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PURITY AND .ALGEBRAIC CLOSURE 

by Enzo R. Gentile 

Throughout this paper R denotes an associative ring with identity. 
We shall study the following properties associated to R. 
a) the puri tyof the inclusion ReM of R in an inj ective R-module M 
contai"ning it. 
b) the algebraic closure of M. Hall, of submodulesof free R-modules. 
c) a weak injectivity property of R as an R-module. 

Section 2 contains the main results. In Section 3 we characterize 
von Neumann rings in terms of purity. 

1. PRELIMINAIRES. 
i) PUrity. Let M and N be "TightR-modules. An exact sequence 

o -+ N -+ M of R-modules will be said pure if for every left R-module 
A, the induced sequence 0 -+ N 8 A -+ M 8 A is exact (8 = 8R). If N 
is a submoduleof M, we say that N is pure in M if the exact sequence 
o -+ N -! M , where i denotes the inclusion map, is pure. Let N be 
a right R-module. Then the following conditions are easily seen to 
.be equivalent (and we shall therefore say simply that N is pure), 
1) N is pure in any injective module containing it 
2) N is pure in its injective hull 
3) N is pure in any module containing it. 

ii) Conditions (hO), (CO), (aO), (bO). Let A be a left (resp. 
right) R-module and n £ N. An denotes the left (resp. right) R-mod­
ule, direct sum of n copies of A. If a £ An we write a .. [a I ,·· ,an] 
in terins of its coordinates. With R,n (resp. R"n) we denote the 
previous situation for A = R. Let Abe a left R-module. We define 
a left pairing R"n x An -+ A by r.a = I~_Iri.ai' 

For any non-empty set seR,n, Sr denotes the right annihilator of 
S iri R"n, that is 

sr = {r / r £ R"n and s.r = 0 if s £ S} 
In analogous way we define the left annihilator TIc R,n of a non­

empty set Te R"n. 
According to M. Hall {1} , a submodule S of R' n will be. said to 

be closed if S = (Sr)l = srI S We can now state 

Every finitely generated submodule of R,n is ewsed. 
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CONDITION (cO)I: Every finitely generated left ideal of R is closed. 
CONDITION (cO)1 is the special case of (hO)1 when n = 1. 

Next we define the weak injectivity referred above. This is 
CONDITION (aO)I: Every R-homomorphism of a finitely generated left 
ideal of R, into R, is realized by a dght multiplication by an el 
ement of R. 
CONDITION (bO)I: Let U and T be left ideals of R, then 

(U n Tf = U r + T r holds. 

We also define analogous conditions for right objects, we write 
them (hO) , (CO) , etc •••• 

r . r 
On restricting the previous conditions to principal ideals or c~ 

clic submodules we introduce conditions (hOO)I' (hOO)r' etc. 
The following results will be used in the sequel. 

PROPOSITION 1.1. (Ikeda-Nakayama {2}, Th. 1). The 60llow.irtg .implf 
eazion~ hold in R: 
i I (a 00) 1 <=> 

al (aO)I< > 

(COO)r 
(b 0) l' (c 00) r 

PROPOSITION 1.2. ({3}) 1, §2, Exer. 24). Lez M be. It Jt.i.ght.R-module 
and 1.1' a ~ubmodule 06 M. Then M' i~ pUAe in M i6 and only i6 6011. 
any ~ez 06 element~ ml.! e: lof', x. e: M, r .. e: R (i=l ••••• m;j-l, ••• ,n)· 

J l.J 
~ueh thltz 

As an immediate consequence of Prop. 1.2 we hav~ the following 

PROPOSITION 1.3. Lez R be an injeet.ive hull 06 R. a~ Aight R-mo-
r 

dule~. A~~ume thaz R i~ pUAe in Rr • Then any homomoAphi~m 
II: U --+ R 06 a 6inizely geneAated ~ubmodule U 06 R"n in.to It admit~ 
an ex.te.n~icm zo R"n. 

