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ON MEASURABLE SUBALGEBRAS ASSOCIATED TO
COMMUTING CONDITIONAL EXPECTATION OPERATORS, II,

by A. Diego and R. Panzone

SUMMARY. The objective we pursued was the same as in {M Pz},i.e.,
to give necessary and sufficient conditions to make sure that two
conditional expectation operators EB and EC commute. We restricted
ourselves to seek for conditions on the o-algebras B and C. We
found that EBch = ECEBf, ¥V fel? | essentially when and only when
in a partition of sets: B=C or (=B, B is independent of C, or B
and C behave as the algebras of Borel measurable sets .of R inde-
pendents of z and x respectively. It is noted also that when the
commutation is asked not for one but several probabilities equiva-
lent among them, inclusion is the only possible relation between
B and C. That is, it is not only the most natural relation assu-
ring commutation but also the most stable under variation of the
probability measure. This paper is a self-contained continuation
of {M PZ}.

1. INTRODUCTION. Let (o, A,P) be a complete probability space and
B,C, o-subalgebras of A containing all the sets of measure zero,or
as we shall say A-complete. This type of completeness will be sup
posed of any c-algebra appearing in this paper even when not men-
tioned explicitly. Call D = BaC, the greatest o-algebra contained
in B and C. Then, the trivial subalgebra T will contain all the
sets of measure zero. B and C are conditionally independent with re
spect to the o-algebra M if P(BC/M) = P(B/M)P(C/M) for BeB, CeC.
This concept presents two extreme cases: M=A and =T. In the first
case conditionally independence does not establish any tie between
the algebras. In the other one it is equivalent to independence.
When T=M=A the conditionally independence is also an intermediate
case between the independence and the absence of conditioning bet-
ween the algebras. Call E = E(. /B), F = E(. /C), G = E(. /D) the
conditional expectatidn operators associated to the mentioned alge
bras and e(f) = expectation of f.

Let us prove now a useful lemma.

LEMMA 1. 4) E 48 a projecton on L2(2,A,P) with range L2(%,8,P).
4{4) EF is a prnofectorn iff E and F commute.

4iL) E and F commute iff EF = G.

4v) E and F commute iff E:C-measurable positive bounded functions~



+ C-measurable functions.

Proof: i) and ii) follow from the definitions and the theory of Hil
bert spaces. If the commutator of F and E, [E,F] , is zero thenEFf
is D-measurable, and conversely, any D-measurable function.is inva-
riant under EF, this proves iii). iv) follows from:a subspace with
projector F reduces an operator E iff E and F commute, and the self
adjointness of E.

A theorem of Burkholder and Chow asserts that (EF)nf—*Gf a.e. and
in L2if feLz(ﬂ,A,P), (cf. (BC}) . What conditions must be im-
posed on the associated algebras as to have (EF)mf = Gf for every
£f? In particular, how are B and C related in these cases?

There is a formal parallelism between this situation and the prec-
eding one where conditional independence was considered. Moreover,
if B is independent of C, then the commutator of F and E, (e,F] ,
equals 0. 1Is there some relation between the concept of independence
and the property of commutation of the associated conditional expec
tation operators? Since the commutation is present whenever one al
gebra contains the other the question must be properly posed as fo-
llows: When inclusion (B<C or Cc<B) is not present and E and F com-
mute, is B independent of C? In a sense the answer is yes and this

paper is essentially devoted to prove it. Another clue is given
next.
It is well-known that if F, G are (closed) supspaces of the sub-

space E constituted by functions of mean zero, square integrable and
finite normal joint distributions and if B = g(F), C = g(G) are the
g-algebras generated by the functions of the mentioned subspaces,
then the restriction of E to the subspace of B-measurable Lz- func-
tions of mean zero has range equal to F. Briefly, in this case pro
jection and conditioning coincide. Let us prove now the following
proposition.

a) G is orthogonal to F iff b)G is independent of F iff c) EF=FE=
=e=0 on (F times G)a L { whenever is satisfied the hypothesis explic
cited above.

a) implies b). 1If geG and f to F then the most general functions ¢
and B-measurable are of the form g+c , f+d, where c and d are con-
stants. Since e(gf)=0=e(g).e(f) it follows that e((g+c) (f+d))=
=e(g+c).e(f+d). b) implies c), as it is easy to see since independ-
ence of B from C implies EF=FE=e. It holds: EF(fg)=e(fg)=0 whenev-
er c) holds. QED.

The preceding proposition supports the suspicion that commutation
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and independence are related, if there is not inclusion. This pa-
per will be devoted to prove this.

Expository reasons oblige us to include with a proof most of the re
sults of {M} and those of {M Pz}. Whenever this happens it will be
explicitely mentioned. ‘

‘To begin with, let us say that this introduction was already contain
ed in {M PZ}'

2. AUXILIARY RESULTS. A Boolean c-algebra where can be defined a pro
bability measure will be called a measure Boolean algebra (cf.{H3}).
It is complete in the sense that the supremum of any family of elem
ents exists, that is, there exists a least upper bound. Examples a
re the quotients of the c-algebras of probability spaces By its i--
deal of sets of measure zero. (And they are the sole examples as it
is seen using Stone's representation theorem, and Caratheodory's the
orem of extension of measures). A o-basis of a o-algebra A is a set
of generators of A (i.e. the least c-algebra containing the set is
A) with minimal cardinality. Because of the well ordering of the
cardinals every c-algebra contains a o-base. A principal ideal of
A is generated by an element a # 0, and is defined as {x; x<a, xeAl.
This ideal defines the o-algebra Asa. An algebra is called homoge-
neous if for every aeA, dim(Aaa) is constant (a # 0); in other words,
all the proper principal ideals have the same dimension.

Example: The algebra of Borelian sets in (0,1) is homogeneous of di
mension 8, . In relation with homogeneous algebras cf. {M} .

Next we prove some results necessary for what follows. '

THEOREM 1: 4) 1§ A and B are Boofean o-algebras and h is a  sunr-
fective g-homomorphism then if KcA and g(K) designates the Least
o -algebra containing K, h(g(K)) = g(h(K)). ALso dim Bsdim A.

£4) g, (Kaa) = g(K)na , whene g, means "generated in the principal £
deat Ia" and a L8 an element of A.

L44) 1§ LeA , dim Lsdim A.

Proof: i) is easy and is left to the reader. 1ii) follows ‘applying
i) to h:‘A — Ia , h(x) = xaa

iii) Let L' and A' be o-basis of L and A respectively. We can sup-
pose that they are ordered with the ordinals less than one which is
the minimum among those of same cardinality. We can suppose more ,
as it is easy to see:

(*) if Ai = g(as ; ageA' , s<i) then i<j implies AiczAj # Ai .

Same for L and L'. Then A =:q Ai . Call Ki = g(L'AAi). Obviously
L = UKi . Besides: *
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(1) dim L < card U (L'AAi)
i

(Observe that (*) assures that no element of L' can be generated by
the preceding ones and consequently that card(LB\Ai) = dim g(Lb\AiD.
~ To finish the proof it would be eneugh to have card(Lﬂ«Ai)g card i,
since from (1) we had dim L g (dimA)2 = dim A. (The finite case is
trivial). For this it suffices to have: any o-subalgebra of A with
dimension less than dim A verifies iii). If this is verified the
theorem is proved, if not, there exists a o-subalgebra B of A notve
rifying iii) and with minimal dimension with respect to this proper
ty. The preceding argument applied to B shows that iii) is veri-
fied, contradiction. QED.

THEOREM 2. Given a measure Boolean algebra A without atoms thene ex
{818 a panitition of A in homogeneous ideals with different homogened
ty, lef.{M}).

Proof: Let N = {dim a ; aeA, a # 0} and a, = V {a; dim aseg} , &eN.
{a_} is well ordered and isomorphic to N. 1In fact it will suffice
to show that dim a, = g€. Since in a measure Boolean algebra the sup
of any family of elements coincides with the sup of a denumerable
subfamily, we have a, = Vbn . Therefore, dim a_< £¢.8, = £€. By de-

£s
finition of ag, dim agzg. Putting now Xg = ag g = inf N, and
R R for ¢ # £, we have the decomposition (xn ;  nelN}
we were looking for. QED.

COROLLARY. A Boolean measure algebra without atoms of dimension Ho
48 homogeneous.

EXAMPLE. B((0,1) (™).

Call BAthe Boolean measure algebra quotient of the Borel sets of
H(Ia ; a<A), A an ordinal number, Ia = (0,1), with the set of sets
of measure zero with respect to Lebesgue infinite product measure.
If cardh = card & then BA and Bi are isomorphic. It is well-known
for card A= 8, and it is easy to see for other cardinals. What Ma-
haram's theorem says is that those are the only homogeneous alge-
bras. The isomorphism when the cardinals are equal follows then
from her theorem, which will be proved later.

THEOREM 3. Let A be a Boofean measune afgebra with a probability
P and B and C two o-subalgebras such that if beB and ceC then bac#0
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whenever b,c#0. Assume A = g(B,C) and P(bac) = P(b) P(c). Then,

thene exist two probability spaces (S,B,p), (T,C,q) such that B/p

48 Lsomorphic to B, C/q is isomonphic to C, under the applications
(resp.) i,j and these applications can be extended simultaneously

to k that defines an isomornphism §rom BxC/pxq onto A.

Proof: Let S and T be the Stone spaces associated to B and C res-
pectively. R that associated to A. Let B and C be the oc-algebras
generated by the clopens of S and T, and A that generated by those
of R. Consider the family of finite unions of intersections of
clopens of the form .x T, S x., in the product SxT; it is exactly
the algebra of all the clopens of SxT. From the hypothesis it
follows that this algebra is isomorphic to that generated by B and
C. Therefore, it exists a continuous application f from R onto

SxT that induces the isomofphism. Moreover, f pulls back BxC onto
a o-subalgebra of A. Call i(j) the isomorphism from the clopens of
S(T) to B(C). Define p(q) on the clopens of S(T) as the value of P
on the image under the isomornhism just described.

Calling again P, p, q, the extensions of P, p, q, from the clopens
to A,B and C respectively we shall see that £71 induces the prom-
ised isomorphism k. We shall only sketch the proof.

