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MULTIPLIER OPERATORS 
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. Introduction. The purpose of the present paper is to give 
some sufficient conditions for the pointwise convergence of ope­
rators of the form 

f K .. (x - y) I(y) dy 
If" . 

The kernels K .. need not belong to Lt. Some classes of singular in­
tegrals as well as a large family of Flljer -like kernels may be re­
garded as particular cases of theorems 1, 2, 3. The main results 
are contained in theorems 1, 2 and 3 and some corollaries and exam­
ples are given thereaffer. 

Definitions and Notation. 

1) 1 • g will denote the convolution between 1 and gj namely 

Rm denotes the euclidean m - dimensional space. 

2) By L'P we shall denote the class of all measurable functions 
defined on Rm such that J II I 'P dx = II fill < 00; p;;:: 1. 

Rm 

3) By E (I > A); I;;:: 0, we shall denote the set of points of 
Rm such that 1 > A and by I E (f > A) I its measure. 

4.) A multiplier operator (*) acting from L2 to V is a linear 
4 4 

operator such that T(f) = k.1 for all IfL2. 
A 

I(u) = f exp (- i <U, X» f(x) dx; <U, x> 
Rm . 
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(*) we shall be concerned with multiplier operators acting always 
from L2 into L2. 

5) By HOC), H, Howe shall denote respectively the classes of 
bounded functions cp defined on Rm homogeneous of degree zero, 
such that 

a) cp € C"" if x #0; b) cp is the symbol of a singular integral ope­
rator K acting continuously from Lv into LV for all p> 1; c) No 
further restriction is imposed on cpo 

By K (I) we shall always denote the operator defined by the 
multiplier cpo In cases a) and b) the corresponding K is a singular 
integral operator. ! ri 

1) Theorem. Let Tn ...• = Tn be a sequence of multiplier 
1 m 

A A 

operators andkn (u) = k" "their corresponding multipliers; sup-
1"·· m 

pose that 
i) There exists a function 1>, bounded and homogeneous of de­

gree zero such that 

A 

f 1 kn(u) - 1> (u) ng(U) 12 du -4- 0 as n -4- 00 
R m 

[for all g belonging to L2 ] 

ii) There exists a sequence€n = (€\,. ... , €m "",) of real and 
positive parameters such that 

a) €n -4- 00 ; €i". # 0 for all nj and for all j. 
J . 

• 
b) The functions 'l1n (u) = k" .. , n (€ln Ul, .. ·, 

1 m 1 

€mn Um) cp-1(€ln U1, ... ,€mn Um). 
no 1 m 

have the following compacity property 

for some Po such that 1 < Po:( 2 and for all 8 = (81 , ••. , 8m) sub­
mitted to the conditions 0:( 81 + ... + 8m :( m, where each 8j 

can take the values 0 or 1 only. The constant M does not depend 
on n and the derivates are taken in the distributions sense. 
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Undertheabove~assumptions w:e have 

A) If Po < 2 and cf> belongs to the class H 00 or H then 
A 1 ) II Tn f -K(f) IIp-+ 0 for all f £ £P; p > po. 
A 2 ) If f E LP, P > Po then Tnf converges a. e. to K(f); further~ 

more the operator sup I Tn, ... f 1= T* f verifies 
nl ... nm nm 

'II T*f lip < C(p) II f IIp,p > Po where C(p) depends on p only. 
B) If cf> belongs to H 0 and po < 2 then 
B1 ) II Tnf-K(f) 112-+0 for all fEL2. 

B2 ) T .. r converges a.e. to K(f) and furthermore, if 
'Sup 1 Tnf 1 = T*f we have I! T*f 112 < C IIf 112' 

n 

0) Limiting Oases. Let p = Po and cf> belong to H or H 00; if 
f E £Po and I K (f) I Po log+ (K (f)) m-1 belongs locally to Ll then 

0 1 ) Tnf converges a.e. to K(f). 

O2 ) If I E 1< cio we have, for 1 ~ s < Po 
J I T*f 18 dX~Ol (s~ I E 1)+ O2 (s, I E I ) f K(f)l1o(log+ IK(f)l )m-1 di. 
E E 

0 3 ) If l K(f) IPo (log+! K(f) I)m belongs locally to Ll and 
I E I < 00, then f E (T* f) pO dx < A1 ( 1 E I) + 

+ A 2 ( I E I) fEI K(f) I Po (log+IIK(J) I )m dx. 

