[(2.20) \quad |F_n f| \leq M_0 2^{-m/n_0^*} \sum_{k_1, \ldots, k_m} a_k 2^{(-1/n_0^*) (k_1 + \cdots + k_m)} \]

and also
After a new normalization of the coefficients a_k, \ldots, k_m such that $\sum a^{1/2} k_1, \ldots, k_m = 1$, the inequality (2.21) holds for such coefficients, but with a modification on the value of C. Now

$$E\left(\sum_{0 \leq k_1 \leq m} a_k \ldots f^{*} k_1, \ldots, k_m > \lambda \right) \subseteq \bigcup_{k_1, \ldots, k_m} E(a^{1/2} k_1, \ldots, k_m f^{*} k_1, \ldots, k_m > \lambda)$$

Therefore

$$|E\left(\sum_{0 \leq k_1 \leq m} a_k \ldots f^{*} k_1, \ldots, k_m > \lambda \right)| \leq \sum_{k_1, \ldots, k_m} |E(a^{1/2} k_1, \ldots, k_m f^{*} k_1, \ldots, k_m > \lambda)| \leq \sum_{k_1, \ldots, k_m} a^{1/2} k_1, \ldots, k_m$$

$$(A/\lambda) \int_{R} |f| \int \phi^{*} dx = (A/\lambda) \int_{R} |f| \phi^{*} dx$$

The last inequality of (2.23) follows from (2.17). Now, from (2.21) and (2.23) we have

$$|E(f > \lambda)| = E(|f| \phi^{*} > \lambda \phi^{*}) < (A'/\lambda \phi^{*}) \int_{R} |f| \phi^{*} dx.$$

This ends the proof of part iv).

3) Remark. The Hypothesis (2.1) can be replaced by a weaker one, namely

$$||\Psi_{n} \Pi_{j=1}^{m} x_{j}^{\beta} ||_{p_0} < M_0; p_0 > 1; \beta > (p_0 - 1)/p_0$$

M_0 does not depend on n or on $s = (s_1, \ldots, s_m)$ and s_j can take the values 0 or 1 only: $j = 1, \ldots, m$.

The condition $\beta > (p_0 - 1)/p_0$ ensures the convergence of

$$\sum a^{1/2} k_1, \ldots, k_m$$

4) Proof of Theorem 1. Since $k_n \phi^{-1} \in L^p_0$ for some p_0 such that $1 < p_0 \leq 2$, there exists a function $F_n \in L^p_0$ such that
its Fourier Transform in the distributions sense coincides with $\hat{k}_n \phi^{-1}$. Furthermore, from the Hausdorff-Young-Titchmarsh Theorem it follows

\begin{equation}
\| F_n \|_{p_0^*} \leq A(p_0) \| \hat{k}_n \phi^{-1} \|_{p_0}
\end{equation}

Calling $\varphi_n = (1/ \prod_{j=1}^m \epsilon_{n_j}) F_{n_1}, \ldots, n_m (x_1 \epsilon^{-1}_{n_1}, \ldots, x_m \epsilon^{-1}_{n_m})$ we have that the Fourier Transform in the distributions sense of φ_n is Ψ_n and also

\begin{equation}
\| \varphi_n \|_{p_j^*} \leq A(p_0) \| \Psi_n \|_{p_0}
\end{equation}

By a similar procedure we obtain

\begin{equation}
\| \varphi_n \|_{p_j^*} \leq A(p_0) \| \Psi_n \|_{p_0} < M_0
\end{equation}

M_0 does not depend on n or $s = (s_1, \ldots, s_m)$ and each s_j can take the values 0 or 1 only.

