SOME REMARKS ON THE POINTWISE
CONVERGENCE OF SEQUENCES OF
MULTIPLIER OPERATORS

by C. P. CALDERON *

Introduction. The purpose of the present paper is to give
some sufficient conditions for the pointwise convergence of ope-
rators of the form

S Enlz—y) {(y) dy

The kernels K, need not belong to L. Some classes of singular in-
tegrals as well as a large family of Féjer - like kernels may be re-
garded as particular cases of theorems 1, 2, 3. The main results
are contained in theorems 1, 2 and 3 and some corollaries and exam-
ples are given thereaffer.

Definitions and Notation.

1) f * g will denote the convolution between f and g; namely
gm f(x—'y) g(y) d?/ - £m f(xl_yly vy T —
—Yn) (Y1, - > Ym) AY1. .. AYm

R™ denotes the euclidean m - dimensional space.

2) By L? we shall denote the class of all measurable functions
defined on R™ such that § |f|?de=||f|lF < o;p=1.
Hm

3) By E(f >A); f =0, we shall denote the set of points of
R™ such that f > A and by | E(f > A) | its measure.

4) A multiplier operator (*) acting from L2 to L* is a linear
operator such that T'(f) = k.f for all fel2.

f(u) = J.exp (—i<u,2>) {(2) do; <u, 2> = 3
=

* Avenida Quintana 369 - 1° - San Luis.



— 154 —

(*) we shall be concerned with multiplier operators acting always
from L? into L2

5) By H,, H, H, we shall denote respectively the classes of
bounded functions ¢ defined on R™ homogeneous of degree zero,
such that '

a) ¢ e O if £540; b) ¢ is the symbol of a singular integral ope-
rator K acting continuously from L? into L? for all p > 1; ¢) No
further restriction is imposed on ¢.

By K(f) we shall always denote the operator defined by the
multiplier ¢. In cases a) and b) the corresponding K is a singular
integral operator. . 1H

1) Theorem. Let T”’l""'m =T, be a sequence of multiplier

operators and k, (u) = I{,,l_ _.n their corresponding multipliers; sup-
m
pose that
i) There exists a function ¢, bounded and homogeneous of de-
gree zero such that

£ 1 ea(u) — é (u) 2| g(u) |2 du —0 as n — oo

Rm
[for all g belonging to L? ]
ii) There exists a sequence e, = (e'»

positive parameters such that
a) € > ©; ejnﬁ«éO‘ for all n; and for all j.

" vy €™n ) of real and

b) The functions ¥,(u) = k”1 ceemg (eln1 Ugye ooy
", Um) 4>—1(51,.1 Usy. o y€™n, Um).
have the following compacity property
s1+...4sm
r?.f,n

<M
Do

EEYTPRE 0Sm Um

for some p, such that 1 < p, <2 and for all s = (sy,...,Sm) sub-
mitted to the conditions 0<s;+ ... + Sm < m, where each s;
can take the values 0 or 1 only. The constant M does not depend
on n and the derivates are taken in the distributions sense.
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Under the above. assumptions we have

A) If p, < 2 and ¢ belongs to the class Hy, or H then

A) | Taf—EK(f) II,—>0 for all feL; p> po

A,) If feL?, p > po then T,f converges a.e.to K (f); further-

more the operator sup | Tn, ... f | = T~ f verifies
ny. N

11 Tf o < C(0) || f llp» p > Po where C(p) depends on p only.

B) If ¢ belongs to H, and p, < 2 then

B,) || Taf —K(f) |]o—0 for all felL?