D) If Po = 2 and cf> belongs to H 0, the same conclusions of C 
;are valid. 

E) If the sequence E" = (£1" , t:2.. t:m" ) of ii) is such that 
1 2:' ••• , PI 

.each t:; ... is strictly increassing to 00, then 
] 

E 1 ) If cf> belongs to H or H 00, we have 

.and consequently Tnf converges a.e. to K(f). 

E 2 ) If cf> belongs to Ho and po = 2 we have that the same con­
dusions of E1 are valid. 

F) For cf> belonging to H or H 00, T "f admits the representation 
F 1 ) T .. f = J Kn(x-y) fey) dy for all f ELVj P;::: Po; K" be-

R'" 

longs to LP\ for all tt.; l/po + IIp*o = 1. 

F 2 ) If cf> belongs to Ho and f ££2, we have 
Tnf = f K .. (x-y) fey) dy where K .. t:L2 for all n. 

R'" 

G) The kernels Kn belong to £1 and II K .. 111 ~ M if and only 
if cf> reduces to a constant. . 
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H) If p, is a regular measure with bounded variation, defined 
on the Borel subsets of R'" then the following multipliers . 
k,,(u) = f k,,(u-x)(u-x) dp, (x) = Ttl1 , ... ,"", 

Bm 

verify A, B and also F with 

T"f = J K,,(x - y) g(x - y) f(y) d y where the K,,(x) are those 
B m 

• 
associated to k" and g (x) is the Fourier Transform of p,. 

The limit operator is defined by the multiplier 

-;;; (u) = f <p (u-x) dp, (x). 
Bm 

The key to the most important part of the proof of the above' 
Theorem is the following lemma. 

2) Lemma. Let F,,(x) = F" ... " (Xl' ... , X ... ) be a denu-
1 m 

merable family of measurable functions defined on R"', and let 
An = (AI" , •.. , Am.. ) be an m - dimensional sequence of real po-

l m 

sitive parameters such that the auxiliary functions 
m 

W .. = F .. , ... ,,, (A\. Xl, •.. , Am.. X ... ) II 
1 m 1 Tn j=l 

verify the following compacity property 

m 

(2.1) JJw" II JX;J8j JIPo:;:;;;M, Po>1 
j~l 

where M does not depend on n or 8 = (81 , ••• ,8 ... ) and each 8; can 
take the values 0 or 1 only. Then, if f* = sup I F n * f I we have 

n 

i) II f* lip < C(p) II f lip for all p > po* ; 1/po + Ilpo* = 1. 
ii) If I f J ~ L Po* and I f I Po* (log+ I f I ) m-l belongs lo'Cally to 

L1; then, for all measurable set E such that I E I < 00 we have 
fry dx:;:;;;A(r, IEI)+B(r,IEJ) f IflPo* (log+lfl)m-l dx 
E E 

wherel:;:;;;r<po* 
iii) If f ~ LV 0" and I f I P, (log+ I f J ) m belongs locally to Ll; 

then, for all measurable set E such that I E I < 00 

f f*Po* dx :;:;;; A' ( I E I) + B' ( I E I) fit J Po* (log+ J f J ) m dx 
E E 

iv) If the A; .. , are strictly decreasing to 0 for each j, we have 
] 

I E(r > A) 1< (Co/APo* ) f If I'Po* dx 
Rm 

Proof. Without loss of generality we may assume that the F .. 
are zero on the complement of the set { Xl ~ 0, X2 ~ 0, ... , Xm ~ 0 } • 
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Let I be a continuous and compact supported function; then,. 
by a change of variables we have 

The modulus of the last integral is dominated by 

00 ••• 00 

(2.3) sf .. · f I Wn(Y) I I l(x-AnY) I du 
0···0 .ok l , ,. l:m 

The sets HI< , ... ,10 are defined in the following way , m 

(2.4) Sk, ... ,10 = 
1 m 

j = 1, ... , m. If k j = ° the corresponding interval is [0, 2]. 

By an application of Holder's inequality, the series (2.3) IS; 

dominated by 

UV ••• I:\') 

(2.5) S ( f Iwn IP'dy)l/P.( fll (x-Any)p·*dy) 1/ Po*" 

0 ... 0 81; ••• lt m S& ••. l:m 
, 1 

Estimates lor the terms t", , ... , ',. = 

If k j > 0, j = 1, ... , m; then 
m 

(2.6) 2',>+ .. ·+kmtk,'''',km ~ {f (I wn I II I Xj I )Po dx}1/Po~lII(), 
8. , .. 'm j~l , 

The last inequality holds from Hypothesis (2.1). Then we must have 

(2.7) tk , ... , k ~:Mo 2-7<, -7<. - .. , -7<m 
, m 

If the m - tuple (klJ ... , km ) contains zeros in its coordinates, accor­
ding to Hypothesis (2.1) we have 

(2.8) 

::::;; lIIo where Sj = 1 if k j =;£= 0, Sj = ° if k j = 0. 