Now it is clear that the functions F_n with auxiliary functions φ_n are in the conditions of Lemma 2. If f belongs to the space C^∞ of rapidly decreasing functions, then

\begin{equation}
T_n \varphi_n (f) = \hat{k}_n, \ldots, n_m f = \hat{k}_n \phi^{-1} \phi f
\end{equation}

The Fourier Antitransform in the distributions sense gives

\begin{equation}
T_n \varphi_n (f) = F_n^*, K(f)
\end{equation}

Let us observe that $F_n \in L^p$ for all p such that $1 \leq p \leq p_0^*$; this follows from the fact that $\| F_n \prod_{j=1}^m |x_j|^{s_j} \|_{n^*} < \infty$ for all $s = (s_1, \ldots, s_m)$ such that each s_j takes the values 0 or 1 only.

On the other hand, we shall show that $\| F_n \|_1 \leq N_0$ where N_0 does not depend on n. In fact, from (2.5)

\begin{equation}
\int_{R_m} |F_n(x)| \, dx = \int_{R_m} |\varphi_n(x)| \, dx \leq \int_{R_m} |\varphi_n(x)| \, dx \leq
\end{equation}

\begin{equation}
\leq \sum_{t_1, \ldots, t_m} \epsilon_{t_1, \ldots, t_m} 2^{x_m/p_0} 2^{(1/p_0)} (k_1 + \ldots + k_m) \leq
\end{equation}

\begin{equation}
\leq M_0 2^{x_m/p_0} \sum_{t_1, \ldots, t_m} 2^{(-1/p_0)} (k_1 + \ldots + k_m) = N_0.
\end{equation}

If for some $p > 1, K(f)$ maps continuously L^p into itself, by using the Young inequality we can extend by continuity the representation (4.5) for all $f \in L^p$ and furthermore, we have
(4.7) \[\| T_n, \ldots, n_n(f) \|_p = \| F_n \ast K(f) \|_p \leq \| F_n \|_p \cdot \| K(f) \|_p \leq N_0 \cdot C \cdot \| f \|_p. \]

(4.8) As we have already shown, the \(F_n \) are on the conditions of Lemma 2 and, therefore, if \(K(f) \) maps continuously \(L^p \) into itself, \(\sup_{n} T_n f = \sup_{n} | F_n \ast K(f) | \) verifies similar inequalities to those proved for \(\sup_{n} | F_n \ast f | \).

(4.9) On the other hand, \(T_n f \) converges pointwise in a dense subset. In fact, if \(f \in \mathcal{S} \) we have

\[
(4.10) T_n f = (1/(2 \Pi)^n) \int_{R_n} e^{i < \zeta, \nu >} \hat{k}_n(y) \cdot \hat{f}(y) \, dy \quad \text{and}
\]

\[
(4.11) | T_n f - K(f) | \leq \int_{R_n} | \hat{k}_n - \phi | \cdot | \hat{f} | \, dy \leq (\int_{R_n} | \hat{k}_n - \phi |^2 \cdot | \hat{f} | \, dy)^{1/2}.
\]

Since \(f \in \mathcal{S} \), then \(| f |^{1/2} \in L^2 \); therefore, the last term of the inequality tends to zero. (condition 1).

A suitable combination of the two preceding arguments (4.8) and (4.9) gives parts A, B, C, D and E. (see [4], p. 307 and [5] p. 160).

(4.12) If \(f \in L^p \) and \(p > p_0 \) we shall show that \(T_n(f) = K_n \ast f \), where \(K \in L^{p_0} \).

Let us observe that \(\hat{F}_n = \hat{k}_n \phi^{-1} \), that is \(\hat{F}_n = \hat{k}_n \), and since \(K \) maps continuously \(L^p \) into itself for all \(p > 1 \) when \(\phi \) belongs to \(H \) or \(H_x \), then in both cases we have

(4.13) \(K(F_n) = K_n \in L^p \) for all \(p \) such that \(1 < p < p_0 \) since \(F_n \in L^p \) for the same values of \(p \).

On the other hand, if \(f \in \mathcal{S} \), taking (4.5) into account, we have (4.14) \(T_n f = F_n \ast K(f) = K_n \ast f \).