B,) T.f converges ae. to K(f) and furthermore, if
sup | Tof | = T*f we have || T*f [|. < C'|[If |[.-

C) Limiting Cases. Let p =p, and ¢ belong to H or H,; if
feL?, and | K(f) |2 log*™ (K(f)) ™~ * belongs locally to L' then
C,) T.f converges a.e. to K(f).
C.) If | E|< o we have, for 1<<s < po
{;l Tf |* de<0: (s,| E )40z (s, | E | )fEK(f)po(10g+ [K ()] )™ da.
Cs) If | K(f) | % (log*] K(f) |)™ belongs locally to L' and
|E| < w, then fr (T*)* do < A |E]) + :
+ A:(|E|) fu| K(f) | % (log T| |K(f) [ )™ da.
D) If po=2 and ¢ belongs to H,, the same conclusions of C
are valid.
E) If the sequence e, = (elnl, €2n2‘ ‘e’",,m) of ii) is such that
each e",,j is strietly increassing to oo, then
E,) If ¢ belongs to H or H,, we have

[E{TF> M| < (C/%0) § |f]%0daf el

and consequently T,f converges a.e. to K(f).

E,) If ¢ belongs to H, and p, — 2 we have that the same con-
«clusions of E, are valid.

F) For ¢ belonging to H or H., T'»f admits the representation
Fy) Tuf = § Kan(z—vy) f(y) dy for all feL?; p==>po; Kn be-
'™ .
longs to L?*, for all n; 1/po + 1/p*, =
F,) If ¢ belongs to H, and f ¢ L?, we have
T.f = f K.(x—vy) f(y) dy where K, e L? for all n.

@) The kernels K, belong to L' and || Ku||. < M if and only
if ¢ reduces to a constant.
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H) If p is a regular measure with bounded variation, defined
on the Borel subsets of B™ then the following multipliers

Ra() = [ Ta(e— )t —2) dp (&) = T,

verify A, B and also F' with
Tsf=) K.(z—y) 9(x—vy) f(y) dy where the K,(x) are those
Rm

associated to ;c,, and g(x) is the Fourier Transform. of s
The limit operator is defined by the multiplier
¢ (u) :{t,,. ¢ (u—z) dp ().

~ The key to the most important part of the proof of the above
Theorem is the following lemma.
2) Lemma. Let F,(x) :F,,1 e,
‘merable family of measurable functions defined on R™, and let
M= ()‘1"; s+--»A", ) be an m - dimensional sequence of real po-

(1, ..., Zm) be a denu-

sitive parameters such that the auxiliary funections
m

Yn="Fy ,.rm, (M &1y ooy N 2) 1T ()J,,j)
J=1

verify the following compacity property

@D % T el s I, o> 1

where M does not depend on n or s= (s;, ...,s,) and each $j camn
take the values 0 or 1 only. Then, if f* —sup | F, *f| we have

) 171l < C(p) | f|ls for all p> po* 5 1/po+ 1/pe* = 1.

i) If [f]eL™ and |f]** (log* |f|)™* belongs locally to
L*; then, for all measurable set E such that | E | < o« we have
gf*' de < A(r, |E|) 4 B(r,|E)) ,{} [f1%0" (log™ |f|)m=* dx
where 1 <<r < po*

ii) If feL?" and |f]|™ (log* |f]|)™ belongs locally to L1;
then, for all measurable set E such that | E | < o »
{f*""* de <A (|E|)+B(|E]) glfl"“* (logt | f])™dx

iv) If the )J,.]. are strictly decreasing to 0 for each j, we have
LB >0 1 <(Co/n) [ | f P da

Proof. Without loss of generality we may assume that the F,
are zero on the complement of the set { 2, > 0,2,>>0, ..., 2, =>0}.
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Let f be a continuous and compact supported function; then,
by a change of variables we have

(2.2) f Fo(x—y) f(y) dy = ,f *I'n(y) fx—Ny) dy =
:‘E‘;'" ‘I,n(yl}‘ XS ’!lm)f(%—-)\nlyh ey p— Mmym) dy1 . e dym

The modulus of the last integral is dominated by

@3) " f ) | | fe—a) | dy

LICRER 2

The sets Skl s wes b, are defined in the following way

(2.4) S, .mr, = [20, 2+ 1]y . x[2m, 2n +1] for k; >0,

)

j=1,...,m. If k; = 0 the corresponding interval is [0, 2].
By an application of Holder’s inequality, the series (2.3) is
dominated by