Now we conclude that in every case 
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'1(2.9) t k1 , ... , 10m :::;; Mo 2-:-7<1 - .. . -km 

Estimates for the terms (f I f(x - AnY) I Po* dy)l/Po* 
S\ ... km 

- AnY) IPo* dy)VPo* 

'The second (right hand) member of (2.10), by a change of varia­
bles, is readily seen to be equal to 

If M (f) is the maximal operator of the strong differentiation 
'(see [4], pp. 306-307) we have 

'(2.12) ( f If(x-AnY) I.Oddy)VPo*~22m/po*2(1/vo*) (1"1+ ... +10 .. ) 

Hi; •• ok m 
1 

. {M[ If IVo*] (x)} 1/Vo* Now from (2.9) and (2.12) we have 

0· .. 0 
. {M ( I f I Vo* ) } 1/Vo* 

Consequently 

{2.14) f* ~ Mo22m/vo* (~ 2(VPo) (\ + ... +lom») {M( If 1"0* ) } VVo* ) 
,and f*Po* ~ C(Po) M {I f I Vo* } 

If p > Po' then p = rpo* with r > 1, and from the Jessen­
Marcinkiewicz-Zygmund Theorem (see [4], pp. 306 - 307) we have 

.~ C(Po) C'(r) f Iflvo*rdx=C(r,po) f IfIPdx=C(p,po) Ilfllp"· 
Rm Rm 

Now the inequality (2.15) can be extended by continuity to 
:all LP, p > Po* (see [5], p. 165) and nart i of the Thesis follows. 
Taking f € LVo* , an application of the Jessen-Marcinkiewicz-Zyg­
mund Theorem to the function I f I Po* also gives ii) and iii). 
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Part iv) requieres a different technique. Let us return to (2.11) 
and consider 

X,mnm 2k m+.l 

(2.16) f If(x-y) IVo*dy} 
-x mnm 2tm+l 

Tn 

2- 2"" ( II An 2 kj )-1 
j~l J 

Putting f\ , ... , k = sup [<n)/" ... , lc , we shall show that 
1 m de' n l' m 

(2.17) 

where C does not depend on k 1, • •• , km or on the function f. 
The An. are strictly decreasing to zero for each j, j = 1, ... , m. 

J 

Therefore we can construct a family of continuous and strictly 
decreasing to zero functions h j (t), j = 1, ... , m, such that there 
exists a sequence tn of real numbers, strictly decreasing to zero, 
verifying 

(2.18) (j = 1, . .. , m) 

Now, the differentiation operators of (2.16) are III the same 
conditions as those of [4], p. 310, (3.5); therefore (2.17) follows. 
Let us rewrite (2.5) taking into account (2.16); namely 

·(2.19) 
0· .. 0 

2(-1/;"0) (7, + ... +7'm) 
I 

[f*k , ... , 7, ] l/Po* 
1 m 

.and using the convexity of uPo* we have 

(2.20) 

,and also 

I Fn 'ie' f I 1'0* ~ Mlo*22m ("i"" 2(-1/Po )(1'1 + ... +lc m ) J 1'0* 

0· .. 0 

0':) ••• 00 

~ aT<, ... , 7, f\, ... , k 
1 ,m., 1 m 

0 .. ·0 
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oc ••• co 

(2.21) Gk , ••• , k 1\ , ... , k 
1 III 1 ·111 

0·· ·0 

After a new normalization of the coefficients Gk , ••• , k such 
1 m 

00 ~ •• aD 

that l, al/2k,"" k = 1, the inequality (2.21) holds for such 
1 '" 0···0 . 

coefficients, but with a modification on the value of C. Now 

(2.22) 

E(al/2k , .. ·,k f\ , .. ·,k > At 
1 m 1 111 

Therefore 

(2.23) IE ( l, Gk, ... , k 1\, ... , k > A ) I ~ l, 
1 m 1 m 1: 

. 0· .. 0 ' ... li .. 