Define P' on £ !(BxC) as priel)) = (p x q)(H). We must see that
1) the probability P' coincides with P on the oc-algebra where the
first is defined, 2) every element of A is equivalent [P] to a cer-
tain element of f'l(BxC). This would prove the theorem.
;1) The clopens of S generate B and the restriction of P to the in-
verse image of them by f coincides with p on them. Therefore P
and P' coincide on £ 1(B). Same for f'l(C).

Every element of B is equivalent [p] to a certain clopen as it is
easy to see using nonotone classes (cf. {Myl).

Let M be an element of B and N its clopen associated, let UeC and
V the equivalent clopen [q] . Then MxU is equivalent to NxV[pxq] .
Since £ !(NxV)has measure P equal to P(f-l(N)).P(f'l(V)) coincid-
ing with (pxq) (NxV) and since ey a £ is P-equivalent to

£ v A £7IN, it follows: P(f !(MxU)) = (pxq) (MxU). Therefore, the
same holds for any element of BxC , which proves 1).

2) Let us consider the set of elements of A such that the correspond
ing clopens are P-equivalent to a set of f-¥(BxC). This set contains
the algebra of finite unions of sets of the form bac. and it is a
monotone family. An applicatibn of the theorem of monotone families
for Boolean o-algebras proves that every clopen of A is equivalent
[P] to a set of f‘l(BxC). Since every elementof A is equivalent to
a clopen, the thesis is proved. QED.
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We return now to the situation that will be the setting of what fol
lows: a complete probability space (2,A,P); two A-complete g-alge-
bras, B and C; D the intersection of them; and we shall suppose from
now on A is the least complete o-algebra containing BuC. This
situation will be written as A = g(B,C). Let Q be a finite measure
on A, absolutely continuous with respect to P and f = dQ/dP. From
"E'(. /B) = E'(.) = Eq( . ), the conditional expectation operator
associated to Q and B, and

m I E'(h) dqQ = J h dQ = I hf 4P = J E(hf) 4P = J E'(h)f 4P
B B . B B B
we obtain: f E(hf) dP = J E(E'(h)f) dP = J E'(h)E(f) dP
B . B B
From this:
(2) E'(h) = E(hf)/E(f), [P]

Putting f = 1A , the indicator of A, we get on A at least that

E' (h)

E(h 1A) / E(IA) . Therefore,

(3 E' (h)

E(h TA) 1,/ E(1,) , [P]

That is, (3) defines the conditional expectations of the restrictions
to A, (cf. {HN}).

If R and Q are equivalent probability measures with Radon-Nikodym
derivatives r and q, from (2) it is easy to obtain:

Ep(h a/T) / EQ(h) = E(q) / E(r)

independent of h. This formula will not be used in the paper.

PROPOSITION. 14§ Q 448 a probabvility equivalent to P and f {8 B on C-
measurable then the commutation of E and F implies that of EQ’ FQ.

Proof: Assume f is C-measurable. From (2), E.(h) is a C-measurable
function, if heC-measurable. It follows from iv), lemma 1 and the
hypothesis that E, and F, commute.

This proposition also follows immediatly from Proposition 2 of § 10.
This alternative proof is left to the reader. )

3. EXAMPLES. We shall introduce here some examples to avoid later
interferences. The next three examples were contained 'in {MPZ}.
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I. Let X =Y x Z and card Y = card Z = 8, . Call B(C) the g-alge-
bra generated by the sets contained in a denumerable family of ver
tical (horizontdl) lines. Let A = P(X). Since card X = 34 , a
theorem of Ulam asserts that every measure on X is discrete and with
respect to them B and C are equivalent. Same thing if the two al-
gebras contain the points as measurable sets and together generate A.
Therefore,the associated conditional expectation operators commute.
This example shows, for example, that what really matters is the Boo
lean structure which can be unexpectedly '"different" from the set
theoretic setting. )
II. We have seen that commutation holds whenever B and C are inde-
pendent. The following situation, which will be involved in what
will be called g-independence, generalizes the case of independence.
What we are going to show in this paper is that g-independence and
inclusion (Bc<C or CcB) are (essentially) the fundamental stones on
which commutation is based on, and when A is under the influence of
several measures inclusion is the only stable situation under which
commutation does appear.
Let @ =XxYxZ,X=Y=12= (0,1), B= the algebra of Borel measu
rable sets independent of z and C that independent of x. Obviously
E(f) = [ f(x,y,z) dz, F(f) = [ f(x,y,z) dx and EF = FE, as it fol-
lows from Fubini's theorem.
III. Let D = Borel measurable sets independent of y in @= (0,1)x(0,1).
B=g@,{(x,y); y < (1+x)/4}), C = g(0,{ x/4 <y < x/4 + 1/(x+1)}).
Then E and F commute. We shall not make the calculations since the
details will be given in the next example. Let us observe only that
in the set {y < (1+x)/4}eB-D, B and D induce the same o-algebras,
that is, they intersect it in the same algebra. This means that in
spite of BoD on that set both coincide. This situation essentially
replaces the inclusion case or if one wants is a generalization of it.
In (M Pz}it is associated with the concept of "atomic relation'".
In {HN} it is said that sets of the mentioned kind are '"conditional
atoms'".
IV) Let @ = (0,1)x(0,1); D the algebra of Borel measurable sets in
dependent of y; B = {(x,y); 0 <y < £(x)} ; f a Borel measurable
function such that 0 < £(x) < 1 for xe(0,1). p and q two non-nega-
tive Borel measurable functions of x verifying
0 < f-p < f+q < 1
C={f-p<y < f+tq} ; B =g(,B) ; C=g(,0).

PROPOSITION. EF = FE 4f§ £(p+q) = p.
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Proog: It will suffice to prove F(IB) = f(x) Igp for any set
B={0¢<ys< f(x), xeB'} where B' is Borel measurable in (0,1).(This
equalily is equivalent to FE = EF since f I is D-meastrable). It
is easy to see that G(IB) = f IB" Besides:call Q = {(x,y); xeQ',
(f-p(x) < y ¢ (f+q)(x)}. Then:

(£+q) (x)
M j £ Iy, dx dy = I £(x) (I dy )dx = I £(p*q) dx.
Q B'Q' Y (£-p)(x) B'Q’
(2) J IB dx dy = J dx dy = J p(x) dx.
Q. BQ B'Q

Therefore, from (1) and (2) it follows that F(IB) = f Ips iff

f(p+q) = p a.e. QED.

V. Commutation is present also in the following situation, which is
a mixture of examples II and III. @ = (0,1)3 H Bx = B_ = Borel
sets of (0,1); Bz = g((0,1/2), Borel sets of [1/2,1)); T = g(¢,a);

B = TxB sz; Cz= BxxByxT.

Vi. @ = (0,1)° , 1 = rsp(x,y) dxdy , p 2 0 ; M(x) = sp dy ,

N(y) = /p dx (M and N are the marginals densities);B and C are
respectively the Borel sets ihdependent of y and x; E(h) = sh(p/M(x))dy,
F(h) = rh(p/N(y)) dx. If, to fix ideas, we assume p > 0 and sym-
metric, then 0 < M = N, and supposing f symmetric, we get:

FE £ = k(y)/N(y) , EF f = k(x)/N(x), k = [{[(£p/N)dy}pdx/N(y)

The commutation of E and F requirés k = constant x N, and therefore,
in general, it is not verified.

REMARKS. It will be shown that on the atoms of D, B is independent

of C whenever E and F commute. In the examples II and IV, it is pos
sible to say that the independence still holds in the sets "infini-
tely small" of D, as we show next. } ;

Case IV. Let us consider a cylinder Z independent of y whith basis
(x,x+dx). Then, P(B.C|Z) = (£(x) - (£(x) - p(x))) dx / 1.dx=p(x).
Analogously, P(B|Z) P(C|Z) = f(p+q). Since p = f(p+q) is necessary
and sufficient for the commutation we get the conditional independence
of B and C given Z, that is, given an infinitely small set of D.

Case II. If B = B' x (0,1), C = (0,1) x C', and Z = (0,1)x(y,y+dy)x(0,1),
then again P(BC|Z) = P(B|Z) P(C|Z), as it is easy to see.

4. MONADIC AND BIADIC ALGEBRAS. The results of this section will
not be used in the sequel. They are the precursors of results that
will follow. or if one wants, a generalization of them. They show
in which extent product structures play a role in this problem when
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there is no inclusion, (cf. Th. 1). Next theorem 2 gives a repre-
sentation that recalls Maharam's representation theorem (cf.{M}).
Let us remember some definitions and theorems. A Boolean algebra
A is called monadic with respect to the subalgebra B if B is con-
ditionally complete: ¥ aeA, ] inf(xeB; x
lent to give an operator v in A with: v0

a)e B. This is equiva
0, vx > x, V(aavb) =

= vaavb; here B = (acA; va = a). (Those properties immediately
imply that v is a closure operator: v(avb) = vavvb, vva = va,

v0 = 0, va > a).

Given a filter F, A/F = (a*; cea* iff ((a-c)v (c-a))'eF). F is
said monadic in the monadic algebra (A,B) if FAB generates F. It
can be proved that this is equivalent to the possibility of intro-
ducing in a canonic way a v-operation in the quotient algebra:
vh{(a) = h(va) where h is the canonical homomorphism A -+ A/F. (A,B)
is said to be simple if B = T = {0,1} . It can be proved that A/F
is simple iff F is a maximal monadic filter. Also that (A,B) is a
subalgebra of the product p (A/F; F maximal monadic in A).

An algebra is called biadic relative to the subalgebras B and C if
it is monadic with respect to them and the corresponding closure o-
perators, v,,v,, commute. Then v = v,
rator and obviously associated to the algebra D = BaC. Every mona-

dic filter F with respect to D is monadic with respect to B and C

and therefore in A/F the induced operators Vo i=1,2, commute. If

F is also maximal monadic, in A/F, vx = 0 or 1, that is D/F = {0,1}= T,
In this situation, when D = T, A is called simple biadic.

Given the algebras M,N and P, we shall say that P is the direct sum

of Mand N, P = M @ N, if P> MuN is generated by them, MaN = {0,1} ,
and if when meM, neN are comparable, one of them is 0 or 1.