(25) X (f |w]md)m( f|f (a—ay)dy) Y
0.0 Bk ...kp s,,l_“zm

Estimates for the terms by yrn = ( f | Wa|Pdy)t/™
8

ek

If £, >0, j=1,...,m; then
(2.6) 2otetbnty o Y S (W] T2y | ) do} /o My
! " 8 ... km J=1
The last inequality holds from Hypothesis (2.1). Then we must have

(2.7) by oo ky S Mo 27F —Fa—.n =k,
If the m - tuple (ky, ..., kn) contains zeros in its coordinates, accor-
ding to Hypothesis (2.1) we have

(2.8) 28k F s ko f % < (, J (v, |,_II1 |z | )P do)t/ P
LIRRRY J=

S M, where s; =1 if kj 540, s; =0 if k; = 0.
Now we conclude that in every ecase
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11(29) Thp s oonr K, < M, 92—k —...—km
Estimates for the terms C f | fx—Ay) | ™ dy)1/ 7
ﬂk .

1 m

@.10) (S [fe—ry) | a7 <SS T

, — My) [P dy)tm
The second (right hand) member of (2.10), by a change of varia-
Dles, is readily seen to be equal to

( /.II A )t U ks N™ny . 20M

i | o f ... | f (2 —y) I dy
om 2k — Aol 28— \Tap, 267
J=1

Jomm/pE 90/ ¥) (Bt tE)

If M(f) is the maximal operator of the strong differentiation
(see [4], pp. 306-307) we have

(2.12) ( f If (x—Any) | wady)1/o* L 22m/n* 91/ 20%) (ky+ ... +km)
M| f|™](x)} ™" Now from (2.9) and (2.12) we have

@.13) | Fatf|<Meemt (5 20mim Gt tRa)
.0

0
NI NG
Consequently

(2.14) f* M/ (% 2070 Gyt otk (M| F) }172)
and £12," <O (po) MA|f |}

If p>po* then p=rpo" with r >1, and from the Jessen-
Marcinkiewicz-Zygmund Theorem (see [4], pp. 306 -307) we have

@15) [ £l =L (£ [ de < Olm) U™ )7 do <
<O () [ 17| da=C(r,p0) § | |7do=C(pp0) (111l

Now the inequality (2.15) can be extended by continuity to
all I?, p > po* (see [5], p. 165) and vpart i of the Thesis follows.
Taking feL™ , an application of the Jessen-Marcinkiewicz-Zyg-
mund Theorem to the function | f|™* also gives ii) and iii).
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Part iv) requieres a different technique. Let us return to (2.11)
and eonsider

‘ )‘1”1 Qg+t Ay Qemts ) .
(2.16) (™= .. [ |f(z—y) %" dy)
_)\lnl kg1 AN™nm Ok gy +1

m
272m (T A, 2%) 1
=t !

Putting f*’%’ o by = SUP [, g, , We shall show that
def n

2AT) B, g >N [ < (C/N) J [F[* do

‘where C does not depend on k,,. .., ky or on the funection f.
The Ay, are strictly decreasing to zero for each j, j=1,...,m.
Therefore we can construct a family of continuous and strictly
decreasing to zero functions h;(t), j=1,...,m, such that there
exists a sequence t, of real numbers, strictly decreasing to zero,
verifying

(2.18) Any = by (a) (j=1,...,m)

Now, the differentiatioh. operators of (2.'16) are in the same
.conditions as those of [4], p. 310, (3.5); therefore (2.17) follows.
Let us rewrite (2.5) taking into account (2.16); namely

®...0
(2.19) [Pt f|<Mo2mny TF 20/ Gt
0---0
...
Uy 170" M2 TS g1 )
m
t 0---0
* *
[f by g ] 7%
o, , o0
Calling akl’ R 2(=1/8) (b +...+Fk) [ =
0.0

2(=1/p) (B +...+k ) 1
.and using the convexity of u?,* we have '

’ ®,,, » !
(2.20) B f| 2" SMpeaem [ 5 20-1/m) 6, bbb ] oyt
0-.-0
3 akl 5 ey by -‘f-*kx’ ey Koy
0...0
and also
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(2.21) PR KC S ek ok
0---0