P1l.006: Clearly II admits an extension to II': R"n --+ Rr • Therefore 
if ul, ••. ,um denote a set of generators of U and el, ••• ,enthe ca­
nonical basis of R"n, we have 

Il(u i ) = rj.l Il'(e j ).rij i"l, ••. ,m 

By the purity of R i'n R there exist elements x! , j .. 1, •••• n in R 
r J 
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satisfying 

\I (ui ) = Vi.l xj .rij 

-Consequently the mapping defined by 

ej -+ xj 

gives an extension of II. 

i=l, ••• ,m 

PROPOSITION 1.4. Let: A be a le6.t R-module. Then A .i4 .injec..t.ive 
.i6 and only .i6 eve~y homo~0~ph.i4m U -+ A 06 a 4ubmodule U 06 R,n 
.in.to A .i4 ~eal.ized by an elemen.t 06 An, .tha.t .i4, .the~e ex.i4.t4 y & An 
4uc.h .tha.t II(U) = u.y 60~ all u &U. 

2. MAIN RESULTS. 
Let Rr denote an injective right R-module containing R 

THEOREM T. The 60llow.ing .impl.ic.a.t.ion4 hold .in R: 
R .i4 ~.igh.t pu~e .in Rr <==? 

(hO) I => 

(hO 0) 1 <==? 

(aO)r 

P~006: R is right pure in Rr ==>(hO)1 
Let H be a finitely generated submodule of R,nand let 

Z! = [zl" ... 'z .1 & R,n 
1 1 n1 

i=l, ••• ,m 

be a set of generators of it. Let a = [a1, •.• ,an1 & R,n be an ele­
ment of Hr, that is, such that 

(1) U & R,n, z .• u = 0, i=l, .•• ,m =-=:. a.u = 0 
1 . 

Let H" be the submodule of R"n generated by the vectors 

zi = [Zil'···'Zim] 

Then (1) says precisely that 

defines a homomorphism 

\I: H" ....... R 

, i=l, ••• ,n 

There exists then by Prop. 1.4, b = [b1, .•• ,bml & Rr satisfying 

i=l, ••• ,n 

By the purity of R in Rr we find u & R,n with 

u.Zi i=l, ••. ,m 
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thj1t is 
m m = l = l a. j-l u .• z .. or a j~l u .. Z. 

1 J 1J J J 

which amounts to saying that a £ H, as WEt wanted fo prove. 

(hQ) 1=> R is right pure in R r 
Let a. £ R, z. £ 

R,n u £ Rn , i=l, ..• ,m satisfy 
1 1 

, r 
(2) a. = u,z i i=l, •.• ,m 

1 

If b £ R"m satisfies zi.b = 0, then by (2) we have a.b = 0 and 
by condition (hO)l we have that there exist r i £ R, i=l, •.• ,m 

with a = l ~-l ri·zi 

that is ai=r.zi i=l, ..• ,m 

with r = [rl, .•. ,rn]. This proves our claim. 

(hO)l =>(hOO)l is trivial. 

Finally we prove the equivalence (hOO)l<=>(aO)r 
(hOO)l => (aO)r 

Let I = (al , ... , an> be a right ideal of R generated by a l , ... ,an' 
Let ,: I -+ R be a homomorphism of 1 into R, as right R-modules. 
Let bi = ,(ail, i=l, ••• ,n. Since, is a homomorphism, for any 

tl, ... ,tn in R 

This means that 
So there is k £ 

l~_l ai·t i 0 ='>l~_l bi.t i = 0 

[b1,· .. ,bn] £ [a1,· .. ,an]rl <[al,· .. ,anJ>· 
R satisfying 

tbl,· .. ,bn] = k.[al,· .. ,an] 

that is ,(ail = bi = k.a i 
and this proves (aO)r' 

(aO)r => (hOO) 1 

This implication will be proved following the scheme of the proof 
of Th. 5.1 in {l}. We recall that by PROP. 1.1 (or its dual), 
(aO)r =>(bO)r,(cOO)l' Let S be a submodule of R,n generat'ed by 

al,···,an · 
The proof will proced by induction on n. For n = 1 , S is a pri!!. 

cipal left ideal of R and by (cOO)1 we have that S = S. ~et 2 ~ ~ 
and assume that every cyclic submodule of R' (n-1) is closed. Let 

TI {[x1,0, .•. ,0] £ R"n / al.xi = O} 

T2 = {[O,x;, ... ,x~] £ R"n / a 2 .x; + ••• + an'x~ O} 

Clearly T l' T 2 c: Sr _ 1 
Then for every U = [u l , .•. ,un} £ S we have U £ T l' so ul.xi 0 

and by the closeness of <al> we get u l = t.a l ' t £ R. 
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Now U - t[al •..•• an] = [o.v2 •••• vn] = V £ S c::: T~. By the closure 
of the principal left submodule generated by [a2 •.••• an] we have 