>

defines another closure ope

From now on we shall suppose that whenever we speak of a biadic al-
gebra (A,B,C), A is generated by B and C. We shall denote by S(A)
the Stone's space associated to the algebra A.

THEOREM 1. A biadic algebra (A,B,C) i4 simpLe iff A = B®C .

Proof§: From the construction of the direct sum we see that the asso
ciated v-operators commute since their product is the trivial v-ope
rator. If A is simple, since by a general hypothesis we already
know that B and C generate A, it will suffice to show that of two
comparable elements b,c, one is 0 or 1 to have A = B & C. Let b<c,
then, d = v, b=vb<c., When 0 #c # 1, d =0 and therefore b=0.
QED.
THEOREM 2. 1I§ A {48 biadic, then it is Lsomonfic to a subalgebra of
a product n(BMQCM; M {8 a maximal monadic filten).
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Proof: In fact, it is known that it is isomorphic to a subalgebra
of M(A/M; Memaximal monadic filters). Since A/M = BMVCM' where BM
and CM are the algebras B/M and C/M, we can apply Th. 1. QED.

COROLLARY. Let X be the Stone-Cech compactification of X, and

T = B(%(S(BM) x S(Cy))), where M runs on the set of maximal mona-
dic filtens. Then, thene exists a continuous application of T on-
to S(A) that induces the injective homomoaphism of A into M(A/M).

Proog: It is a trivial consequence of the functoriality of Stone's
representation and the fact that two complementary clopen sets on
the topological direct sum of the spaces S(BMGCM) has disjoint com-
plementary closures on T (cf. {GJ}, chp.6)

THEOREM 3. When A 44 genenrated by B and C, and (A,B,C) 448 biadic,
Lt 48 possible to decompose S(A) 4in a union of disfoint closed sets
defining an open and closed equivalence nrelation associated %o
Ve, and such that the induced topology on each of those sets
defines on them the algebras of clopen sets coinciding with the di
nect sum of those induced by the cLopen sets of B and C. There are
as many maximal monadic filterns as there are equivalent classes and
the quotient space {8 Lsomoaphic to S(D).

Proof: Let us only sketch the proof. From Stone's representation we
know that if F is a filter the canonic application i: S(A/F) » S(A)
is a continuous injection which is open iff F is principal. (This
follows immediately observing that Stone's space of A/F is isomor-
phic to the closed set associated to F with the induced topology of
S(A)). Recall now that (A,v) is a monadic algebra if on S(A) it is
possible to introduce an open and closed relation such that ¥ aeA ,
va = sat a ; (cf. (Hl,z})' Consider the family of equivalence clas
ses of the points of S(A) under the closed relation induced by
Vo=, These classes are disjoint and closed as sets of S(A).
With the induced topology they are Stone's spaces, and exactly,those
corresponding to the algebras A/M, M a maximal monadic filter. (Given
M, an equivalence class is defined by all the ultrafilters contain-

ing M). QED.

The difference with the corollary to theorem 2 is in the fact that
each equivalence class defines a closed set and not a clopen set, as
in this corollary.

REMARK: Since we will not develop systematically the algebraic ap-
proach, we shall not care about most general statements concerning
monadic operators.
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5. BOOLEAN MEASURE ALGEBRAS AND CLOSURE OPERATORS. A Boolean pro
bability measure algebra A and a o-Subalgebra B provide one of the
oustanding examples of monadic algebras as it is easy to see since
if P denotes the measure, inf{P(b); b > a, beB} defines a number h
for which exists a b,eB with b, > a, and P(b,) = h, i.e., va = b,.
We shall call v a closure operator or a v-operator. If two sub-
algebras B and C, are considered, we get a biadic algebra whenever
the associated v-operators commute. In the setting in which we are
interested described after theorem 3 of section 2: {A,B,C} with pro
bability P, VIA, AcA, is the set defined by {P(A|B) > 0}. Naturally
comes the first question: in which extent commutation of the condi
tional expectation operators and that of the v-operators are rela-
ted? We answer this next and also provide a result similar to le-
mma 1 in the introduction, but for the closure operators.

THEOREM 1. 4£) 1§ v, defines an operatorn v with the same closure
propenties as the Vj,s, then this is the operaton associated toB aC.
LL) 1§ VoV, =V 4sa closune opernaton then the Vj,s, j=1,2, commute,
and convensely, if they commute thein product defines a closure ope
rnaton.

LL4L) 14 two conditional expectation operatons commute, then the as-
sociated closune opernators also commute.

Lv) 1§ v,CeC then v,BcB and v, commutes with V.
Proof. i) The following properties define a closure operator: v0 = 0,
vx > x, v(aavb) = vaavb, and {x; vx = x} determines the associated
subalgebra. Therefore if V19, defines a closure operator Vv then

x = vx implies x = sz:B, and therefore, toBAC . It proves 1i).

ii) If the v;+s commute their product verifies the properties defin
ing a closure operator, as it is easy to see. Assume Vv, = V. By
i) we know the algebra associated to v. If the thesis were false

it would exist a ceC such that b = v.c ¢ BAC; in fact, if it always
belonged to BaC it wouldbe possible to verify for V.9,
defining a closure operator. By i) it woul imply v,v, =V, which

the conditions

by hypothesis and i) must coincide with V9,

Let b°® = v, b. Then b°% BAC and b°- b # 0. It holds: (vz(b°— b))ac=0
and also: (vz(b°- b))ab # 0. Therefore, b°-v2(b°- b)e BAC, # b,and >
c, a contradiction.

iii) For AecA, it always holds v, A < VAeBAC. On the other hand

we have E(P(A|B) |C) = P(A|BAC). The second member is greater than
zero exactly in the set vA. Finally, where the first member is great
er than zero we also have:

*) P(v, A[B) > 0
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But (®) is verified exactly on v,V,A . In consequence V.9, A > VA,
iv) Let beg. Then AI(V2 b) = (Vl(v2 b)')'eC. From b < Al(V2 b) <
< Vzb, it follows 6, b = v, b, i.e., v, beB. Let us see that the

operators commute. VICcC implies V2Vl X < VZVI(VZ x) = V2[V1(V2 x)]=

= v,(v, x) = V,7, x. The opposite inequality follows from v,B<B.QED.

There exists formal analogy between Lemma 1, §1, and the preceding
theorem, that is, between the V's and E's operators, partly justified
because of iii) of theorem 1. The study of this analogy is pursued
further in theorems that will follow, but results not concerning the
subject of this paper will not be included.

6. CONDITIONAL ATOMS AND MAXIMAL FREE FILTERS. Given (R,A,P) and a
o-subalgebra L, an element AcA is said a conditional atom or an L-
atom if LAA = AAA, (cf. {HN}); We can introduce the concept in (A,L),
a monadic algebra A with a subalgebra L: a is an L-atom if Laa=Aaa.

In what follows of this section we relate the concept of L-atom with
that of free filter and it will not be used in the rest of this paper.
The homomorphism i: Lab — bAaeIa = principal ideal generated by a,

has kernel Fva = principal filter generated by va. If this map is
onto a is an L-atom. When Va = 1 it is said that a is a f{ree ele-
ment relative to L. The restriction is not serious since for bel

the intersection algebra (Asb,Lab)is again a monadic algebra. The
relevant fact is that the homomorphism i is a bijection whenever a

is simultaneously a free element and an L-atom, as it is easy tp see.
A filter is called §ree if any of its elements is free. It is well-
known that any free filter is contained in a maximal free one.

Let us see now a characterization of conditional atoms.

THEOREM 1. Let v a = 1. a {8 an L-atom iff the principal ideal gen-
ernated by a in A, F ., 48 a maximal free filten.

Proof: The condition is necessary: F is free, if not maximal there
exists y < a, y # a, which generates a free filter. But y = xna,
xeL, and vy = 1. Therefore, v x = x = 1 > a, and y = a, contradietion
Sufficiency: if a were not L-atom, it would exist y < a such that
y ¢ Laa. Therefore z = yv(a - Vy) # a, vz = va = 1, Then F, is free
and contains properly to Fa . QED.

We are tempted to mention now the following theorem due to Hal
mos: if F is a maximal free filter of a monadic algebra (A,L) and L
is complete then any equivalence class of A/F contains exactly one
element of L.
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7. CONDITIONAL ATOMS AND COMPLETELY DIMINISHABLE ELEMENTS. Let
(2,A,P) be a probability space and L a g-subalgebra. Equalities and
inequalities are always a.e.. An element NeA will be called dimin
4{shable (relative to L) if there exists QeN, QeA,Q # @, such that

V(N - Q) = VN, where the closure operation is taken with respect to L.
MeA will be called completely diminishable if it is nonvoid and eve

ry nonvoid subset of M is diminishable.

PROPOSITION 1. T4 M is completely diminishable, then there exists QcM,
Q # ¢,QeA, such that vQ = v(M - Q) = WM.

Proof: Define Qo= ¢ , and transfinitely, QM -'ZVQj such that

- - J<
viM - Q k-jgng) =v(M -_Esz). Call Q = IQ, . “Then M has the same
closure as M - Q. By construction the same as Q. QED.
The converse is false: take @ = M = (0,1), L = T, A = g(A) where A
is the set (0,1/2), Q = (0,1/2).

EXAMPLE: (D. Maharam, cf. {M}). Assume that A is a homogeneous
oc-algebra, and that L is also homogeneous and Boolean og-isomorphic
to a BA (see section 2). If dim L < dimA,then @ is completely dimin
shable.

In fact, it follows from the definition of homogeneity and the next
theorem, proposition ii).

Let us introduce another definition. We shall say that a set MeA

is not sectionable (relative to L) or has not the sectioning propenty
if ¥ NcM, ¢ # NeA, there exists QcN, ¢ # QeA such that vQ =

= {P(Q|L) > 0} = {0 < P(Q|L) < P(N|L) . The reasons why we have cho
sen that adverb will be explained later.

Finally a useful remark to be used in the following theorem. A set
N is a conditional atom iff for any AeA, AcN, it holds: A = NavA.
That is, the closure of any subset A of N could be greater than A
but only in a subset contained in the complement of N. The proof is
immediate.

THEOREM 1. 4] A set is not diminishable iff§ it {8 an L-atom.
4L) A set is completely diminishable iff it does not contain L-atoms.
LLL) A set £s diminishable iff it is not sectionable.