After a new normalization of the coefficients @y e orky, such
that 3 @ Tk sy = 1, the inequality (2.21) holds for such

0..-0
coefficients, but with a modification on the value of C. Now

(222) E ( 2 ak;l 9 o0y kmf *kl y e Ky > )") C U
0---0 ke,
E(a'l/2kl PIRIZ) kmf *kl s e Ky > A')'

Therefore

(2.28)  |E( 2 @, enn, o nn,>A) S 3
. 0.:-0

k.
1oeeky,

IE(al/2k17 ey Ky f*kl’ (L > )‘) |<k zkal/zkl, ok
ok

1

(A//\)g | f ]P0 de = (A//\)g |f]?*o da
The last inequality of (2.23) follows from (2.17). Now, from
(2.21) and (2.23) we have

(2.24)  |E(F>N|=E(|f|? >r%") < (4/%00).
S If|%" dz.
Rp
This ends the proof of part iv).

3) Remark. The Hypothesis (2.1) can be replaced by a weaker
one, namely

(3.1) || ¥n _anfC;"B | % ”po < Mo; po>1; B> (Po—1)/p0
J=

M, does not depénd on #n or on $= (Sy, ...,84) and §; can take
the values 0 or 1 only; j=1,...,m.
The condition 8 > (po—1)/p, ensures the convergence of

b} al/zk RIS

kl' . .km

4) Proof of Theorem 1. Sinece ky, ¢~ ' ¢ L?q for some po
such that 1 < p,<<2, there exists a function F,eL?,* such that
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its Fourier Transform in the distributions sense coincides with

‘Jc,,-¢“1.'Furthermore, from the Hausdorff-Yeung:Titchmarsch:
Theorem it follows

(4.1) [T {10 < A (o) [[ w6 [,

m.
Calling on=1(1/ 1 e"j) F,.l y sy
j=1
have that the Fourier Transform in the distributions sense of o,
is ¥, and also

(4.2) [ @n [ls,* < A(Po) |[ ¥n ],
By a similar procedure we obtain

(1 e_lnl g ooy Lm e_lnm ) we

(4.3) [ on _Hl EZN, Hpo* <A(p0)-HDE;:”'+:: ‘I’anu<M0
i Y eens

M, does not depend on m or s = (sy, ...,ss) and each s; can take
the values 0 or 1 only. :

Now it is clear that the functions F, with auxiliary fune-
tions ¢, are in the conditions of Lemma 2. If f belongs to the
space I of C'* rapidly decreasing functions, then

A

(44) Tnl:"')"WI«(f)A:knl"'-)nm'f: n¢_1'¢f

The Fourier Antitransform in the distributions sense gives

(4.5) Ty, () —F K ()
Let us observe that F, e L? for all p such that 1 < p < po* ;

)

this follows from the fact that [|F, T |x;|% ||s¢ < o0 for
je1

o
all s= (81, ...,8m) such that each s; takes the values 0 or 1 only.

On the other hand, we shall show that || F, ||, < N, where N,
does not depend.on n. In fact, from (2.5)

(4.6) g]Fn(x)[dx::jl;[rpn(x)ldxg _{ ]:_o,,(x)]dxé

1 m

< E tkl yeres Ky o 22m/pa 2(1/p0 ) (kl +"'+k’") <

"1. ™

<M0 22m/py 3 Q(=1/00%) (B ... +k,) — N,.
k..-

1 Fm

If for some p > 1, K(f) maps continucusly L? into itself, by

using the Young inequality we can extend by continuity the re-
presentation (4.5) for all feLP and furthermore, we have
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(4.7) T s s g (D) Ao = [ Fu* K ) |5 U Ea ]2 || K o
" | 3 AT
(4.8) As we have already shown, the F, are on the conditions of

Lemma 2 and, therefore, if K(f) maps continuously L into itself,
sup T.f _sup | Fo®* K(f) | verifies similar inequalties to those

proved for sup |Fn®f 1.