Now we can extend (4.14) by continuity to all \(L^p, p \geq p_0 \), since both sides of the equality verify respectively

\[
(4.15) \| F_n \ast K(f) \|_p \leq \| F_n \|_p^{(p-1)} \cdot \| K(f) \|_p
\]

\[
| K_n \ast f | \leq | K_n |_p^{(p-1)} \cdot \| f \|_p
\]

Therefore part \(F_i \) is proved.
Part F_2 is also valid since this case requires
\[||K(f)||_2 \leq A ||f||_2 \text{ only.} \]

(4.16) **Proof of Part G.** If $\phi = C_0$ then $F_n = C_0^{-1} K_n$; therefore
\[||K_n||_1 < M' \text{ where } M' \text{ does not depend on } n. \]

Let us suppose that $||K_n||_1 < M'$; consequently \hat{k}_n must be
continuous for each n, and furthermore

(4.18) $\phi = \hat{k}_n/F_n$

(4.19) If $F_n(0) \neq 0$ for some $n = n_0$; then ϕ must be continuous at
$x = 0$; and since ϕ is a bounded homogeneous of degree zero func-
tion it must reduce to a constant.

(4.20) If $F_n(0) = 0$ for all n we shall show that $K(f) = 0$ for
all $f \in L^2$.

In fact, let us consider a subsequence $\{n'\}$ of $\{n\}$ such that $F_{n'}$ and $\varphi_{n'}$ are in
the conditions of iv) of Lemma 2. Then

(4.21) $|E(\sup_{\varphi_{n'}} |F_{n'} * f| > \lambda)| \leq (C_0/\lambda^2) \int_{\mathbb{R}^m} ||f||^2 dx$

On the other hand, from the compacity conditions on the $\varphi_{n'}$ for
each $\epsilon > 0$ the $\varphi_{n'}$ admit the decomposition

(4.22) $\varphi_n = \varphi_n^{(1)} + \varphi_n^{(2)}$; $||\varphi_n^{(1)}||_1 < \epsilon$

$\varphi_n^{(1)} = 0$ if $x \in Q$, where Q is a cube centered at the origin
and depends on $\epsilon > 0$ only. If $x \in Q$, $|\varphi_n^{(1)}(x)| < M_2$, where M_2
depends on $\epsilon > 0$ only.

Thus, if $f \in D$, by changing variables and taking into
account that $F_{n'}(0) = 0$, we obtain

(4.23) $| (F_{n'} * f)(x) | = | \int_{\mathbb{R}^m} \varphi_{n'}(y) \cdot f(x - \epsilon^{-1} y) \, dy |$

\[= | \int_{\mathbb{R}^m} \varphi_{n'}(y) [f(x) - f(x - \epsilon^{-1} y)] \, dy | \leq \]

\[\leq \int_{\mathbb{R}^m} \varphi_{n'}^{(1)}(y) |f(x) - f(x - \epsilon^{-1} y)| \, dy + 2\epsilon ||f||_\infty. \]

where $f(x - \epsilon^{-1} y) = f(x_1 - \epsilon^{-1} y_1, \ldots, x_m - \epsilon^{-1} y_m)$.
Now if $Q_{\epsilon/n'}$ denotes the cube obtained from Q by dividing its edges by ϵ/n' respectively, then the right term of the inequality (4.23) is readily seen to be less or equal than

$$(4.24) \quad |Q| M_2 (1/|Q_{\epsilon/n'}|) \int_{Q_{\epsilon/n'}} |f(x) - f(x - y)| \, dy + 2 \epsilon \|f\|_\infty$$

Therefore

$$(4.25) \quad \lim \frac{|F_{\epsilon/n'} f|}{\epsilon} \leq 2 \epsilon \|f\|_\infty.$$

Consequently, for all $f \in D$ it is valid

$$(4.26) \quad \lim F_{\epsilon/n'} f = 0$$

Thus, (4.26) together with (4.21) shows that $\lim F_{\epsilon/n'} f = 0$ a.e. for all f belonging to L^2, whence $\lim F_{\epsilon/n'} K(f) = 0$ a.e. for all f belonging to L^2. This completes the proof of Part G, since $F_{\epsilon/n'} K(f) = K_{\epsilon/n'}(f)$ and by Hypothesis i) $\|K_{\epsilon/n'}(f) - K(f)\|_2 \rightarrow 0$.