Proog: i) Let N be an L-atom. Assume it is diminishable: there ex
ists Q # ¢ contained in N with V(N - Q) = YN. Therefore N = NAV(N-Q)=
=N - Q.

Suppose now that N is not an L-atom. Therefore, there exists HcN

with H # NavH. Set Q = HAV(N - H), then Q # ¢. Now, V(N - Q) =
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= V{(N - H)v (N - V(N - H))} = [v(N - ©)]Jv[UN - v(N - H)] = WN.

In other words, N is diminishgble.

ii) follows from i) and the definitions. iii) follows easily from
the definitions and P(Qu(N - Q)|L) = P(Q|L) + P(N - Q|L). QED.

PROPOSITION 2. 1§ N 48 an L-atom and AsAcN, then:
() P(A[L) = P(NA|L) = 1;, . P(N[L) .
Convensely, 4§ (°) holds, N is a conditional atom.

Proof: If N is an atom, P(NA|L) = P(N.VA|L). Conversely, if
N.VA - A # ¢ then P(NA|L) # P(N.VA|L). QED.

The proposition says that P(A|L) is obtained "sectioning" with VA

to P(N|L). This cutting cannot be made in a diminishable set and
explains the nomenclature used above. The proposition "N sec-
tionable implies (°)" was proved in {MPZ}. The proposition also
appears in {HN} where other properties of atomicity are studied.
This paper contains also a proof of next theorem. In {MPZ}it was
observed that non-sectionability, now shown to be equivalent to non-
atomicity, implies the same thesis as next theorem. There, it was
said that the result is in its essence, nothing but a lemma used in
{M} by Maharam, and in fact, it is an abstraction of that lemma whose
proof can be used without changes. As a matter of fact, we repeat
the proof for the sake of completeness. In {HN} the demonstration
follows a shorter way.

THEOREM 2. 1§ the set M is completely diminishable and f is an L-
measurable function such that 0 < f < P(M|L) then there exists NeM
such that £ = P(N|L).

(Hanen and Neveu prove the following proposition: for any set C
and function fel-measurable satisfying 0 < £ < P(C|L) there exists
two diéjoint subsets of C, A and B, B,a conditional atom, such that
P(A|L) < £ < P(B + A|L). If C does not contain conditional atoms
then P(A|L) = f).

As an application of theorem 2 we have lemma 2 of {M}

PROPOSITION 3. 1§ A {8 a homegeneous o-algebra, and L a o-subalge
bra Boolean o-isomorphic to a B,, then dim A > dim L implies that

if 0 < f < P(M|L) there exists NcM with P(N|L) = f.

(It follows from theorem 2 and the example described above).
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Theorem 2 has a converse:

THEOREM 3. 1§ ¥ NcM it hofds that ¥ £; 0 < £ < P(N|L) there exists
M'eN such that £ = P(M'|L), then M is completely diminishable.

Proog: Take f = P(N|L)/2. Then P(M'|L) = 1/2.P(N|L) = P(N - M'|L)
and YM' = V(N - M') = WN. QED.

If we did not require M'eN, the implication would be false. Take

N = (0,1/2), @ = (0,1) =M, L = {Q,0}, A = g(N,B(1/2,1)). N is an
atom and every constant function not greater than 1/2 is the con-
ditzonal expectation with respect to L of a subset of M.

Proof of Zheorem 2. 1t is sufficient to prove that there exists
N'eM such that P(N'|L) < f. In fact, defining recursively Nj as a
set contained in M -'E'Ni verifying P(Nj|L) < P(M '.E.NiIL)’ we

get finally a set N'1=Jz Nk with the desired proper:yg This invol
ves an exhaustion proceﬁure which will be often used. One way of
substituting this method by another one is to use axiom of choice
in its maximal-element form. Let us prove the existence of such an
N'. The crucial point is to exhibit a BeM with

*) {0 < P(B|L) < P(M|L)} = {0 < P(M|L)}.

But (*) says that vM coincides with the intersection of VB and
{P(M - B|L) > 0 }= v(M - B). Such a B exists because of proposition 1.
Call C = {0 < P(B|L) < 1/2-P(M|L)}, D = {1/2.P(M|L) < P(B|L)}.
B, = (CAB)v(DA(M - B)). Then, vB, = vM and P(B,|L) < 1/2.P(M|L).
Repeating the process, we can prove that exists a sequence {Bn}:

(**) vB_ = WM, P(B_|L) < P(M|L)/ 2 ,n=1,2,..., B cM.
For a certain n, P(f > P(M|L)/ 2™) > 0 if f # 0. Define

N' =B A(P(BIL) < £} =B AH

. N' # ¢ because VN' = HAVB_ = HAVM = H. Besides N'eM and from (**)
P(N'|L) < f. QED.

From now to the end of this section we shall generalize the preced
ing notions and theorems. The proofs are trivial or similar to

those given before.

We shall not go into troubles adapting them since in this moment

what only matters for us is to have a prospective view of the subject.
Let A, L and S bé o-algebras of subsets of 9 and LcA>S. (2,A,P) a -
probability space. A set N will be called S-diminishable if Ne A

and there exists QeSN, ¢ # QeN such that YN = v(N - Q) and where Vv
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is taken with respect to L. A set MeA will be called completely S-
diminishabfe if every subset A-measurable is S-diminishable.  Given
L and § we shall say that MeA is an (L,S)-atom if SAM = LAM.
Therefore, L-atom coincides with (L, A)-atom.

THEOREM 4. 4) M 44 completely S-diminishable iff ¥ NeM,s #NcA, 3
QcN, ¢ # QeSAM ; vQ {0 < P(Q|L) < P(N|L)}. )
ii) Assume LS. Then: a set of A is S-diminishable iff it is not
an (L,S)-atom.

i44) Undern the same condition a set of A is completely S-diminisihable
i§§ 4t does not contain an (L,S)-atom.

Lv) Assume M 48 completely S-diminishable. 1§ f 44 L-measurable and
0 < f < P(M|L) then there exists M'eg(L,S)AM such that £ = P(M'|L]).
v) Let LcS. 14 M does not contain an (L,S)-atom then forn evenry
fel-measurable, 0 < £ < P(M|L) , there exists M'eSAM such that

£ =PM'|L).

(iv) was mentioned in {MPZ}, but in its equivalent form shown in i).)

8. ATOMS OF THE INTERSECTION ALGEBRA. The setting is the one de-
scribed after theorem 3, section 2.We are interested in discovering
‘what happens in the atoms of D when E and F commute. We shall show
that there B and C are independent (*) and since this answer is
pleasant énough we shall go into the complement of the atomic part
to see how the algebras are related in that part. This "local"
study can be done because of the following proposition.

PROPOSITION 1. 1§ {D_, n=1,2,...} defines a partition of R by sets
of D then E and F commute on each D; 464 they commute on Q.

Proof: Given the set AeA, we shall denote by A,, B,, C,,D., the
restrictions to A of the algebras A, B, C, D. Observe that ’

A, = g(B,,C,) but only D,cB,AC,.

To say that E and F commute on A means: E, and F, commute on

(A,A, ,P/P(A)) where E,(F.)is the conditional operator associated

to B,(C,) and, if A:D, then Eo = E(Fo= F). The corresponding closure
operator will be designated by Vo1 (voz).

We have: EF f = EF ¢ IDn.f =z EF(1Dn'f) = I EnFn(IDn.f) and this
implies that the commutation of E., and F, is equivalent to that of

(*) Independence of B and C on D means BAD independent of CAD with
respect to the probability P(.)/P(D).
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E and F. This proves the proposition.

Elimination of the atoms of D implies the eradication of the atoms

of A, B and ¢, as the following proposition shows (the proof is
left to the reader ). ‘ b

PROPOSITION 2. Any atom H of A, B on C is contained in .an atom of
D, precisely, VH.

When A = g(B,C), we defined in section 4 direct sum of B and C
which is equivalent to say that any BeB intersects any CeC:BAC#¢
(then BAC = T), if B # ¢, C # o.

THEOREM 1.4)1§ P 48 a probability on A which is equal to B ® C and
EF=FE , then B and C are independent.

L) 14 ViV, = V,V, on A,then A = B & C whenever BAC = T

{4L) 1§ EF = FE,then B and C are 4indépendent, whenever BAC = T .

Proof: i) Let CeC, BeB. G 1c = a.1n because of the triviality of
the intersection algebra and lemma 1, section 1. Then P(C) = a.
Analogously P(B) = b. From E F 1BC =G 1Bc = E IB F 1c = ab 1n .
we obtain P(BC) = P(B)P(C).

ii) If B.C = ¢ then @ - C> VB = V2B and the intersection algebra
would not be trivial.

iii) follows from Th. 1, iii), section 5 and i) and ii) of this
theorem. QED.

iii) was proved in {MPi}.

COROLLARY 1. On the atoms of D, B and C are independent iff EF=FE.
In the complement:of the D-atomic part of Q neither A nor B non C
have atoms.

In fact, it follows from the preceding theorem and propositions 1
and 2.

COROLLARY 2. 1§ A 48 punely atomic and EF = FE, then Q can be nep
nesented on NxN (N=(0,1,2,...}) in such a way that the o-algebras

B and C connespaond with the oc-algebras of sets parallel to the axes,
NxN 448 decomposed into nectangzéa with disjoint projections whene
the masses are concentrated, and on each rectangle P {48 the product
0f {18 marginal distnibutions but for a constant.

In fact, if A is atomic so it is any o-subalgebra. The rectangles
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correspond to the atoms of D and the corollary is a direct applica
tion of the preceding theorem. The mentioned constant is.the meas
ure of the rectangle.

COROLLARY 3. If P (4 a'paobability measure on NxN positive on each
point and B and C are nrespectively the "veatical and horizontal
Lines" then P = PixPZ, whenever EF = FE.

It follows from the preceding corollary.

REMARKS. 1) In the proof of the preceding theorem we showed that

in an atom of D two Sets, B, C, intersect if they are not void.
‘This can be generalized: if V,BoA and C.V A # ¢ then B.C # ¢. In
fact, v, (B.C) = (v;B).C = C.V,V,B2C.V,A # ¢ implies B.C # ¢. V,B>5A
whenever A is an atom of A and B.va # ¢. In fact, in this case,

if there is not inclusion A.9,B = ¢ and then VZ(B.VzA) = ¢, con-
tradiction.