I E(a1/ 2k , ... , k 1\, ... , k > A) I ~ l, al/2k' ... , k 
1 III 1 m J: II 1 111 

l' .. ftI, 

(AlA) f I I I Po*dx = (AlA) f I I 1·"0 dx 
R", Rm 

The last inequality of (2.23) follows from (2.17). Now, from 

(2.21) and (2.23) we have 

(2.24) * * IE(/>A) 1= E(I/IPo* > APo*) < (A'/APo*), 

f I I I 1I 0 * dx. 
Ilm 

This ends the proof of part iv) . 

3) Remark. The Hypothesis (2.1) can be replaced by a weaker 
one, namely 

m 

(3.1) II'I}I .. n II Xl~ I Bj "p < .Ho; Po> 1; f3 > (Po-1)lpo 
.i~l 0 

Mo does not depend, on n or on 8 = (81, ... , 8m ) and 8/ can take 
the values 0 or 1 only; j = 1, .... , m. 

The condition f3 > (Po -l)lpo ensures the convergence of 
l, a1 / 2k' ... , k 

1:1 " .l:,. III 

A 

4) Prool of Theorem 1. Since k .. 4>-1 € Vo for some po. 
such that 1 < Po ~ 2, there exists a function F .. € LP 0 * such that 
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its Fourier Transform in the distributions sense coincides with 
... 
k",.¢-l. Furthermere, from the Hausdo.rff-Ytmng~Titehmarsch; 

Theorem it follows 

(4.1) 
111. 

.calling (Pn = (1/ II €n.) Fn , ... , n (Xl €-\, , ... , Xm E- 1n ) we 
I j=l J 1 In 1 m 

have that the Fourier Transform in the distributions sense of cp 10 

is \{In and also 

(4.2) 

By a similar procedure we obtain 

(4.3) 

JYI e does not depend on n or s = (81' ..• , 8m ) and each 8 j can take 
the values 0 or 1 only. 

Now it is clear that the functions F n with auxiliary func­
tions cp n are in the conditions of Lemma 2-. If f belongs to the 
,space cS of C'" rapidly decreasing functions, then 

A A A A 

(4.4) T'\,···,"m(f)A=kn , ... ,10 .f=kn ¢-l.¢f 
• m 

The Fourier Antitransform in the distributions sense gives 

(4.5) Tn , ... ,,, (f) -Fn* K(f) 
1 ,n 

Let us observe that F n € LV for all P such that 1 ::::;; P ::::;; Po * ; 
Tn 

this follows from the fact that 1'1 F n II . I Xj I 8j II '0* < 00 for 
j-l 

.all 8 = (81, •.• , s",) such that each 8j takes the values 0 or 1 only. 
On the other hand, we shall show that II Fn 111 ::::;; No where No 

does not depend on n. In fact, from (2.5) 

(4.6) f I Fn(x) I dx =f I cpn(X) I dx::::;; f I cp,,(x) I dx::::;; 
Rm Em k1 ,. ,km 

::::;; JYIo 22m/ po ~ 2(-l/Vo*l (I,. + ... +kml =No • 

lel , . ,km 

If for some p > 1, K (f) maps continuously LV into itself, by 
tlsing the Young inequality we can extend by continuity the re­
presentation (4.5) for all f € LV and furthermore, we have 
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(4.7) liT",""'''m(f) IIp=IIFn*K(f) Ilp~jIF"lllIIK(f) lip" 
~ No.C·11 f II p. 

( 4.8) As we have already shown, the F .. are on the conditions of 
Lemma 2 and, therefore, if K (f) maps continuously LP into itself,. 
sup Tnf = sup 1 F" * K(f) I verifies similar inequalties to those 

" n 
proved for sup 1 Fn * fl. 

n 

( 4.9) On the other hand, T nf converges pointwise in a dense subset .. 
In faet, if f £ cS we have 

• • 
(4.10) T .. f= (l/(2II)"') f ei <IlJ'Y>kn(Y) .f(y) dyand 

Rm 

• A A 

( 4.11) I T nf - K (f) I ~ f I k n - <P I I f I dy ~ (f I f I dy) 1/2 .. 
Rm Rm 

A • 

(f I kn - <P I 2 I f I dy)1/2: 
Rm . . 

Since f £ cS , then I f 11/2 € £2; therefore, the last term of the ine-
quality tends to zero. (condition i) ). 

A suitable combination -of the two preceding arguments (4.8)­
and (4.9) gives parts A, B, 0, D and E. (see [4], p. 307 ana 
[5] p. 160). 