(4.27) Proof of Part H. The K_n and ϕ are supposed to be Borel measurable. Let us consider the functions

$$K_n(x) = \int_{R^m} K_n(x - y) \, d\mu(y).$$

By an application of the Minkowski Integral Inequality we have

$$(4.28) \quad \|K_n\|_{L^1} \leq \left(\int_{R^m} dw(y) \right)^{1/2} \|K_n\|_{L^1} \leq V(\mu) \cdot M'$$

$dw(y)$ denotes the variation of μ and $V(\mu)$ the variation in the whole R^m. Now if $g(x) = 1/(2\pi)^m \int_{R^m} \phi(x, y) \, d\mu(y)$, from (4.12),

(4.13) and (4.28) we conclude that

$$(4.29) \quad K_n = (K_n \cdot g)^*$$

On the other hand if $f \in <\phi$, we have

$$(4.30) \quad T_n f = (K_n \cdot g)^* f$$

Since $\|g\|_\infty < V(\mu)$, $(K_n \cdot g)^* f$ verifies the same type of inequality as that of (4.15). Therefore, by the same density argument we conclude that

$$(4.31) \quad \overline{T_n f} = \int_{R^m} K_n(x - y) \, g(x - y) \, f(y) \, dy$$

for all $f \in L^p$ with $p > p_0$ and ϕ belonging to H or H_0. By a similar method, one obtains the representation for $f \in L^p$ and $\phi \in H_0$.

---164---
(4.32) Now we are going to show that \(T_n f \) converges pointwise for all \(f \in \mathcal{F} \).

(4.33) \(T_n(f)(x) = (1/2\pi)^m \int_{\mathbb{R}^m} e^{i<x,y>} f(y) (\int_{\mathbb{R}^m} k_n(y-s) \, d\mu(s)) \, dy \)

Interchanging the order of integration (which we may) we have

(4.34) \(\int_{\mathbb{R}^m} d\mu(s) (1/2\pi)^m \int_{\mathbb{R}^m} e^{i<x,y>} \hat{k}_n(y-s) \hat{f}(y) \, dy \)

By a similar procedure than that employed in (4.9), (4.10) and (4.11), it is easy to show that the inner integral of (4.34) converges pointwise and uniformly to

(4.35) \((1/2\pi)^m \int_{\mathbb{R}^m} e^{i<x,y>} \hat{\phi}(y-s) \hat{f}(y) \, dy \)

On the other hand, since \(V(\mu) < \infty \), \(T_n(f) \) converges pointwise for all \(f \in \mathcal{F} \) to the operator \(T(f) \), whose multiplier is \(\hat{k}_n \cdot \hat{\mu} \).

(4.36) Estimates for the maximal operator associated to \(T_n \). In this part we shall use a technique introduced by A. P. Calderón and A. Zygmund in [2]. Let \(\phi \) belong to \(H \) or \(H_\alpha \). Then, if \(f \in L^p \), \(p > p_0 \), we have

(4.37) \(T_n f = \int_{\mathbb{R}^m} K_n(x-y) g(x-y) f(y) \, dy = \)

\(= (1/2\pi)^m \int_{\mathbb{R}^m} K_n(x-y) (\int_{\mathbb{R}^m} e^{i<x-y,s>} d\mu(s)) f(y) \, dy \)

Interchanging the order of integration we have

(4.38) \((1/2\pi)^m \int_{\mathbb{R}^m} d\mu(s) e^{i<x,s>} \int_{\mathbb{R}^m} K_n(x-y) f(y) e^{i<y,v>} d\mu(v) \, dy \).