2) If D is an atom of D the filter F; is maximal monadic with re-
spect to V and therefore A/FD = Ao = B, ® Co where the direct sum

is understood in the sense of Boolean algebras. Since Ao = g(Bo,Co)
it can be‘interpreted in the sense of Boolean o-algebras, (cf. §5,6).
3) If 2.,cQ, Q.¢A, and LcA,then if L, = LaQ, is trivial, YV Q.

is an atom of L, as it is easy to see. This implies that if v and
v, commute and A, = B, ® C, on Q,, it is contained in an atom of D
because D,cB,AC, = {¢,2,}. This means that if on a set of A, B and
C are independent then this set is contained in an atom of D. There
fore, after discarding the atoms of D no trace of independence will
be found. Spurious forms of indepehdence can appear anyhow. The
typical example of this bastard type of independence is shown in ex
ample II of section 3.

4) We already said and can be easily verified that the concept of
conditional atom generalizes that of atom. Next lemma characterizes
some of them when L = 0,

LEMMA 1. 14 v and vy commute and BeB then B is a D-atom relaitive
to B iff BocC,.

Prood: Assume B is a D-atom relative to B, i.e. D, = B,, then if

B' is B-measurable and contained in B, we have: B' = B.VB' = B.VszeC..
Assume Boc(,,B'eBo. Then, B' = B.C for certain CeC. Applying vy

we get: B' = VIB' = vl(B.C) = B.VIC = B.vC, and this means that B

is a D-atom with respect to B.

5) We have shown in remark 3) that if independence of B and C ap-
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pears in a set A of A, it is included in a set of D where still those
algebras are independent. An analogous fact occurs for intlusion

as is shown in next lemma. Lemma 1 says that if A,eB, and Bo.cCo »
then A, is a (D,B)-atom. But if A.eC, and B.cC, then AccA; = VIAosD
which is a (D,B)-atom (lemma 2), and then because of lemma 1, Blccl.

LEMMA 2. Assume VY, =9, 1§ AoeC and B,cC, then A| 48 a D-atom
relative to B.

Proog§: Let BeB, B1 = B.A1 = B.leo = VI(B.AO) = vl(C.Ao) with CeC.
Therefore BleD.

6) In relation with this remark, cf. {HN} . Assume our probability
space is (2, M,P) and LeM, a o-subalgebra. By a conditional atom we
shall understand one L-atom relative to M. This will be applied in
the case M = B and L = D.

LEMMA 3. £) 1§ {Aa} 44 a chain of conditional atoms, then A = sup A,
{8 a conditional atom. Eveny subset of a conditional atom is an L-
atom.

44) G4iven a conditional atom there exists a maximal conditional atom
containing it.

LLL) 1§ (A}, n=1,2,..., {4 a sequence . of conditional atoms such
that the VA are pairwise disfoint, then I A 44 a conditional atom.
4<v) 1§ A {8 a maximal conditionaf atom and Z = sup{B; B is a condi
tional atom} then VA = VZ.

vl 1§ A and A' are disjoint conditional atoms there exists a condi
tional atom containing A maximal with nespect to the propernty of
beeing disjoint to A'.

vi) Z = % A, where An 48 a conditional atom maximal with nespect
n=1
to the propenty of beeing disjoint to A oo+ A

e
Proof: Sup Aa is essentially denumerable, i.e. A = sup An a.e.
where An is increasing. From Vsup An = sup VAn we get i), and ii).
iii) follows easily. Since vVZoVA, if Z - VA # ¢, it would contain
an L-atom and from iii) it would follow a contradiction. v) is
proved like i).

7) Denote with T, the union of the family of atoms of D and with
TI(TZ) the maximal set of D where BcC (C<B).

LEMMA 4. 1§ A {8 an atom of D, then AcTonT, when and only when A
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is an atom o4 B.
Proof: It is left to the reader.

LEMMA 5. T4 A (8 an atom of D, AcToaT AT, 48 equivalent to A is an
atom of A.

Proog: Trivial, after lemma 4, /

9. COMMUTATIVITY. In this section we study some situations -in the
general context we already admitted- which preserve the commutation

of E and F. For example generalizing proposition 1 of section 8 we

have:

 LEMMA 1. &) 1§ Ace is B-measurable then EoFo = FoEo on A. Tdem
if AeC.

LL) 14 C' = g(C,Bl,Bz,...) whene B eB and {Bi} A8 a pantition of @
then EF' = F'E ; F' = E(./C').

Proog: i) From (3), section 2, we have: Fo(.) = F(.) 1A/F(1A)' Ap
plied to sets of B,, because of the commutation of E and F and that
AeB,the right member is Bo measurable. Lemma 1 of section 1 implies
then that F, and E, commute.

ii) Every element C' of C' is of the form & Cij ; then

E(1.,) =ECE 1, . )=z 1, E(.)
c' BjCJ Bj Cj

and this function is clearly B-measurable. QED.

If instead of the conditional expectation operators we consider the
closure operators, i) of the preceding lemma is generalized by i)
of next lemma.

LEMMA 2. 4) 1§ AoeB then Vo1 commute with Vo2 wheneven v, 7,= 7,9,
LL) 1§ Anmo and the commutation of the clLosunre operators holds on
edach An, Lt 48 also valid on A,, (n=1,2,...).

£44) 1§ An+A° and on each An, EnFn = FnEn , then EoFs = FoEs.

Proof: i) It follows immediately that:
() VOIH = (VIH).A° whenever HcA,,whatever it be A,.

Then: Voz(VOIH) = A°v2v1H since Ao,eB. Besides: VOIVOZH = vl(onzH) =
= Aov,7,H.
i) vV, (A = AL (ALY, (XAD] 1Ao7 (A7, (X.A0) ).



-21-

Then, anvnz(X.An)Wo1 Vo2 (X.Ao.). This implies the commutation of
the closure operators on A,.
iii) follows easily applying formula (3) of section 2.

(°) F.E (f 1An) = F { 1AnE(f 1An) / E(IAn) } lAn / F(lAn).

Taking 0 < £ < 1 , we see that (°) converges to Fo.E.(f 1, ).
iii) is a ready consequence of this. QED.

LEMMA 3. Let (B_) and (C_) be increasing sequences of o-algebras
(completed in A). 1§ B = 3(81'82""’ , C = g(Cl,C ) and fon
each n,n = 1,2,..., EF = FE, then. EF = FE.

21"

Proof: Call Bo = U B
1

F 1B = 1;m Fn 1

If BeBn » 1 2 no , because of the commutation the function F 1, is

n- From martingale theory, we have for BeBo

B a.e.

Bn-measurable and therefore F 1B is B-measurable.
The set { BeB ; F 13 is B-measurable} contains B, and is a monotone
class, therefore, since B = g(Bo) it coincides with B,

LEMMA 4. Let A and A' be A-measunrable sets and D a set of D such
that AcD, A'cQ-D. 1§ B and C commute on A and A' then they commute
on AuvA'.

Proog: Denote E,, F,, (El’ Fys E , ﬁ), the conditional expectation
operators associated to the restriction of the algebras to A (A',
A+ A'). From:

_ B lcasan 1 - CA

1 |- :
[ C(A+A') E 1 A+A E 1 AT g 1

E =f+g,

A'
A+A' A

taking into account that f is C,-measurable and g is Cl-measurable,

we see that E 1C(A+A') is C-measurable, thanks to the fact that D

separates A from A', QED.

(The same result holds if instead of commutation of the conditional
expectation operators we ask for commutation of the closure operators.)
Combining lemma 2 and a passage to the limit we obtain:

LEMMA 5. 1§ B and C commute on each set Ai' i=1,2,..., such that
the VA +s foam a pantition of 9, then they commute on A
i=1

10. COMMUTATION UNDER SEVERAL MEASURES. We have said that commu-
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tation of the closure operators is possible under several circum-
stances: independence, inclusion, g-independence, etc.. We prove
here that if EP, FP are the conditional expectatjon operators asso
ciated to B and C in the space (2,A,P), all the algebras completed
in A, then EQFQ = FQEQ for every QvP, iff only inclusion occurs.
This solves partially also .the following question.

Problem: How must B and C be related as to have EPFP = F,E, for
every measure P?

Conjecture: @ is decomposable into two sets 2,, @ belonging to D,

2
such that BeC in the first, C<B in the second one.

The problem, the conjecture and next proposition appeared in (MPZ}.

PROPOSITION 1. Assume given a set @, and the o-algebra of sets A
with two o-subalgebras, B and C such that A = g(B,C). 1§ for every
P, EP and FP commute, then Lf GeD = BAC £is not void then on G 4£s
decomposable in D, on it i& 4indecomposable in B or in C.

Proog: Indecomposability of A in A means that every A'eA includes

A or is disjoint to it. Commutation of the conditional expectation
operators for every P, means V P, EP 1C is C-measurable [P] , VCeC.
Assume P(G) > 0, and also that G is indecomposable in D. Therefore
B and C are independent on G. If G were decomposable with respect
to B and C then it would exist BeB, CeC, such that B-C # ¢# C-B.
Take xeB-C, yeC-B and let s sy, the probabilities concentrated on
x ‘and y respectively. Consider Q = (P+6x+6 )/3. G is an atom with
respect to P and Q. Since by hypothesis E and F commute, B and C
are independent with respect to Q on G. Then:

Q(B)Q(C) = Q(BC)Q(G) which implies (P(B)+1)(P(C)+1)= P(BC) (P(G)+2)
From this we obtain: P(BAC)+1 = 0. ~ QED.

THEOREM 1. 14§ E_ and FQ commute for every Q equivalent to P then Q
can be decomposed into two sets of 0,To, Ty» whene, nespectively,
BocCo, Cchl.

Proof: Let T, be the greaiest set of D where C,<By. If in To=@-T,
were not true that B,cC, , it would exist a set Be¢B, included in T,
such that sz # B and B # AB = n-vz(n-B). D = v2B-ABeD.