(4.12) If f £ LV and P > Po we shall show that Tn(f) = K .. * f,· 
where K £ LPo*. 

A A A.Ii.. 

Let us -observe that Fn = kn <P -1, that is <p F .. =, k .. , and since-
K maps continuously LP into itself for all p > 1 when <p belongs to 
H or H em then in both cases we have 

(4.13) K(Fn) =Kn£LPfor all p such that l<p<po* since­
F n £ LP for the same values of p. 

On the other hand, if f £ :3, taking (4.5) into account, we 
have (4.14) Tnf=Fn*K(f) =Kn*f. 

Now we can extend (4.14) by continuity to all LP, p~ Po, since 
both sides of the equality verify respectively 

(4.15) IFn*.K(f) 1~IIFnllp/(p-1)·IIK(f) lip 

1 Kn * f 1 ~ II Kn 11 11/(11-1). II f II fJ 

Therefore part Fl is proved. 
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Part F 2is also valid since this case requires 

II K(f) 112 ~ A Ilf 112 only. 

(4.16) Proof. of Part G. If cp = Co then Fn = Co-l Kn; therefore-

(4.17) II Knill < M' where M' does not depend on n. 
A 

Let us suppose that 11K .. 111 < M'; consequently k.. must be-
continuous for each n, and furthermore 

A A 

(4.18) cp = k .. /F .. 
A 

(4.19) If F .. (0) # 0 for some n =no; then cp must be continuous at 
x = 0; and since cp is a bounded homogeneous of degree zero func­
tion it must reduce to a constant. 

A 

(4.20) If F .. (O) = 0 for all n we shall show that K(f) = 0 for 
all f £ L2. 

In fact, let us consider a subsequence {n'} of { n } such that: 
F .. , and cp .. , are in the conditions of iv) of Lemma 2. Then 

(4.21) I E(sup IF .. , * f 1>'\) I ~ (CoI,\2) I If 12dx 
", R m 

On the other hand, from the compacity conditions on the cp .. ,. 
for each £ > 0 the cp.. admit the decomposition 

(4.22) cpn = cp .. (1) + cp .. (2) ; II cp .. (2) 111 < £ 

cp ,,(1) = 0 if xi Q, where Q is a cube centered at the origin and 
depends on £ > 0 only. If x £ Q, I cp .. (l) (x) I < M2, where M2 de­
pends on £ > 0 only. 

Thus, if f £ D, by changing variables and taking into account 
A 

that F .. , (0) = 0, we obtain 

(4.23) I (F .. ,*f)(x) I=II cp.,,(y) .f(X_£-l y) dy I 
fI' 

= I J cp.,,(y) [f(x) -/,(x-£ -1 y)] dy I ~ 
R m .' 

~ II cp .. ' (1) (y) I .1 f (x) - f (x - £ -1 y) I . dy + 2£ II f II ""' ", Bn, 

-i ?t -1 

where f(x-£ y) =f(Xl-£ J Yl, . .. 'X",-£, y",) 
.' .'1 • m 
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Now if Q {n' denotes the" cube obtained from Q by dividing its 
"edges by {n'j respectively, then the right andl term of the inequality 
( 4.23) is readily seen to be less or equal than 

'Therefore 

,( 4.25) lim I F n' * I I ~ 2 ( II I II 00' 

Consequently, for all I € D it is valid 

,(4.26) lim F n, '" I = 0 
Thus, (4.26) together with (4.21) shows that lim F n' * I = 0 a.e. 

for aU I belonging to £2, whence lim F n' '" K (f) = 0 a.e. for aU I 
belonging to L2. This completes the proof . of Part G, since 

F n, '" K(f) = Kn,(f) and by Hypothesis i) II Kn,(f) -Kef) 112 ~ O. 

, 
(4.27) Proal 01 Part H. The kn and </> are supposed to be Borel 
measurable. Let us consider the functions 

, 
kn (x) = f kn (x - y) . dp.( y) . 