[o.v2•••• .vn] = r[O.a2 •·•• .an] 

Let 11 = <al ) • 12 = (a2 •...• an>. Then w £ 11 n 12 if and only 
if there exist xl ••••• xn £ R such that 

w ='al.xl = -(a2.x2 + ••• + an.xn) 

But 

give 

that is 

and since we 

Hence 

and 

r £ (11 n 1 )1 
2 

have condition (bO) 1 • r can be written as 

r '" ml + m2 • mi £ I~ • i=1.2 
1 

v = [O.r.a2 •.••• r.an] = [O.ml .a2 •.••• ml .an] 

ml·[al·····an] 

U • V + t.[al ••••• anI = (m l + t).[al •...• an]£ s 
Theorem is now proved. 

AN EXAMPLE. 

Let R be a right Ore domain (that is. a ring without zero divisors 
rJ 0 and with the right common multiple property). Then if heR) is 
the injective hull of R. heR) carries a ring structure which makes 
it isomorphic to the left field of quotients of R. Clearly R is 
right pure in heR) if and only if heR) = R is a division ring. More 
generally. for any n £ N. Mn (R) is right pure in Mn (h (R)) if and 
only if R = heR). (Mn( ) denotes the full ring of, matrices). In fact, 
if Mn(R) is right pure in Mn(h(R)). then by THEOREM 1. Mn(R) sat­
isfies condition (aO)r. But this readily implies that condition 
(aO) holds in R. We are done. since a ring without zero divisors r 
rJ 0 and satisfying (aO) is necessarily a division ring. r 

THEOREM 2. L~~ R b~ 4 te6~ ~emihe~edi~4~Y ~ing. Then 

(aO)l' (cO)l =>(hO)l 
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P~oo6: Let S be submodule of R,n generated by the vectors 

i=l, ..• ,s 

Let S· be the submodule of S consisting of all vectors with 0 in 
the first component. Then 

LEMMA 1. S· ~4 6~n~te!y gene~ated 

P~oo6: Let 

A = Lall,a21, ••• ,aslJ £ R" s 

and auume. for the time being, that the left annihilator of A in 
R's be generated by 

i=l, .•• ,m 

Then if x £ S· we have r 1 •.•. ,rs £ R satisfying 

x = E ~-1 ri·A i = [O,E~.l ri·ai2,···,E~_1 ri·ainJ 

therefore 

that is 

k= 1 , •••• s 

But then 

E 
S 

rk·Ak = E S Em tj .bV .Ak x = k-l k-l ( j-l 

= E 
m 

tj • CE s b~.Ak) j-l k-l 
We now claim that 

j=l, .•• ,m 

generate S~ In fact, notice that x was an arbitrary element of S· 

and that the first component of Aj is E ~-1 b~.akl 0 
Our claim follows. 

Now, in order to complete the proof of Lemma 1 we need to prove 
that we can assume that the left annihilator of A in R,n is finitely 
generated. For this we shall use the hypothesis that R is a left 
semihereditary ring. Let F be a free left R-module generated by 
f 1 , ••• ,fs and 0 -+ K -+ F ~ L -+ 0 be an exact sequence where L is 
the left ideal of R generated by a 11 , .•. ,as1 and ~ be the homomorphism 
defined by ~ : f. -+ a. 1 . Notice that K is isomorphic to the left 

J J 
annihilator of A in R's. Since L is projective, that sequence splits 
and K is then a direct summand of a finitely generated R-module, there 

fore is finitely generated. This ends the proof of Lemma 1. 
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We proceed the proof of THEOREM 2 by induction in the length of 
the vectors in S. If n = 1.then S is a finitely generated left i­
deal of R. and so by condition (cO)l is closed. Let 2 4n and as­
sume that every finitely generated submodule of R,(n-l) is closed. 
In particular. the submodule ScR,(n-l) associated to S·. dropping 
the first coordinate of the elements in S·. is closed. Next we 
need to prove another partial result 