Let CeC, and £ = a 15.+b 1 p,%c 1p0,+d 15,02 0, B' = @-B,[ £ dP = 1.
Eventually passing to complements we can reduce the situation to one
of the following cases: 1) B and C intersect in a positive set but
no of them is included in the other; 2) B is contained in C. From

(2) of section 2, we get for dQ = f dP : FQ L = F(f 13)/F(f) and
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from this:

(*)  (a g*c 10 )F 1y Fy Tgo = (b 1g+d 15, )F 15.F) 1

FQ B°

Therefore, the function h = 1D(a 1C+c 1c.)/(b 1C+d 1c,) is B -meas-
urable.

Take b = d = 1, which is possible in the mentioned cases, and choose
a and c in such a way that f f dP = 1. 1In case 1) a and c exist
satisfying this equation and ¢ # a. In case 2) choose ¢ = 0. In
both cases: 11) (a lc +C 1c.) is B-measurable, and then C.D is B-meas
surable. This means that for every CeC, CD is B-measurable. Then
on D, C<B, contradicting the maximality of T, . QED.

This theorem does not solve the problem proposed above since the
question was on the set structure and the preceding result is on
the Boolean structure. But it may be this last one is the right
structure where the problem should be posed. Next we describe the
equivalent measures to P for which we can afford to ask commutation
whenever this is present for P.

THEOREM 2. Assume EF = FE, [ £ dP = 1,0 < f, dQ = f dP, Q ~ P. Then,
EQFQ = FQEQ i £ = gh wherne g 48 B-measurable and h eC-measunrable ,
both non negative.

1
COROLLARY. "I§ EF = FE then every f e L (a)l 4is of the form £ =gh ,
g e B-measunable, h ¢ C-measunable iff§ 2 {8 decomposable into two
disjoint sets To, T, with the propenties descaibed in Th. 1.

The corollary follows from theorems 1 and 2. To prove the preceding
theorem we shall make use of the following auxiliary proposition.

PROPOSITION 2. Eq = E 4if4 f {4 B-measurable, where f = dqQ/dp.

Proof: Let us see the necessity.

E (g) = E(fg)/E(f) = E(g) Y g implies E(fg) = E(gE(f)) ¥ g and there
fore f = E(f). The sufficiency is easier: EQ(g) = E(fg)/E(f) =

= £ E(g)/f = E(g).

Proof of theorem 2. First we observe that formula (2) of section 2
holds for every non negative function f, a.e. finite, and every non
negative function h, say, not greater than one. Second observation:
the functions g and h that appear in the hypothesis can always be
supposed finite everywhere. Third observation: Proposition 2 can
be extended with the same proof to the following: If Q is o -finite
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and equivalent to P and f = dQ/dP is B-measurable,then EQ = E, and
conversely, if 0 < f < » a.é. [P] and dQ = f dP, the equality implies
the BQmeasurability of f.

Fourth: g and h can always be supposed to be greater than 0 every-
where, since this can be admitted for f.

Let us consider the o-finite measure: dK = h dP ; from the observa
tions we see that: EQ s = Ex s = E hs/Eh ¢ C-measurable if s is C-
measurable, nonnegative and not greater than one. This is the proof
of the sufficiency. Let us see the necessity. G(f) = G(gh) = EF(gh) =
= E(h)F(g) and Ef.Ff = f.Eh.Fg imply:

Ef Ff
Gf

(2) £ = = g'h'.

This provides a canonic decomposition of f since g' = Ef / v Gf is
B-measurable. ’
If EQ and FQ commute, using formula 2, section (2):

(3) EqFqv = E(f F(fy)/Ff)/Ef.

If v =¢ Ef/f , ¢ € C-measurable, (3) equals to

4) E(f¢Gf/Ff) /Ef .

Changing in (3), E with F, for that ¥ we get (3) equal to:
(5) F(fE¢)/Ff .

Since E¢ is D-measurable,from (4) = (5) we obtain:
(6) B¢ = 8£ E(fo/Ff) , for ¢ ¢ C-measurable.
Ef

If ¢ = 1c integrating (6):

(7)  P(BC) = J e—Sf _ ap ¥ BeB, V Ccec.
sc  EfFE

Therefore (7) holds replacing BC by any set A € A.  Then the inte-
grand is equal to 1 which implies £ = g'h', g' = Ef//Gf , h' = Ff//GT.

11. GENERATOR INDEPENDENCE. B will be said g-independent of ¢ iff
¥ B e B (or equivalently, B € B - B AC) there exists EcB a o-al-
gebra independent of C and such that D and E generate a o-algebra
D ® E that contains B.

Then U E(B), B e B - P, is a family independent of B which together
with D generate B. But that union is a family of generators of a
o-algebra B' such that B = g(P,B'). g-independence is‘imﬁlied by
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independence. This section will be devoted to the proof of the fol
lowing theorem and previous results. We shall pause on same of them
since they are highly interesting in themselves.

THEOREM 1. &) If B 4is g-independent of C then EF = FE.

44) 1§ @ does not possesst D-atoms with nespect to B and EF = FE then
B (s g-independent of C. '

L4i4) 1§ @ does not possess D-atoms with hespect to B nedlthen to C and
EF = FEthen B is g-independent of C and C of B.

Proof: i) Given B € B let us see that F IB is D-measurfble. Take

E <B such that D ® E 2 B. Consider the product (XxY, C x E, P=dxdy),
(where dxdy stands for the product of two measures represented by dx
and dy) isomorphic to (®, C ® E,P). Call B a set in XxY correspond-
ing to B. E(. /C) is obtained by integration in. the second variable:

™ E(15 7€) = [ 15(x,y) dy.

13 is 6 x E -measurable and therefore (") is a D-measurable function.
This proves i). Before proving ii) we shall go into auxiliary results
Theorem 1 was part of {MPZ}. Next theorem is due to Maharam (cf.{M},
lemma 1) but the statement is slightly different because it uses the

idea of conditional atom.

THEOREM 2. 4£) Let (o,M,P) be a probability space, LM, a o-subal-
gebra such that M does not contain L-atoms. Assume M € M - L. Thenre
exis1s a o-subalgebra B of M, o-isomorphic to B(0,1),such that

Me g(L,B) and B s independent of L. Therefore, g{L,B) = L ® B 3 M.
{4) Every homogeneous probability space is ag-£8omorphic (in Boolean
sense with presenvation of measure) to a (BA,ﬁ), P = Lebesgue measure.
L44) A non atomic (4i.e. without atoms) probability space {8 nepre-
sented 4in one and only one way as a direct sum I (nA,BA,cAPA) whenre

0 <c, <1, £ c, =1, and the A's are infinite deinalb of different

A A
carndinality.

Proog: i) Given a partition 0 < 2™ <,,.< k2™® < ... 1, define the
functions xi“) = (et A K27 v (k- 1.2 - (k-1)27R,1 < ko< 2P,

Then [ x ™ = PLu) and x{J*D) 4 o+ o ()
e k3l (n) Ly (0) (n)
Define M'™c M - I M:™) verifying P*(M{™)) = ,
k j=1 3j k k

(n+1) (n+1) _ ., (n)
Mok-1" * My = M
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This is possible because of theorem 2, section 7.

(n)

Define now the functions u in the same way but in relation to the

set @ - M. So né“) + xé“).= 2°", and call,Né“) the sets associated.
Then the sets Mé“’ + Né“) are independent of the algebra L and the

same is true for the oc-algebra B generated by those sets, which is
isomorphic to B(0,1) as it is easy to see from the construction.
Let us see that M e L ® B = g(L,B).

calling ¢{™ = {w; PEOW) > k 2%} , the set T(™ = ] ¢{® o+ w{m)y
. k

belongs to g(L,B) and verifies P(M A T(“)) < 27, We leave this easy

verification to the reader. From P(M a T("))—;*O, we get i).

ii) Assume A is the Boolean c-algebra quotient of A with the sets of

measure zero. Assume also that the generétors of A are ordered in

the same way as that described in th. 1, iii), section 2, and 1let A

be the ordinal (the least one with a given cardinality) involved in

the ordering.

Call B the Boolean o-algebra associated to Bg<§<§0,1)(i)) and suppose

it is o-isomorphic to a subalgebra L of A, sucﬁitiat L contains at

least the generators g » i < j<A. Since card j < dim A = card A

from proposition 3, §7, and i), L can be extended to a o-subalgebra

o-isomorphic to Bj+l containing the generétor with least index not

contained in L.

This implies that A is isomorphic to a Br.card r < card A is impos

sible because dim B, = card Ir'. On the other hand, from the construc

tion I < A, and therefore I = A.

iii) Follows from ii) and theorem 2, 52. QED. .

COROLLARY 1. 1§ m 4{s the dimension of the o-algebra M associated

to (Q,M,P) and it has, no atom, then card M = m .

The proof is left to the reader. We observe only that ii) and the
orem 3, §4, are of similar nature.

COROLLARY 2. 1§ L = {@,2)} and M &8 non-atomic then M contains a
o-subalgebra isomonphic to B(0,1).

In fact, in this context atom and L-atom are equivalent concepts.
The corollary follows immediately from i).

COROLLARY 3. Let (9,A,P) be a probability space without atoms, B
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and C, o-subalgebras of A, alf of them homogeneous, completed in A
such that A = g(B,C). 14§ EF = FE and dim B > dim D < dim C then B,
C,D and A ane Boolean oc-isomorphie to product oc-algebras B2 , B

3 ’
B4 and B1 , nespectively, in such a way that

B, = B(m (0,1),.,) x B(m (0,1),.,) x B(m (0,1),.,) ,

1 0<i<8 (i) B<i<s > () s<i<y (i)

Bp=B( m )xB8 n ) , B,=8 1) |,
0<i<B B<i<s Bgi<d

By =B( n ) xB( 1 ).

B<i<$ S<i<y
Proof: With a slight modification the proof of ii) of the preceding
theorem works to prove the isomorphism of B, C, D with 82, 33, B4
respectively. For the isomorphism of A with B1 it is only necessary
to demonstrate that the first factor (the last one in 83 is treated
in the same way) in B2 is independent of 83. Of this takes care the
following proposition, which holds in the general setting we proposed
ourselves along this paper.

PROPOSITION 1. 1§ EF = FE and B> g(D,Bs) with B, independent of D,
then Bo 448 independent of C.