(4.9) On the other hand, T'f converges pointwise in a dense subset..
In fact, if fe & we have

(4.10) Tof = (1/(210)™) {)ei“:”ﬂ‘cn(y) .f(y) dy and

@A) | Tof — EG) 1< ha—o]| [Fldy < |F]dp)7

Ry R
(If? [ kn— |2 f | )V

Since fed,then |f|1/2eL?; therefore, the last term of the ine-
quality tends to zero. (condition i) ).

A suitable combination of the two preceding arguments (4.8)
and (4.9) gives parts A, B, C, D and E. (see [4], p. 307 and
[6] p. 160).

(4.12) If feL? and p > po we shall show that T,(f) =K. *f,
where K e L?,".

A

Let us observe that F, = kyn ¢ —1, that is ¢ Fn=, kn, and since:
K maps continuously L? into itself for all p > 1 when ¢ belongs to.
H or H,, then in both cases we have

(4.13) K(F,) = KneL? for all p such that 1<p< po* since
F, e L? for the same values of p.

On the other hand, if fe J, taking (4.5) into aceount, we
have (4.14) T,f = F.*K(f) =K. *f.

Now we can extend (4.14) by continuity to all L?, p= po, gince:
both sides of the equality verify respectively

(4.15)  |F* &) S| Fulloso-vy- 1EE) 1l
[ En* IS Kn o1y IFls
Therefore part F, is proved.
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Part F,:is also valid since this case requires
[| K(f) || . < Allf || - only.

(4.16) Proof. of Part G. If ¢ = C, then F, = C,—* K,; therefore

(4.17) || Ky l|ls < M’ where M’ does not depend on #«.

Let us suppose that || K,||. < M’; consequently k, must be
continuous for each n, and furthermore

(4.18) ¢ = kn/F,

(4.19) 1If F,(0) 5% 0 for some n —=n,; then ¢ must be continuous at
2 =0; and since ¢ is a bounded homogeneous of degree zero fune-
tion it must reduce to a constant.

(4.20) If F,(0) =0 for all n we shall show that K(f) =0 for
all f e L2

In fact, let us consider a subsequence {7’} of { n } such that
Fw and . are in the conditions of iv) of Lemma 2. Then

(4.21) | E(sup |[F * fI>A) | (Co/A) [ |f]2da
[ 24 R™

On the other hand, from the compacity conditions on the ¢y,
for each ¢ > 0 the ¢, admit the decomposition

(4.22) on=0.V + 9. ; || @u® |[1<e
¢ o =0 if z¢@Q, where @ is a cube centered at the origin and
depends on € >0 only. If z¢Q, | 9.V (x) | < M,, where M, de-
pends on ¢ > 0 only.

Thus, if feD, by changing variables and taking into account

that F» (0) = 0, we obtain
(4.23) | (Fw*1) (@) |=|f ow(y) .fle—e  y) dy | =
=|f ew W) [f(x) —flz—e™ y)] dy | <
R™ »

< ew® @) || f@) —fle—e, 9) |- dy+2¢[|F || =

Rm

where f(x—e ;, y) =f(x,—e ";,1 Y1y « o2 Tm— € .,;; Ym)
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Now if @ e» denotes the-cube obtained from @ by dividing its
edges by e,; respectively; then the right and: term: of the inequality
(4.23) is readily seen to beé less or equal than

“.29) QM (1/[Q. 1) Sau, |T@)—F(z—y) |dy +2¢l f lo

‘Therefore

(4.25) Tim | Fu*f|<2¢||f|l o
Consequently, for all feD it is valid

(4.26) :  lim Fp*f=0 ,

Thus, (4.26) together with (4.21) shows that lim F, * f =0 a.e.
for all f belonging to L% whence lim Fp * K(f) =0 a.e. for all f
belonging to L2. This completes the proof of Part G, since
F,*K(f) = Ky(f) and by Hypothesis i) || Kw(f) —K(f) [, 0.