LEMMA 2. 16 [xi ••••• x~] £ sr, zhen zhe~e exi4Z4 Xl £ R 4ueh Zh4Z 

[xl.xi .; ..• X~] £ Sr 

P~oo6: Let r 1 ••••• r 8 £ R satisfy r ~=1 r i .ai1 = O. Then 

r ~-1 ri·A i .. [o.r~_l riai2.···.r~_1 riain] £ S· 

and by the hypothesis we have 

o r ~_2(r ~-1 r~aik)·xk 

r ~=1 ri·(r :.2 aikxk) 
which says that 

~ : a -+ ~n a x' 
.. it 4k-2 ik k 

defines an R-homomorphism of the left ideal generated by a i1 .i.1 •••• s 
into R. By property (aO)l there is -xl £ R realizing •• that is 

a i1x1 + ai2xi + ••• + ainx~ = 0 

and this ends the proof of LEMMA 2. 

i .. 1 ••••• s 

To complete the prcof of THEOREM 2 we follo~ .the scheme of proof 
of THEOREM S.2 of {1}. Let U = [u1 ' •••• un] E S. Sr contains all 
those vectors 

Therefore 
r 

xl £ (a11'a21.···.a81> 

o • i=l ••••• s 

u1 £ (a11'a21.···.a81)r1 .. (a11'a21····,a81) 

(by condition (cO)l)' 

S •• u 1 r 1a 11 + ••• + r a 81 r. £ R 8 1 

Let U' r 
8 r .• A. i-I 1 1 

U' belongs to S and moreover V = U - U' [O.v 2•·•• ,vll.J £ S 
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satisfies 

(' ) o 

for any [xl ,x2 , .•. ,xn] £ Sr. 

L·t V d t th b d 1 f Ru(n-I) f 11 1 ~ eno e e su mo u e 0 0 a e ements x2 , ••. ,xn 
for which there is xl £ R satisfying [XI ,X2 ,···,Xn]£ Sr. 

Clearly we have Vc Sr. But by LEMMA 2, Br c V. So V = Br. 

Furthermore [v2 , •.. ,vn] £ VI = SrI = B according to the inductive 
hypothesis. Of course we need to know that B is finitely genera~ed, 
but this follows from LEMMA 1 and the definition of B. 
We have then that' [O,v2 , .•. ,vnJ £ S·cS and finally 

U V + U' £ S 

This means that S cS and THEOREM 2 is proved. 

COROLLARY. Lez R be a te6z and ~~ghz ~em~he~ed~za~y ~~ng. A~~ume 

zhaz (cO)1 and (cO)r hotd~. Then (aO)I<~(aO)r' 

P~oo6:Assume that (aO)1 holds. Then 

(aO)I<=>(hO)1 by iheorem 2 

=>(hOO)1 

=>(aO)r by Theorem 

The other implication follows in the same way. 

3. VON NEUMANN RINGS. 
In this section we give characterizations of von Neumann rings in 

terms of purity. We recall that a von Neumann ring is a ring R satis 
fying: for every a £ R there is x £ R such that a.x.a = a 

We shall say that a ring is absolutely flat (resp. pure) if any 
right R-module is flat (resp. pure). 

THEOREM 3. Lez ~ be a ~~ng. The 6ottow~ng c.ond~Z~oM a~e att e­
qu~vatenz: 

a) R ~~ ab~otuzety pu~e 
b) R ~~ a·von Neumann ~~ng 
c.) R ~~ ab~otuzety 6taz 
d) eve~y c.yc.t~c. ~~ghz R-modute ~~ pu~e 

P~oo6: a) =>b) Let z £ R. Then the right ideal z.R is pure in R. 
Since R has identity we can write z = 1.z. By the purity there is 
x £ R such that z = (z.x).z as we wanted to prove. 
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c) =>: d) 

d) -> b) 
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is a well known result 
and c) ==> a) are clear 

Let 1 be- a right ideal of R, a £ Rand +: <.a> - R 11 be a homomor­
phism of the right ideal <a> generated by a into the cyclic module 
R/I. Let S be an injective right module containing R/I • 
There exists s £ S satisfying 

+(a)=s.a 

and since R/I is pure in S, we can find c £ R/I such that 

+ (a) = c. a 

This means tha.t + can be extended to a homomorphism of R into R/I • 
Being 1 and a £ R arbitrary we can apply Th. 3 of {Z} to conclude 
that R is a von Neumann ring. 
Proof of The6rem 3 is now complete. 