The modulus of the integral (4.38) is dominated by

(4.39) \(1/(2\pi)^m \int_{\mathbb{R}^m} d\mu(s) [\hat{T}(f e^{-i<x,v>})(x)] \)

Taking the \(L^p \) norm of (4.39) with respect to \(x \) we obtain

(4.40) \((1/2\pi)^m \int_{\mathbb{R}^m} \left[\int_{\mathbb{R}^m} T(f e^{-i<x,v>})(x) \, d\mu(s) \right]^p \, dx \right)^{1/p} \leq \)

\(\leq (1/2\pi)^m \int_{\mathbb{R}^m} d\mu(s) \left[\int_{\mathbb{R}^m} T^*(f e^{-i<x,v>})(x) \, d\mu(s) \right]^{1/p} \leq \)

\(\leq (V(\mu))/(2\pi)^m C \| f \|_p \).
Thus

\[(4.41) \quad \| \sup_n \overline{T}_n f \|_p \leq (V(\mu)/(2\pi)^m) \cdot C(p) \cdot \| f \|_p.\]

A similar estimate holds for \(\phi \in H_0 \) and \(f \in L^p \). (4.41) and (4.32) give the corresponding convergence results. This completes the proof of Part H.

5) Examples.

(5.1) Let us consider the single Hilbert-Transform, that is

\[\tilde{f} = \lim_{n \to \infty} \int_{|x-y| \leq |x|+\varepsilon} f(y)(x-y)^{-1} dy \]

We know that \(\int_{|y| \leq |x|/n} e^{-iyx} y^{-1} dy = -2i \cdot \text{sg}(u) \cdot \int_{|y| \leq |x|/n} (\sin t) \cdot t^{-1} dt \). Here, the role of \(\phi(u) \) is played by \(-i \cdot \text{sg}(u) \cdot \pi\); the role of \(k_n \) is played by \(-2i \cdot \int_{|w|/n}^{+\infty} (\sin t) \cdot t^{-1} dt \cdot \text{sg}(u)\); the role of \(\varepsilon_n \) are played by the natural numbers \(\{n\} \).

Finally, the function \(\int_{|w|/n}^{+\infty} (\sin t) \cdot t^{-1} dt \) and its derivative in the distributions sense belong to \(L^p \) for all \(p_0 \) such that \(1 < p_0 \leq 2 \). Now an application of Theorem 1 will give the well known results concerning pointwise convergence of the Hilbert Singular Integral in \(L^p, p > 1 \).

(5.2) If \(K_n \) and \(\tilde{K}_n \) denote the Féjer Kernel and its conjugate, respectively, then

\[\hat{K}_n = (1 - |u/n|)^{+} \quad \text{and} \quad \tilde{K}_n = (1 - |u/n|)^{+} \quad (\text{sg}(u) \cdot \pi).\]

Here the roles of \(\hat{k}_n, \phi \) and \(\varepsilon_n \), are played by \(\hat{K}_n, \int \{n\} \) and \(\tilde{K}_n, (-i \pi \cdot \text{sg}(u) \cdot \int \{n\} \) respectively. Finally, since \((1 - |u|)^{+} \) and its derivative in the distributions sense belong to \(L^p \) for all \(p_0 \) such that \(1 < p_0 \leq 2 \), then the same conclusions as in (5.1) hold.

Remark. Analog considerations are valid for the Poisson Kernel and its conjugate.