Rm 

By an app-liclltion of the Minkowski Integral Inequality we have 

(4.28) 

dw(y) denotes the variation of p. and V(p.) the variation in the whole 
Rm. Now if g(x) = 1/(27T)1n f ei<w,Y> d/A(y), from (4.12), 

R'" 

( 4 .13) and (4.28) we conclude that 

(4.29) kn = (Kn.g)' 
,On the other hand if I € c5, we have 

(4.30) Tnl = (Kn.g) '" I 
Since II g II 00 < V(p.), (Kn.g) '" I verifies the same type of 

inequality as that of (4.15). Therefore, by the same density argu­
ment we conclude that 

(4.31) Tnl=f "mKn(x-y) g(x-y) f(y) dy 

for all I {Lv with P > Po and </> belonging to H or H 00' By a similar 
method, one obtains the representation for I {L2 and </> € H o. 
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( 4.32) Now we are going to show that T,.f converges pointwise 
for all f £ c5 • 

(4.33) T .. (f) (x) = (l/~)m f 11'<-, If>. 
R'" 

~ . 
fey) (f k .. (y-8) dp. (8) ) dy 

Interchanging the order of integration (which we may) we have' 

• • 
(4.34) f dp.(s).(1/2'7l-) .... If e'<-,If> k .. (y-s) f(y) dy 

um Rm 

By a similar procedure than that employed in (4.9), (4.10) 
and (4.11), it is easy to show that the inner integral of (4.34) 
c.onverges pointwise and uniformly to " " 

A • 

(4.35) (1/2 ... )m f ,e'<-,If>q,{y-s) fCy) dy 
om. 

On the other hand, since V(p.) < 00, T .. (f) converges pointwise 
• 

for all f £ c51 to the operator T (f), whose multiplier is k" .. p.. 

( 4.36) Estimates for the maximal operator associated to T... In 
this part we shall use a technique introduced by A. P. Calderon 
and A. Zygmund in [2]. Let q, belong to H or H ",. Then, if f £ V, 
P > po, We have 

(4.37) T"f=J K,,(x-y)g{x-y) fey) dy = 

= (1/2 ... )'" f K .. (x -. y) (f (,_«II-If),8>dp.(s) ) fey) dy 

Interchanging the order of integration we have 

(4.38) (1/2 ... )'" f dp.(s) ei<",B> f K .. (x-y) f(y) e;;<s,'>dy. 
Bm Bm 

The modulus of the integral (4.38) is dominated by 

(4.39) l/(2n-)m f dw(s) [T(fe-·<·,II>)(x)] 
BfIt 

Taking the LV norm of (4.39) with respect to x we obtain 

(4.40) ~lj2'1r)m. (f [f T<fe-i<8,1I>)(x) . dW(S)]fI dx )VII~ 

* ~ (lj'2lr)m f dw(s) [f T{f e- i <8, 11» (x) I P dx]VP ~ 

:::;; (V(p.)/(2'1r)fIt .0, II f II p. 
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Thus 

.. (4.41) II sup I Tnf I II p :::;; (V(/t)/(27T)m .C(p) ·11 flip· 
n 

A similar estimate holds fDr cP € H 0 and f € V. (4.41) and (4.32) 
give the corresponding convergence results. This completes the proof 
of Part H. 

5) Examples. 

(5.1 ) Let us consider the single Hilbert-Transform, that is 

f= lim f f (y) . (x - y) -1 dy 
n~ "" J"'=yl>'/n 

We know that f e- iuy y-l dy_-2i sg(u). f (sint). t- 1 dt 
Iyl>'in IU/nl 

A 

Here, the role of cp ( u) is played by - i sg ( u) 7T; the role of kn is 
+'" 

played by -'- 2i (f .(sin t). t- 1dt) sg(u); the role of €n are-
luinl 

played by the natural numbers { n 1 . 
+'" 

Finally, the function f (sin t) . t- 1 dt and its derivate in 
lui 

the distributions sense belong to LV for all Po sueh that 1 < po :::;; 2. 
Now an application of Theorem 1 will give the well known results. 
concerning pointwise convergence of the Hilbert Singular Integral 
in LV, p > 1. 

(5.2) If Kn and Kn denote the Fejer Kernel and its conjugate, res-

A 

pectively, then Kn = (1-\ u/n \) + and Kn = (1-\ u/n II) + (-i 
sg (u) . 7T. ) 

A A 

Here the roles of kn, cp and En, are played by K n, 1, { n} and 

K n , (-i7Tsg(u)). {n} respectively. Finally, since (l-lul)+ and 
its derivate in the distributions sense belong to LV for all Po SUCll 
that 1 < Po :::;; 2, then the same conclusions as in (5.1) hold. 

Remark. Analog considerations are valid for the Poisson Ker­
nel and its conjugate. 