Proof: Let Bo € Bo. We know that G IB = P(Bo) 1Q . IfCeC,
P(CB,)= I F1, dp = J G1, dp= J P(Bo) dP = P(Bo)P(C).  QED.
Cc ° C ° C ’

Proof of <L) of theorem 1. Using i) of theorem 2 after replacing M
by B and L by D we see that for any M ¢ B - D there exists B, isomor
phic to B(0,1) such that Bo< B and is independent of D. Because of
proposition 1 it is independent of C, and this proves ii).

As a matter of intellectual curiosity we could add the following co
rollary to theorem 2, (cf. theorem 4, §7).

PROPOSITION 2. 1§ (a,M,P) does not contain any (L,S)-atom then &)
of theorem 2 hofds with Bcg(S,M).

It can be proved in the same way as shown before, but we shall not .
prove it since this result will not be used in the sequel.

DEFINITION: When four o-afgebras Bi , i=1,2,3,4 ane nelated as 4in
conollary 3 with B, non-triviat we shatlt say that B, and B; satisfy
a nelation of spurnious independence in stnict sense. 1§ it 48 not
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known that B4 48 not trivial we shall say that between 32 and B3

thene {8 spunious independence.
(If 84 = {@,2) spurious independence coincides with independence).

12. DECOMPOSITION OF A PROBABILITY SPACE. In the usual setting with
commutation of the associated conditional expectation operators it is
possible to decompose the space in pieces where there is inclusion,
or independence or g-independence, beeing only necessary, sometimes,
to increase D with a partition of @ by sets of B v C = the algebra
generated by B and C.

First step: Isolate the atoms of P. On them B and C are independent.
Second Step: In the complement we still have commutation of the cor
responding conditional expectation operators. Isolate the set of D
where B<=(C, maximal with respect to this property.

Third step: 1In the reﬁaining part we still have commutation. There,
isolate the maximal set of D where Cc B.

The three steps are possible because of the results of section 9.

The remarks of section 8, in particular 3) and 5), are specially
illuminating at this moment.

From the results of lemma 3, §8, we see that the D-atomic part with
respect to B in the set 2, of D that remained after the third step,
can be put as a union of a denumerable family {Bn} of B A C-atoms

of B. Adjoin (B } to C, the o-algebra C' = g(C,{Bn}) commute with
B as can be seen from lemma 1 of section 9. Therefore they also com
mute on 2,. Ing, = 2 - B there not exist D-atoms with re-
spect to B. After adjoining the Bn's to C we have increased ''the
set of D where Bc(C". In fact, C' is obtained from C adjoining sets
of B: {B_}, in consequence they belong to D' = B A C' and in each

of them, BcC', That is, the D-atoms of B are a hidden form of in-
clusion.

Fourth step: Adjoin to C a denumerable partition by sets of B which
are conditional atoms of the D-atomic part of B contained in 2,.

The new o-algebra C' generated by those sets together with C commute
with B. In those sets Bc C'. Observe now that invna, B is g-inde-
pendent of C (cf. Th. 1, section 11).

THEOREM 1. After adjoining to C a denumerable family of disjoint
sets of B it is obtained a o-algebra C' commuting with B such that,
in a pantition of 9 by sets of D' = B A C'yon BcC' on CcB on B

is 4independent of C on B is g-independent of C'. The second and
thind situation.occun at sets of D.  The §irnst, second and founth
situation occun at exactly one set of the parntition.
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This theorem was in essence correctly understood in {MP,}. A tech
nical mistake brought tc the authors to the belief that the D-ato-
mic part with respect to B: & B, , was D-measurable when EF = FE.
This is not so as can be easily seen from example V, seéction 3, were
the conditional atomic part is reduced to only one atom. The sit-
uation was still clarified in {HN} , proposition of §2, where the
D-atoms of B,with B generated by D and a partition of B-sets, are
characterized.

Fifth step: Repeat the procedure of the fourth step in the set 2,
but changing B with C' and ¢ with B. That is, eliminate in e, the
D'-atoms of C' adjoining to B a denumerable partition-of the D'-ato
mic part relative to C'-by sets of C' which are conditional atoms.
Therefore, the new o-algebra B' commutes with C', B' = g(B,{C; By,
and on Qg =9, - C , C' is g-independent of B' because of theo
rem 1 of section 11, Besides all the sets adjoined to B or C be-
long to B v C as well as 2,5, 8, and 2.

nth step: m > 3 is a denumerable ordinal. Call B

n? Cn the o-alge
bras in the nth

step, 3 < n < m; assume they commute and that they
are obtained from B, C, adjoining a partition Pn of sets of BV C,
Pn+1,refining Pn‘ Call a a set in Pn specially chosen of the form
B.C, Be B, Ce C, 2,59 .- )
If m is a limit ordinal define Bm and Cm as the limit o-algebras ge
nerated, respectively, by Bn, n < m and Cn, n <m.
Call o = f\(nn: n<m.

If m is not a limit ordinal, and even, adjoin to C,-; @ denumerable
partition by sets of erl of the Dm_l-atomic part of Bm-l contaiged
in @ _, taking care that the sets of the partition be conditional
atoms. If e 1 is void the procedure stops.

If m is an ordinal and not a limit one, and odd, the construction
is the same changing Bm_1 with Cm_l. In both cases e, is defined
as Qm_lminus the conditional atomic part. #@bviously e, is of the
form B.C, and from §9 we see that Bm commutes with Cm.

Since this is an exhaustion procedure it stops after a denumerable
family of steps. Then, two possibilites force the stopping: a) a
certain e = @, b) in a certain a the corresponding Dm-atomic part
is void. In this last case, in that set, there not exist Dm-atoms
with respect to Bm neither to Cm. That is, the restrictions of B,
C to e have no conditional atom with (B A n_) A (C N Qn) = Dm, the
conditional algebra. Then we have:

THEOREM 2. A{ter adjoining to C and B a denumerable partition by
sets of Bv C they are obtained o-algebras C' and B' stilL commuting
such that in each set of the pantition: &) one of the Last two alge
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bras is subordinated to the othen, or ii) B is independent of C,on
ii4) B’ is g-independent of C' and C' is g-independent of B'. The
4ndependence occuns at sets of the pantition belonging to D. iid)
occurns at exactly one set.

13. G=INDEPENDENCE AND HOMOGENEITY. In this paragraph we shall
work on the space (2,A,P) with g(B,C) = A and ‘B commuting with C

is such that on 2, B is g-independent of C and C of B. This i5s the
situation at which we arrived in one set of the partition in th. 2
of the preceding section. We shall try to go deeper on the struc-
ture of the algebras when g-independence in both senses is present.
A first auxiliary proposition whose easy proof we leave to the read
er follows next. '

PROPOSITION. Let A € A, B e B. 1§ B.A is an atom of B A A then
vl(B.A) 48 an atom of B, and convenrnsely.

This proposition is quite general as is the following result.

LEMMA 1. Assume (2,A,P) has no atom in D = BA C, and as always
- A = glB,C), EF = FE. ,
There exists a finite partition Ao,...Ay of @ by sets of K (the
Least family containing B and C and closed by differences) such
ZLhat on one of them, say Ao, Bo, Co, Do ane simultaneously homo-
geneous. Besides the o-algebras: B' = g(B,Ao,...,AN),

c' = g(c,Ao,...A“) commute, i.e., F'E' = E'F',

- Proof: Call Dl the set of 0 of Maharam's representation with least
dimension. This set can be identified as the maximal set with least
dimension. It exists, i.e., is not void, since D is non atomic.

Let B1 be the maximal set with least dimension of B A,Dl; since 0
has no atom neither B nor C nor A have atoms and the mentioned the
orem can be applied again to D1 because of the proposition proved
above. Call C, the maximal set with least dimension of C A B, .
Next do the same with ? and ¢ obtaining D,, and repeat the process.
Jt is obtained so a sequence D, > Bls Cl'a D,>B,2C, 2Dy 2.... .

Let B; = dim Bi » Yy = dim Ci’

From theerem 1, §2 we know that 8 > 8 ., and v 2> v .,. Because
of the well-ordering of the ordinals there exists p such that if
n>p, B =8 Let us see that Dp+1 =B =C

n a+1’ Yn © Yn+1® p+l p+l

which will prove the triple homogeneity of that set. From Bp+l <

< d;m Dp+1 < Bp we have dim Dp+1 = Bp+l and since Bp+11s maximal
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with dimension 3p+1 we must have Bp+1 = Dp+1~if we know that this
last set is B-homogeneous. But this follows from the fact that in
no- subset of Dp+1 the B-dimension can be less than g_ and cannot
be greater because‘of what we have already seen. From Cp+1c:B
c Cp it. follows in the same way that B

dém Bp+1 =y =y

p+1C

p+l is C-homogeneous and

P p+1 and since Cp+1 is maximal with dimension ¥y

we have Cp+l = Bp+1 = Dp+1‘

Consider now the sets BIDCI:’ B2: DCPDDP+1. From section 9
we know that B and g(C,Bl) commute. Since C1 belongs to this last
algebra g(B,Cl) and g(C,Bl) commute. From C1 e g(€,B,) it follows
‘that g(C,Bl,Cl) commutes with g(B,Bl,Cl). Following so we get the
commutation of g(B,Bl,...,Bp,Cp) with g(C,Bl,..,,Bp,CP). Since
Dp+1 belongs to both c-algebras it can be added to them.

Now observe that all the sets Bl,...,Cp,Dp+1, beléng to K and same

thing occurs with the sets of the partition that they determine.QED.

p+l>

LEMMA 2. 4) A ¢ A B' = g(B,A), C' = g(C,A). With atl generality
it hotds:

(BAA) A (CAA) = (B"A C')A A,
i4) 1§ A € Bv C and B commutes with C it holds the following equal
ity, which {8 false in genenral:

' (BAA A (CAA) = (BAC)AA.

444) 1§ A belongs to the union of B and C and they commute:

(BAC)A A= (B'"AC')A A.

Proof: i) follows from the definitions and iii) from this proposition
and ii). Let us prove ii). The right member is always included in
the left member. Put H = Bl.A = CI.A, B1 € B, C1 € C, and assume

A € C. Then H € C and applying v, we obtain: H = A.v,B, = A.VB, ¢

€ (BAC)AA. . QED.