(4.27) Proof of Part H. The k, and ¢ are supposed to be Borel
‘measurable. Let us consider the functions

kn(2) = ka(z—y) .du(y).
RM™
By an application of the Minkowski Integral Inequality we have

(4.28) |Falln, S dw()) || hnlln, S V(.20
RJTL

dw(y) denotes the variation of u and V(u) the variation in the whole
R™ Now if g(z) = 1/(2r)"§ € <% du(y)> from (4.12),
™ '

(4.13) and (4.28) we conclude that

(4.29) Ton = (Kn.g)"
‘On the other hand if fe JJ, we have

(4.30) T.f = (K,.9) *f

Since || gl < Vi(p), (Kn.g)*f verifies the same type of
inequality as that of (4.15). Therefore, by the same density argu-
‘ment we conclude that

(4.31) Tof = § Ea(z—y) g(x—y) f(y) dy
for all f e L? with p > p, and ¢ belonging to H or H,. By a similar
method, one obtains the representation for feL? and ¢ ¢H,.
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(4.32) Now we are going to show that T,f converges pointwise
for all fed.

(4.33) Tu(f)(2) = (1/2m)™ [ ai<nv>,
Rm

FW) (5 kn (y—s) du(s)) dy
Rm

Interchanging the order of integration (which we may) we have

(4.34) j‘ dﬂ(s).(l/zr)m. ‘f et <o, v> I::n(y—S) f(y) dy

By a sumllar procedure than that employed in (4.9), (4.10)
and (4.11), it is easy to show that the inner mtegral of (4.34)
converges pointwise and uniformly to

(4.35)  (1/20)™ § &i<59>g(y—s) f(y) dy
Fm

On the other hand, since V(u) < oo, T.(f) converges pointwise
for all fe Sl to the operator 7'(f), whose multiplier is k, *

(4.36) HEstimates for the maximal operator associated to T,. In
this part we shall use a technique introduced by A. P. Calderén
and A. Zygmund in [2]. Let ¢ belong to H or H,. Then, if felL?,
P > Po, We have

(4.37) T.f=J Kuz—y) gle—y) f(y) dy =
RM

= (1/2m)™ f Ku(z—-y) (f <@, >du(s) ) f(y) d
Interchanging the order of integration we have

(4.38)  (1/2m)™ f  du(s) e, o> men(x-—y) fy) €< ">dy.

The modulus of t}ﬁa integral (4.38) iI; dominated by

(4.39)  1/(2x)"™ fmdw(s) [T(f e=i<t,v>) ()]

Taking the L? norl:n of (4.39) with respect to x we obtain

(4.40) (120" (f [ f T(femi<¥>) (@) . dw(s)]P dz )7 <
<S(1/20)" § dw(s) [f T{femi<n)(a) |7 da]V® <

" "
R B

< (V(w)/@2a)™.Co || f ] -
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Thus

(441)  |]sup | Tuf | 110 < (V()/@2m)™.C(p) - |1 f |p-

A similar estimate holds for ¢ ¢ H, and feL?.(4.41) and (4.32)
give the corresponding convergence results. This completes the proof
of Part H.

5) Examples.

(5.1) Let us consider the single Hilbert-Transform; that is

f= lm [ f().(e—y)" dy
n>w |e=y|>n
We know that [ e~ y=1 dy = —2¢ sg(u). f (sint).t~*dt
ly[>1/n 1/ :

i n
Here, the role of ¢(u) is played by — i sg(u) =; the role of k, is
. 4o
played by —2i (f (sin t).t—'dt) sg(u); the role of e are

|u/n|

played by the natural numbers {n}.

+X}
Finally, the function f (sin t).t—1dt and its derivate in

. ful
the distributions sense belong to L? for all p, such that 1 < po <.
Now an application of Theorem 1 will give the well known results
concerning pointwise convergence of the Hilbert Singular Integral
in L?,p > 1.

(6.2) If K, and K, denote the Féjer Kernel and its conjugate, res-
pectively, then K, = (1 —|u/n|)+ and K, = (1 —|u/n|]|) 4+ (—1
sg(u) .w.)

Here the roles of k., ¢ and e,, are played by Ky, 1, { n } and

K, (—irsg(u) ) {n} respectively. Finally, since (1— |u|), and
its derivate in the distributions sense belong to L? for all p, such
that 1 < po < 2, then the same conclusions as in (5.1) hold.

Remark. Analog considerations are valid for the Poisson Ker-
nel and its conjugate.