6) Theorem 2. Let k(x) be a function belonging to £l(R"') 
submitted to the following two conditions 
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i) S k(x) dx = 1. 
R'" 

m 
ii) There exists Po> such thet 1£ (x) II (1 + I Xj I ) €LPo 

j~l 

If K is a singular integral operator with symbol belonging to H, 

we shall denote by r = K(f). By k(nx) we denote kCnxl, ... , nx",). 
Nnder the two preceding assumptions we have 

a) S n"'k (nx) f(y-'---x) dx~f(y) a.e. for all f€LP; p? 
a'" 

Po*; l/po + l/po'~ = l. 

b) J n'" k(nx) fey - x) dx -+ fey) a.e. for all f € LP; p? 
* 

Po* Calling f* = sup I JR'" nm k(nx) fCy - Tx) dx I; 7 = sup IJRm 'f/,m 
, n n 

'if, (nx) f (y - x) dx I we have the inequalities 
* 

c) I E(f* > A) I ~ (Co/A Po* ) JR'" If 1 Po* dx; I Ect > A) I ~ 
< (Co1/APo*) JRm If 1 Po* dx . 

* 
d) If p>p~*, thenllI*llp<C(p) Ilfllp 1111Ip<C'(p)llfllp 

and therefore the convergence in mean of order p of a) and· b) is 
valid. 

Proof. If f € cS, then 

A 

(6.1) Snmk(nx) fey-x) dx= C27T)-m f ei<V,U> k(u/n) 

A 

feu) du 
h < " 

Since Ilk(u/n) II"" 111£111 and the fact that k(n/u) ~ 1 for each 

U, it follows that, for f € cS, 

(6.2) f n'" k(nx) fey - x) dx ~ f(y). 
R'" 

Now, nm k(nx) and k(x) are respectively under the conditions of 
theFn and 'lin of Lemma 2; the condition ii) implies the condition 
(2.1) of Lemma 2. Finally, since C n, ... , n) are in the conditions 
of iv) Lemma 2, the maximal inequalities c) and d) with respect 

to .J follow. A combination of (6.2) and the maximal inequalities 
gives a) and also the convergence in the mean of order p for all 

p ? Po*. Now, if f € cS 
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A 

(6.3) J nm l(nx) fey - x) dx = (2'11') ~"" J e'<I/··> f(a) ",(a). 
B"" Bm 

A N 

k(s/n) ds=f ft.'" k(nx) f(y-x)dx 
The representation (6.3) may be extended by continuity to all 

f £ LV with P;;::: Po·, since ft.'" k(ft.x} belongs to Lq for all q such 
that q ~ Po. (A similar argument was given in (4.12 - 13 - 14 -
15) t. Now the representation proved above gives the results con-

<eerning ft.'" f k(nx) fey - x) dx. 
B'" 

7) Remark. A large family of Fejer-like kernels are particular 
eases of Theorem 2, namely: the m - dimensional Poisson kernel and 
its conjugates by the Marcel Riesz Transform, the multiple Fejer 
kernel, the multiple Weierstrass kernel, etc. 

8) Remark. Example 1 shows that there exists a kernel k 

under the conditions of Theorem 2 such that, for all f £ V, P > 1, 

+'" (8.1) f [(f(y)/(x-y)} dy= J . nk[n(x-y)] f(y) dy 
1:1I-vl>1/6 -00 

The kernel is precisely the function whose Fourier Transfor.m 
+00 

is (2/'11') f (sin Ii) t- 1 dt. , .. , 
9) Remark. Another type of Fejer-like kernels is studied in 

{8] (see Lemma (1.5), Part I) and also in [1]. 

10) Singular Integrals of Odd Non-homogeneous Kernel. Let 
k(x) be a measurable and odd function defined on the real line, 
belonging to L2, submitted to the following conditions 

A A. 

i) k(O+) and k(O-) exist atnd are different from zero. 
A 

ii) k([ui) and its derivate in the distributions sense belong 
to L1I. for some Po such that 1 < Po ~ 2. Now let S(x) be an odd 
homogeneous function of degree (m - 1), defined on Rm such that 

(10.1) f I Sex) f dCT < 00 

1"1=1 
If K(x) = Sex) . k(lxi); then we call Old Singular Integral 

of nonhomogeneous kernel to 
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10.2) f nm K(ny) f(x - y) dy 
nfin 

11) Lemma. Let k(x) be under the conditions of 10), then the 
operators 

+"'J 
(11.1) kn(f) =f n k[n(x-y)] f(y) dy have the properties 

i) If t £ V, P ~ Po, l/po + ljpo* = 1; then 

kn(f) -+ T(f) a.e. where T(f) is a multiple of the single 

Hilbert Transform. 