6) Theorem 2. Let \(k(x) \) be a function belonging to \(L^1(R^m) \) and submitted to the following two conditions
i) $\int_{\mathbb{R}^m} k(x) \, dx = 1.$

ii) There exists $p_0 > 0$ such that $k(x) \prod_{j=1}^{m} (1 + |x_j|) \in L^{p_0}.$

If K is a singular integral operator with symbol belonging to $H,$ we shall denote by $\tilde{f} = K(f).$ By $k(nx)$ we denote $k(n x_1, \ldots, n x_m).$

Under the two preceding assumptions we have

a) $\int_{\mathbb{R}^m} n^m k(nx) f(y - x) \, dx \to f(y) \text{ a.e. for all } f \in L^p; \ p \geq p_0^*; 1/p_0 + 1/p_0^* = 1.$

b) $\int_{\mathbb{R}^m} n^m \tilde{k}(nx) f(y - x) \, dx \to \tilde{f}(y) \text{ a.e. for all } f \in L^p; \ p \geq p_0^*.$

Calling $f^* = \sup_n \int_{\mathbb{R}^m} n^m k(nx) f(y - Tx) \, dx$ and $\tilde{f} = \sup_n \int_{\mathbb{R}^m} n^m \tilde{k}(nx) f(y - x) \, dx$ we have the inequalities

c) $|E(f^* > \lambda)| \leq (C_0/\lambda^{p_0^*}) \int_{\mathbb{R}^m} |f|^\lambda^* \, dx; \ |E(\tilde{f} > \lambda)| \leq (C_0^1/\lambda^{p_0^*}) \int_{\mathbb{R}^m} |f|^\lambda^* \, dx.$

d) If $p > p_0^*,$ then $\|f^*\|_p < C(p) \|f\|_p; \ \|\tilde{f}\|_p < C'(p) \|f\|_p$ and therefore the convergence in mean of order p of a) and b) is valid.

Proof. If $f \in \mathcal{S},$ then

(6.1) $\int_{\mathbb{R}^m} n^m k(nx) f(y - x) \, dx = (2\pi)^{-m} \int_{\mathbb{R}^m} e^{i \langle y, u \rangle} \tilde{k}(u/n) \hat{f}(u) \, du.$

Since $\|k(u/n)\|_{\infty} \leq \|k\|_1$ and the fact that $k(u/n) \to 1$ for each $u,$ it follows that, for $f \in \mathcal{S},$

(6.2) $\int_{\mathbb{R}^m} n^m k(nx) f(y - x) \, dx \to f(y).$

Now, $n^m k(nx)$ and $k(x)$ are respectively under the conditions of the F_n and Ψ_n of Lemma 2; the condition ii) implies the condition (2.1) of Lemma 2. Finally, since (n, \ldots, n) are in the conditions of iv) Lemma 2, the maximal inequalities c) and d) with respect to \hat{f} follow. A combination of (6.2) and the maximal inequalities gives a) and also the convergence in the mean of order p for all $p \geq p_0^*.$ Now, if $f \in \mathcal{S}$
(6.3) \[\int_{n^m} k(nx) f(y-x) \, dx = (2\pi)^{-m} \int e^{i\langle u, x \rangle} \hat{f}(u) \phi(u) \, du \]

\[\hat{k}(s/n) \hat{f}(y-x) \, dx \]

The representation (6.3) may be extended by continuity to all \(f \in L^p \) with \(p \geq p_0 \), since \(n^m k(nx) \) belongs to \(L^q \) for all \(q \) such that \(q \leq p_0 \). (A similar argument was given in (4.12 - 13 - 14 - 15).) Now the representation proved above gives the results concerning \(n^m \int_{n^m} \hat{k}(nx) f(y-x) \, dx \).

7) **Remark.** A large family of Féjer-like kernels are particular cases of Theorem 2, namely: the \(m \)-dimensional Poisson kernel and its conjugates by the Marcel Riesz Transform, the multiple Féjer kernel, the multiple Weierstrass kernel, etc.