LEMMA 3. Llet Ao,...,A be a partition of @, B, = glB,_ 1A 4 ),

B, = B, i=1,2,...,n+1, Ci = g(ci41'Ai—1)' Co = C. Assume that B
commutes with C and that A, e B, u C.. Then B ., and C_ ., commute
and (1) (Bn+1 A Cn+l) ANA - (B AC)A A_.

Proof: Bjand Cj commute (cf. §9). Consider the equalities:
(2) B ACIAA_; = BACAA_ |, BLACIAT = (BAC)AT,

where k=0,1,...,n , Tk =h§kAh. They hold for n=1 because they coincide
in this case with iii) of the preceding lemma 2. Intersecting the
second ‘equality with A, we get: (Bk AC) ANA = (BAC)AAL

Since Aka B,y Ck, from the preceding lemma we obtain:
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(Bgr A Cpr) A A = (B A C) A A
This and the preceding equality prove the first part of (2) for k+i.
Intersecting with Tk+1 € Bk v Ck, we obtain in an analogous way the
second part of (2) for k+1. Therefore (1) is proved. QED.

LEMMA 4. Under the hypothesis of the preceding Lemma, it holds:
£) (Bj A Cj) NA = (Bk+1 A Cpr) AAL R

(Bj A Cj) A Ten”

(Bk+1 A Ck+i) A Ty » 3=0,1,...,k , k=0,...,n.
i&) Fon 0 <k <n, 0<j<k:

(B AC)A Aj = (Bl ACyl A Aj = .. 0= (Bk+l A Crpq) A Aj .
Proof: i) is proved in the same wqy as the preceding lemma. ii) fol
lows by induction. Assume for j <h , h < k , that :

(3) (B, A C) A Aj = (BAC)A Aj.

It is immediate that for j < k-1 , h < k we have: (Bk A Ck) A Aj =
= (Bk-l A ck-l) A Aj, and therefore for these indices we proved ii).

For j = k - 1, it coincides with 1i). QED.

THEOREM 1. Assume that B and C commute, together generate A, all
0of them are completed in A. 1§ Q has no atom on D there exists a
partition T c A such that B = g(B,z) , C = g(C,z) commute and the
sets of t are homogeneous for B, C and D = B A C. Moreover, on
each A e t:(BAC)AA= [BAC)AA, BAA=BAA, EAA=CAA,
wich implies that each such A is B, C and D-homogeneous.

DEFINITION. Suppose that in Q is8 present the usual setting with
commutation. 1§ A, B, C, D are homogeneous and dim D = dim B oxr
= dim C then we shatl say that B and C are quasi-independent.

Theorem 1 asserts that if there is no atom of D in each set of I

we have spurious independence or quasi-independence (cf. section 11).
Applying this to the decomposition in th. 2 of preceding section,

we obtain:

THEOREM 2. A{ter adjoining to B and C a denumerable partition of
Q by sets of A, they ane obtained c-algebras B" and C" s2iLL com-
muting such that in each set of the partition: &) one of the two
algebras is subordinated (included into) te the other; 4iL) B 4is
independent of C; iii) B and C are strictly spurious independent;
iy) they are quasi-independent and not independent. The independ-
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ence occurs at sets of the parntition belonging to D. L) occuns at
4ets of B v C belonging to the pantition.

Th. 2 is obtained, as we already said, from theorem 2 of section 12
and corollary 3 of section 11, and the preceding theorenm applied to
the g-independent part of the decomposition of §12 . iv) is a con-
sequence of remark 3, §8. It can be questioned if iv) is a reason
ably description of the situation that it tries to isolate. We
think it is not and,first of all, it does not keep up with i)-iii).
Observe that subordination could be present and still be described
as quasi-independence. The matter requires further investigation.

Proof of theorem 1. Applying lemma 1 we find a partition %o, finite,
such that for a certain V. ¢ %.,B, C, D, are homogeneous and B, =

= g(B, £o) , Co = g(C, £o) , commute. On Vo, B = Bo, C = Co, D = Do=
= Bo A Co. In fact, in the proof of lemma 1 we had to add to B and

C the partition determined by B,>C,> ...:>Dp+1 = Vo, which is con-
stituted by sets of K, but moreover, this partition satisfies the
hypothesis of lemma 3 and 4 if we define:»A° = G B, ,A =B -¢C ,
Az = C1 - B2 seeey An = Vo. If all the elements of r, are homogeneous
simultaneously the procedure stops and if not we choose J ¢ £o, one

of the sets not simultaneously homogeneous, and repeat the preceding
process on it. This provides a new finite partition refining :o,

I, obtained from I, by partitioning of J and such that g(B,zl) com-
mutes with g(c,zl). On one set of Iis V1 , contained in J there is
simultaneous homogeneity. Using ii) of lemma 4 we see that

(g(8, ) Ag(C,z))) A v, = (g(B, xo) A g(C,z0)) AV, =

= [(g(B,zo) A g(C, o)) I\ J AV, = (BACA V, , Besides since
VoA J =0 and Vo e g(B,Zs) A g(C Zo)c g(B,: ) A g(C,z ), this last
algebra intersects V., in an algebra coxnc1d1ng with (B A C) A Vo.
Following so we obtain a sequence of partitions I, < I; €I, < ...
Call :° = H r,, B = g(8,z°) , €° = g(C, £°). From §9, we know that
the last two algebras commute and trivially it follows that

(B° A CY A Xy = (BAC)A X, for each X, € I°. On an infinite fam-
11y of Xy there is s1mu1taneous homogeneity. Let them be Hi, Hypeoo
If I 1 P(H ) = 1 then the theorem is proved. If not,we can repeat the
process subd1v1d1ng the remaining sets of the partition, getting so

a new partition £} > £° with the same properties as :°, and more sets
Hi R Hé , Hi s++s o On a certain (denumerable) step the process
ends by exhaustion, which proves the theorem.

14, FINAL REMARK. In the theorem of Burkholder and Chow that we
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mentioned in the introduction, EF = G or only in the 1limit,

lim (EF)" = G. In fact, (EF)"™ = G implies EF = G. This follows
from: in a Hilbert space H, let Si be a subspace with projector P,
i=1,2; if Plef‘e S = S1 n Sz, and f ¢ S then P P f = P f. In fact,
if n, L Sl’ s; € Sl and sz = s, +n , 1t follows P P f =5, € S.
Therefore, if g' = f - s, , |lg' - nl“ = | g'“ + | n “ 51nce
fo-n; e S1 On the other hand, P,g' = n; which 1mp11es Ng' “

= l\nll( + g - nlﬂ . Then n; = 0, and P,f = s, = P,P,f.
Analogously, F(EF) = G implies EF = G. Prof. R. Maronna observed
that EF = FE iff B and C are conditionally independent given 0.

In fact, if EF = FE, 0 < x ¢ LZ(B), 0<yce LZ(C), D ¢ D, we have:
IDG(Xy) ap = | EF(1,xy)dP = fE(1Dy(F(1Dx))dP = fG(1Dx)G(1Dy)dP =

= fDG(x)G(y) dP, and therefore, G(xy) = G(x)G(y). Conversely, if
this equality holds, from [ xy dP = ] G(xy) dP = [ G(x)G(y) dP =

= | y G(x) dP, we obtain x - Gx L L2(C). Then Fx = Gx, which implies
FE = ‘

If all the algebras are completed in A, and B and C are condition-
ally independent given E,then E=>D, as it is easy to see from
E(1§|E) = E(iDII:')'2 . Therefore, EF = FE iff B.and C are condition-
ally independent with respect to the minimal o-algebra for which
this is possible.

Since x - Gx A.LZ(C), then x - Gx L y - Gy, then LZ(C) %) Lz(D) A
L3(8) o L2(D).

ACKNOWLEDGEMENT (by R. Panzone). Expository reasons impel us to
include here most of the paper by D. Maharam mentioned in the refer
ences. Also we include the manuscript by Merlo and Panzone {MPZ}
since it have not appeared yet and this paper was originally planned
as a continuation of it. The aforementioned manuscript was sent on
April 1965 to an european journal. The journal ackowledged recep-
tion on 1966 but till this moment the authors have not received fur
ther notices.. (August 1968).



{D}
{BC}

{L}
{u}

(1,}
{H

{H,}
{HN}

{M}

{My}
{nrl}

{nrz}

{pP}

(vp,)

teay

-35-
REFERENCES
Doob, J.L., Stochastic processes, New York, (1953).

Burkholder, D.L. and Chow, Y.S., Iterates of conditional ex-
pectation operators, Prmoc. A.M.S., (1961), 490-494.

: L&eve, M., Probability theory, New York, (1963).

Ulam, S., Zur Masstheorie in der allgemeinen Mehgehlehre.
Fund. Math., (1935), 550-558.

Halmos, P., Algebraic logic I, Monadic Boolean algebras.
Comp. Math. 12, (1955), 217-249.

Halmos, P., Algebraic logic II, Fund. Math., XLIII (3), 255-
325,

Halmos, P., Lectures on Boolean Algebras, New York, (1963).
Hanen, A. and Neveu, J., Atomes conditionnels d'un espace de
probabilité, Acta Math. Acad. Sc. Hung., (1966), 443-449.
Maharam, D., On homogeneous measure algebras, Proc. of the
Nat. Ac. of Sci., USA, (19?2), 108-111.

Meyer, P.A., Probability and Potentials, New York, *(1967).
Merlo, J.C. and Panzone, R., Communication to the annual
meeting of UMA, (1964).

Merlo, J.C. and Panzone, R., On measurable subalgebras as-
sociated to commuting conditional expectation operators,
(See Acknowledgement), to appear.

Diego, A. and Panzone, R., Communication to the annual meet-
ing of UMA, Bahia Blanca, (1968).

Diego, A. and Panzone, R:, Remarks on a certain Markoff chain
associated to yartitions.of.a probability spacey Rev. Univ.
Nac. de Tucumé@n, Vol. 19, (to appear)% v

Gillman, L. and Jerison, M., Rings of continuous functions,
New York, (1960).

UNIVERSIDAD NACIONAL DEL SUR
BAHIA BLANCA
ARGENTINA