REMARK 1. Using the absolute purity of von Neumann rings, as shown 
in THEOREM 3, we can give an immediate answer to a question posed 
in {4 }, §Z5.(1). Namely: Let A be a right R-module, where R is a 
von Neumann ring. Suppose that A is generated by n elements. Then 
every finitely generated submodule of A is generated by n elements. 
In fact, let A' be a finitely generated submodule of A, al, ••• ,an 
a set of generators of A and ai, ... ,a~ a set of generators of A'. 
We have r ji E R satisfying 

I_\'. n a i - L j-l aj.r ji i=l, ... ,m 

Being A' pure in A there exist xj £ A', j=l, •••• n sa~isfying 
1 ~ n , 

a i = L j-l xj.r ji 

Clearly, x~ is a set of generators of A'. 
J 

Next we characterize those right semihereditary rings which are von 
Neumann rings. 

LEMMA. (Compare {3}, Chap. I, §Z, Exer. 18 a)). Let R be a Jr..£.ght 
4emiheJr.editaJr.Y Jr.ing and let B be an injective Jr..£.ght R-module co"~ 
tai.ning R 4uch thaA: R i4 pUJr.e in B. Then any. 6.£.nitely geneJr.ated 
4ubmodule 06 a pJr.ojective. Jr.ight R-module i4 a diJr.ect 4ummand 06 it. 

PJr.006: Let P be a projective right R-module and let M be a finitely 
generated submodule of it. Without loss of generality we can as­
sume that P is finitely generated and free. In fact, if F is a free 
module of which P is a submodule then we can write F = Fl e F2 ' 
with Fl free, finitely generated and. containing M. If M is a di~ect 
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summand of FI , it is also a direct summand of F and therefore of P. 
Being R right semihereditary,M is a projective module. Let al, .. ,an 
be elements of M and + i, ... ,+~ mappings of Minto R, satisfying 

a = r n 
L i-I a i '+i (a) 

for every a E M. 

Since R 
tended to 

ed by 

is pure in B, by PROP. 1.3, the mappings +i can be ex­
mappings +i: P -+ R. Let +: P -+ M be the mapping defin-

+: x -+ I I?' I 11 •• +. (x) 
1- 1 1 

Clearly + defines a pro~ectionQf Ponto M. M is then a direct 
summand of P. 

REMARK 2. The previous Lemma permits to give an immediate answer 
to a question posed in {4}, §25.(1). Namely, let R be a von Neu­
mann ring. Then if every torsion free R-module is proje~tive, R 
is a left self-injective ring. In fact, let.h(R) be an injective 
hull of R. Then heR) is torsion free, therefore it is projective. 
Let I p <e) be a principal non-zero left ideal of R, e an idempo­
tent. By the previous Lemma I is a direct summand of heR) and so 
I is injective. Since 1 was arbitrary, we have also that J=(l-e) 
is injective. Therefore R = 1 e J is injective as we wanted to 
prove. 

THEOREM 4. Le~ R be a ~~ng. Then R ~4 a von Neumann ~~ng ~6 
and only ~6 R ~4 ~~gh~ 4em~he~ed~~a~y and pu~e (~n 40me ~njee~~ve 
«9h~ R-moduleeon~a~n~ng ~~I. 

P~oo6: Apply the previous Lemma to P = R to get that every fini­
tely generated right ideal of R is a direct summand of R. This is 
enough to assure that R be a von Neumann ring. 

Base in the same Lemma we have 

PROPOSITION 3.1. Let R be a ~.£ng. Then R .£4 a von Neumann ~~ng .£66 
R ~4 ~~gh~ 4em~hell.ed~~a~y and 4at~46.£u eond.£~.£on (aQ)r 

P~oo6: To prove part "if" we proceed as in the proof of the Lemma 
applied to the situation P = R and using condition (aO)r to extend 
the mappings +i. 
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P~oo6; According to a result by L.W. Small ({S} , COROLLARY 3) the 
two first hypothesis imply that R is right semihereditary. Condi­
tion (aO)r and the previous proposition prove our claim, since a 
left noetherian von Neumann ring is necessarily semisimple (d.c.c.). 
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