8) **Remark.** Example 1 shows that there exists a kernel \(k \) under the conditions of Theorem 2 such that, for all \(f \in L^p \), \(p > 1 \),

\[\int_{[|x-y| > 1/n]} \frac{f(y)}{n} \, dy = \int_{-\infty}^{+\infty} n[k(n(x-y))] \hat{f}(y) \, dy \]

The kernel is precisely the function whose Fourier Transform is \((2/\pi) \int_{[|x|]} (\sin t) t^{-1} \, dt \).

9) **Remark.** Another type of Féjer-like kernels is studied in [8] (see Lemma (1.5), Part I) and also in [1].

10) **Singular Integrals of Odd Non-homogeneous Kernel.** Let \(k(x) \) be a measurable and odd function defined on the real line, belonging to \(L^2 \), submitted to the following conditions

i) \(k(0+) \) and \(k(0-) \) exist and are different from zero.

ii) \(k(\lvert u \rvert) \) and its derivative in the distributions sense belong to \(L^{p_0} \) for some \(p_0 \) such that \(1 < p_0 \leq 2 \). Now let \(S(x) \) be an odd homogeneous function of degree \((m-1) \), defined on \(\mathbb{R}^m \) such that

\[\int_{\mathbb{R}^m} |S(x)| \, dx < \infty \]

If \(K(x) = S(x) \cdot k(|x|) \); then we call Old Singular Integral of nonhomogeneous kernel to
10.2) \[\int_{-\infty}^{\infty} K(ny) f(x - y) \, dy \]

11) **Lemma.** Let \(k(x) \) be under the conditions of 10), then the operators

(11.1) \[k_n(f) = \int_{-\infty}^{\infty} \frac{1}{n} \, k(n(x - y)) f(y) \, dy \]

have the properties

i) If \(f \in L^p, \frac{1}{p} \geq \frac{1}{p_0} \), then

\[k_n(f) \to T(f) \text{ a.e. where } T(f) \text{ is a multiple of the single Hilbert Transform.} \]

ii) If \(f \in L_{p_0} \) then

\[|E(\sup_n |k_n(f)| > \lambda)| \leq \lambda^{-p_0} \int |f|^{p_0} \, dx \]

iii) If \(p > p_0 \) then

\[\| k_n(f) \|_p < C(p) \| f \|_p \]

Proof. Let us consider the function \(\phi(u) = k(0+) \) if \(u > 0 \) and \(\phi(u) = k(0-) \) if \(u < 0 \). Since \(k(u) \) is odd we have

(11.2) a) \(\phi^{-1} \hat{k}(u) = c_0 \hat{k}(u) \)

b) \(\phi = c' I \) (where \(I \) is the symbol of the single Hilbert Transform).

Now the corresponding multipliers of the operators (11.2) are

(11.3) \[c \phi(u) \hat{k}(|u/n|) \]

Thus, taking into account (10,ii) the multipliers (11.3) are in the conditions of Theorem 1, with \(\varepsilon_n = n \), since the condition (10 ii) also shows that \(\hat{k}(|x|) \) is the Fourier Transform of a function belonging to \(L^{p_0*} \cap L^1 \) and therefore

(11.4) \[\int_{-\infty}^{\infty} \hat{k}(u/n) - \phi \hat{f}(u) \, du = \int_{-\infty}^{\infty} c \hat{k}(|u/n|) \]

\[-1 \| \phi \|_2 \| f \|_2 \to 0 \] from the boundedness of \(\hat{k}(|u|) \) and the continuity at \(u = 0 \). Now, an application of Theorem 1 gives i), ii) and iii).