6) Theorem 2. Let k(x) be a funcﬁon belonging to L'(R™)
submitted to the following two conditions
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i) f k(x) de=1.

R

iil) There exists po, > such thet k(x) I (14 |z;|) eL?%
S .

If K is a singular integral operator with symbol belonging to H,
we shall denote by f: K(f). By k(nx) we denote k(nxy, ..., n&m).
Nnder the two preceding assumptions we have

a) [ n"k(nx) f(y—zx) de— f(y) ae. for all feLf; p=

r" S .

Po*; 1/po 4+ 1/po* =1.

b)f wmk(nx) f(y—z) do — f(y) ae. for all fel?; p=

po* Calling ff*'_—__ sup | fz™ 0™ k(nx) f(y — Tx) da ],? = sup | fz" n™

=

(nx) f(y — ) dz | we have the inequalities

*

o) [E(f* > ) | < (Co/a) fom |1 da; |EF>M) | <
é (001/)\7)0*) me I f ] p()”g ax

d) It p> po*, then || f*||, < C(p) [|£l5 5 || Tl < C(@)Iflls
and therefore the convergence in mean of order p of a) and-b) is
valid.

Proof. If fe 5, then

6.1) § wk(na) f(y—z) do= (20)=-"f <> J(u/n)
Rm Rm

f(u) du

Since ||k (u/n) [|k|l, and the fact that k(n/u) — 1 for each
u, it follows that, for fed, ‘

<
||00

(6.2) f n" k(nx) f(y—=) dz = f(y).
R
Now, n™ I (nx) and k(x) are respectively under the conditions of
the Iy, and ¥, of Lemma 2; the condition ii) implies the condition
(2.1) of Lemma 2. Finally, since (n,...,n) are in the conditions
of iv) Lemma 2, the maximal inequalities ¢) and d) with respeect

to . ; follow. A combination of (6.2) and the maximal inequalities
gives a) and also the convergence in the mean of order p for all
p=po*. Now, if fe o
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(6.3) § n™ k(nz) fly—zx) de=(2r)~™ [ &<0> f(s) $(s)
" B
E(s/n) ds=f n™ k(nz) f(y —z) do
The representation (6.3) may be extended by continuity to all
feL? with p = po* sinece n™ k(nx) belongs to L? for all ¢ such
that ¢ < po. (A similar argument was given in (4.12 - 13 - 14 -
15) ). Now the representation proved above gives the results con-

cerning n™ { k(nx) f(y —x) de.
"
R
7) Remark. A large family of Féjer-like kernels are particular
cages of Theorem 2, namely: the m - dimensional Poisson kernel and
its conjugates by the Marcel Riesz Transform, the multiple Féjer
kernel, the multiple Weierstrass kernel, ete.

8) Remark. Example 1 shows that there exists a kernel k&
under the conditions of Theorem 2 such that, for all feL?, p > 1,

(8.1) f 1/g(r’(fd{)/(ﬁv——.ﬂl)]dy: § nkin(z—y)] fly) dy

Iz:——yl> —o0

The kernel is precisely the function whose Fourier Transform

is (2/x) f:m (sin ) ¢ dt.
|u

9) Remark. Another type of Féjer-like kernels is studied in
{8] (see Lemma (1.5), Part I) and also in [1].

10) Singular Integrals of Odd Non-homogeneous Kernel. Let
k(x) be a measurable and odd function defined on the real line,
belonging to L?, submitted to the following conditions

i) k(0+4) and k(0—) extst and are different from zero.

ii) k(|u|) end its derivate in the distribuiions sense belong
to L?, for some p, such that 1 < p, < 2. Now let S(x) be an odd
homogeneous funection of degree (m — 1), defined on B™ such that

(10.1) lfwl_lm(x) | do < o

If K(x) =8(x) . k(|z|); then we call Old Singular Integral
of nonhomogeneous kernel to
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10.2) f a"K(my) f(z—y) dy
Rm
11) Lemma. Let k(x) be under the conditions of 10), then the
operators