ii) If t E Lpo then 

I E (sup I kn(f) I> A) < (l/A Po) f I f\Po dx 

iii) If p > po then II sup I kn(f) III p < C(p) II flip 
n 

Proof. Let us consider the function cJ>(u) = k(O+) if u> 0 
A 

and cJ> (u) = k (0 -) if u < O. Since k (u) is odd we have 
A A 

(11.2) a) cJ>-1 k(u) = Co k(u) 
b) cJ> = c' I (where I is the symbol of the single Hilbert 

Transform. 

Now the corresponding multipliers of the operators (11.2) are 
A 

(11.3) ccJ>(u) k(lu/nl) 
Thus, taking into account (10,ii) the multipliers (11.3) are in 

the conditions of Theorem 1, with En = n, since the condition (10 ii) 
A 

also shows that k ( I x I) is the Fourier Transform of a function be-
longing to LPo* n Ll and therefore 

+00 A A +". 
(11.4) f Ik(u/n)-cJ>1 2 If(u) 12du= f Ick(lu/nj) 

_1121 cJ> 121 feu) 12 du-+ 0 from the boundedness of k(1 u I) and 
the continuity at u = O. Now, an application of Theorem 1 gives 
i), ii) and iii). 

12) Theorem 3. The operators Kn(f) defined in (10.2) con­
verge pointwise, almost everywhere and in mean of order p to a li­
mit operator K(f), for all f belonging to LP; Po < p < 00. Further­
mOre 

i) II sup 1 Kn(f) Illp< G.(p) II f lip; po < p < 00. 
n 
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Proof. We shall use the "method of rotation" introduced in [2]. 

(12.1) r n'" K(nx) f(y - x) dx 

Taking polar coordinates and using the fact that K IS odd, 

(12.1) is readily seen to be equal to 

+'" 
(12.2) f'i, (1/2) I S(u) I du f n k(n p ) f(y - p u) d p 

* If sup Ikn(f) 1= k(f), then the inner integral of (12.2) is domi-
n 

nated in modulus by 

+= * 
(12.3) sup If n k(np) f(s+ (R-p) u) d p I=k (f(p,s,u» (R) 

n 

where (s, R) are the coordinates of the point y in the system de­
fined by the direction of u and a, hyperplane (m - 1) dimensional 
orthogonal to the same direction. Now 

+00 
(12.4) f a'" (sup If n k(np) f(y-pu) d p I)P dy = 

n 
+00 +~ 

f ds f k(f(p, s, u) )P(R) dR ~ f ds C(p) f 
Rm-l Rm-l 

I f(s + uR) I pdR = C(p) II fill 
Taking into account that 

(12.5) sup I Kn(f) I ~ f'i, (1/21 S(u) I du. 
n 

+00 
.sup If n k(np) f(y-pu) d p I 

n 

From (12.4) and using the Minkowski Integral Inequality we have 

(12.6) II sup I Kn(f) III p ~ [(C(p)1/P f (1/2) I S(u) I du] ·11 flip 
n ~ 

(12.6) shows that the integrals (12.1) always exist a,e. and also 
proves part i) of the Thesis. Now, we are going to prove the pointwi­
se convergence in a dense subset. 

Let us observe that for f € D 

+~ +~ 

(12.7) kn (f) = f n k ( ny) f (x - y) dy = f 

n if ( ny) k (f) (x - y) dy 

where k € L1 and is precisely the function whose Fourier Trans-
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A 

form is Co k(1 u I), see (11.3), and k(f) is a multiple of a single 
Hilbert Transform. Therefore 

Now if f € D in R'qI, we have 

+" 
{12.9) Kn(f) . f~ (1/2) 1 S(a) 1 du [f n k(np) f(y-pa) d p] 

According to (12.8) the inner integral is uniformly bounded by 

+-.0 
(12.10) A. sup 1 f f(y - pa) .p-l d p I 

·Y·a 

Since the inner integral converges pointwise, the bound (12.10) 
gives the pointwise convergence of Kn (f). The above argument 
together with the maximal inequalities already shown complete the 
proof of Theorem 3. 

Remark. If we take k(x) = l/x if 1 xl> 1 and zero otherwise, 
the integrals of (10.2) become truncated singular integrals of odd 
kernel. See [2] and also [6]. 
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