12) **Theorem 3.** The operators \(K_n(f) \) defined in (10.2) converge pointwise, almost everywhere and in mean of order \(p \) to a limit operator \(K(f) \), for all \(f \) belonging to \(L^p; p_0 < p < \infty \). Furthermore

i) \[\sup_n \| K_n(f) \|_p < C(p) \| f \|_p; p_0 < p < \infty. \]
Proof. We shall use the "method of rotation" introduced in [2].

\begin{equation}
\int n^m K(nx) f(y - x) \, dx
\end{equation}

(12.1)

Taking polar coördinates and using the fact that \(K \) is odd, (12.1) is readily seen to be equal to

\begin{equation}
\int \frac{1}{2} | S(a) | \, d\sigma \int_{-\infty}^{\infty} n \, k(n \rho) \, f(y - \rho a) \, d\rho
\end{equation}

(12.2)

If \(\sup_n | k_n(f) | = \hat{k}(f) \), then the inner integral of (12.2) is dominated in modulus by

\begin{equation}
\sup_n \left| \int_{-\infty}^{\infty} n \, k(n \rho) \, f(y - \rho a) \, d\rho \right| = \hat{k}(f(a, s, u)) \, (R)
\end{equation}

(12.3)

where \((s, R)\) are the coördinates of the point \(y \) in the system defined by the direction of \(a \) and a hyperplane \((m - 1)\) dimensional orthogonal to the same direction. Now

\begin{equation}
\int s^n \left(\sup_n \left| \int_{-\infty}^{\infty} n \, k(n \rho) \, f(y - \rho a) \, d\rho \right| \right)^p \, dy =
\end{equation}

(12.4)

\begin{equation}
= \int ds \int_{-\infty}^{\infty} k(f(s, a)) \, (p(R)) \, dR \leq \int_{-\infty}^{\infty} ds \, C(p) \int_{-\infty}^{\infty} dy \left(f(s + aR) \right)^{1/p} \, dR = C(p) \left\| f \right\|_p^p
\end{equation}

Taking into account that

\begin{equation}
\sup_n | K_n(f) | \leq \int \frac{1}{2} | S(a) | \, d\sigma.
\end{equation}

(12.5)

From (12.4) and using the Minkowski Integral Inequality we have

\begin{equation}
\left\| \sup_n | K_n(f) | \right\|_p \leq \left((C(p))^{1/p} \right) \int \left((1/2) | S(a) | \, d\sigma \right) \left\| f \right\|_p
\end{equation}

(12.6)

(12.6) shows that the integrals (12.1) always exist a.e. and also proves part i) of the Thesis. Now, we are going to prove the pointwise convergence in a dense subset.

Let us observe that for \(f \in D \)

\begin{equation}
k_n(f) = \int_{-\infty}^{\infty} n \, k(ny) \, f(x - y) \, dy = \int_{-\infty}^{\infty} n \, \hat{k}(ny) \, k(f)(x - y) \, dy
\end{equation}

(12.7)

where \(k \in L^1 \) and is precisely the function whose Fourier Trans-
A form is \(c_0 k(\left| u \right|) \), see (11.3), and \(k(f) \) is a multiple of a single Hilbert Transform. Therefore

\[
(12.8) \quad \| k_n(f) \|_\infty < A \| \tilde{f} \|_\infty
\]

Now if \(f \in D \) in \(\mathbb{R}^n \) we have

\[
(12.9) \quad K_n(f) = \int_{x} (1/2) \left| S(a) \right| \, d\sigma \left[\int_{-\infty}^{\infty} n k(n\rho) f(y - \rho a) \, d\rho \right]
\]

According to (12.8) the inner integral is uniformly bounded by

\[
(12.10) \quad A \sup_{a} \left| \int_{-\infty}^{\infty} f(y - \rho a) \cdot \rho^{-1} \, d\rho \right|
\]

Since the inner integral converges pointwise, the bound (12.10) gives the pointwise convergence of \(K_n(f) \). The above argument together with the maximal inequalities already shown complete the proof of Theorem 3.

Remark. If we take \(k(x) = 1/x \) if \(|x| > 1 \) and zero otherwise, the integrals of (10.2) become truncated singular integrals of odd kernel. See [2] and also [6].

REFERENCES