(11.1) ka(f) =f  n k[n(e—y)] f(y) dy have the properties

—0

i) If feL?, p=po, 1/Do + 1/po* =1; then
ko(f) — T(f) ae. where T(f) is a multiple of the single
Hilbert Transform.

i) If f e L then
|E (sup | ka(f) | >A) < (1/A%) § |f|™ dz

n
iii) If p> po then ||sup | ka(f) |||, < C(P) IF1l»
Proof. Let us consider the function ¢(u) =k(0+) if 4 >0
and ¢ (u) = k(0 —) if u < 0. Since Iﬂc(u) is odd we have

(11.2) a) ¢ rk(u) =co k(u)
b) ¢ =1¢ I (where I is the symbol of the single Hilbert
Transform.

Now the corresponding multipliers of the operators (11.2) are

(11.3) cg(u) k(|u/n])
Thus, taking into account (10,ii) the multipliers (11.3) are in
the conditions of Theorem 1, with e, = n, since the condition (10 ii)

also shows that k(| z|) is the Fourier Transform of a function be-
longing to L** M L* and therefore

a4y |7 k) —o |2 f [2au= | Jek(u/al)
—1|2|¢|2|f(u)|2du— 0 from the boundedness of k(|u|) and
the continuity at w = 0. Now, an application of Theorem 1 gives
i), i) and iii).

12) Theorem 3. The operators K,(f) defined in (10.2) con-
verge pointwise, almost everywhere and in mean of order p to a li-
mit operator K (f), for all f belonging to L?; p, < p < . Further-
more

i sup [ Ea(f) | 1o < C(0) I fllps P <P < 0.
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Proof. We shall use the “methed of rotation” introduced in [2].

(12.1) f nK(nx) f(y—zx) do ) _
Taking polar coordinates and using the fact that K is odd,

(12.1) is readily seen to be equal to
+:o
(122) fx (1/2) [8(a) |do § nk(np) [(y—pa)dp

If sup |ka(f) |:I:(f), then the inner integral of (12.2) is domi-

nated in modulus by

o ‘ +
(12.3) sup | J 0 k(np) f(s+ (B—p)a) dp|[=F (f(p,5,0)) (R)

where (s, R) are the cobrdinates of the point y in the system de-
fined- by the direction of a and a hyperplane (m — 1) dimensional
orthogonal to the same direction. Now

0
(12.4) fo™ (sup [ J n k(np) f(y—pa) dp )" dy =

= ds | k(s a))(R) AR S ds C(p)

ro—1 — o0 gro—1 -0

| f(s+aR) [PdR = C(p) || f I,
Taking into account that

(12.5) sup | K. (f) | < fx (1/2|8(a) | do.

+
-Sup | J;m n k(np) f(y —pa) dp|

From (12.4) and using the Minkowski Integral Inequality we have
(12.6) - [lsup [ Ku(f) [, < [(C(P)? § (1/2) |8(a) [da]-[If 1l
n =

(12.6) shows that the integrals (12.1) always exist a:e. and also
proves part i) of the Thesis. Now, we are going to prove the pointwi-
se convergence in a dense subset.

Let us observe that for feD

[

(12.1) k(D)= nkn) f(o—y) dy = |

p—

n kE(ny) k(f) (z—vy) dy
where keL! and is precisely the function whose Fourier Trans-
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form is ¢o k(| |), see (11.3), and k(f) is a multiple of a single
Hilbert Transform. Therefore

(12.8) [ ka(f) 10 < AN Tl w
Now if feD in R™ we have

o
(12.9) K.(f) = f= (1/2) | 8(a) |do [f n k(np) [(y—pa) dp]
According to (12.8) the inner integral is uniformly bounded by

+»
(12.10) A.sup | f f(y—pa).pt dp|
Y T
Since the inner integral converges pointwise, the bound (12.10)
gives the pointwise convergence of K,(f). The above argument
together with the maximal inequalities already shown complete the
proof of Theorem 3.

Remark. If we take k(x) =1/x if |« | > 1 and zero otherwise,
the integrals of (10.2) become truncated singular integrals of odd
kernel. See [2] and also [6].
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