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PURITY AND ALGEBRAIC CLOSURE
( by Enzo R. Gentile

Throughout this paper R denotes an associative ring with identity.
We shall study the following properties associated to R.
a) the purity of the inclusion ReM of R in an injectife R-module M
containing it.
b) the algebraic closure of M. Hall, of submodules of free R-modules.
c) a weak injectivity property of R as an R-module.

Section 2 contains the main results. In Section 3 we characterize
von Neumann rings in terms of purity.

1. PRELIMINAIRES.

i) Purity. Let M and N be right R-modules. An exact sequence
0 — N — M of R-modules will be said pure if for every left R-module
A, the induced sequence 0 — N ® A — M ® A is exact (@ = QR). If N
is a submodule of M, we say that N is pure in M if the exact sequence
0—-nN-1uy , where i denotes the inclusion map, is pure. Let N be
a right R-module. Then the following conditions are easily seen to
be equivalent (and we shall therefore say simply that N is pure),
1) N is pure in any injective module containing it
2) N is pure in its injective hull
3) N is pure in any module containing it.

ii) Conditions (h°), (c°), (a°®), (b°). Let A be a left (resp.
right) R-module and n ¢ N. A® denotes the left (resp. right) R-mod-
ule, direct sum of n copies of A. If a ¢ A" we write a = [a;,..,a ]
in terms of its coordinates. With R'™ (resp. R"™) we denote the
previous situation for A = R. Let A be a left R-module. We define
a left pairing R"™ x A® — A by r.a = Z?-lri'ai'

For any non-empty set SSR'", S* denotes the right annihilator of
S in R"®, that is v '

S* = {r/reR™and s.tr =0 if s e S}

In analogous way we define the left annihilator Tle R'® of a non-
empty set T R"", o _

According to M. Hall {1} , a submodule S of R'™ will be. said to
be closed if § = (s)! = sl = 5 . We can now state

CONDITION (h°)l : Every finitely generated submodule of R'® is closed.
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CONDITION (c°)1: Every finitely generated left ideal of R is closed.
CONDITION (c°)1 is the special case of (h°)l when n = 1,

Next we define the weak injectivity referred above. This is
CONDITION (a°)1: Every R-homomorphism of a finitely generated left
ideal of R, into R, is realized by a right multiplication by an el
ement of R.

CONDITION (b°)1: Let U and T be left ideals of R, then

WwnTy¥ =uf+7T holds.

We also define analogous conditions for right objects, we write
themv(h°)r, (c?),, etc. ...

On restricting the previous conditions to principal ideals or cy
clic submodules we introduce conditions (h°°)l, (h°°)r, etc. ...

The following results will be used in the sequel.

PROPOSITION 1.1. (Ikeda-Nakayama {2),-Th. 1). The following impli
cations hold in R:

L) (a®°) <= (c°®),

£4) (a°)1<===> (b°)1, (c°°)r

PROPOSITION 1.2. ({3}) 1, §2, Exer. 24). Let M be a right. R-module
and M' a submodule of M. Then M' 48 pure in M if and only if fonr
any set of elements mi e M, X5 € M, Ti; e R (i=1,...,m;j=1,...,n)’
such that i

n
= . X..T..
j=1 7377143

thene exist elements xg e M' , j=1,...,n satisfying

m'
i

v = fR '
m} zj-l X3.Tys

As an immediate consequence of Prop. 1.2 we have the following

PROPOSITION 1.3. Let R, be an injective hull of R, as night R-mo-
dules. Assume that R L8 pure 4in Rr' Then any homomorphism

u: U — R of a finitely generated submodule U of R"™ into R admits
an extension to R"",

Proof: Clearly u admits an extension to u': R"® —» Rr‘ Therefore

if LIERREFLE denote a set of generators of U and el,...,enthe ca-

nonical basis of R"™, we have g
= n ' -. -\IDQ

w(uy) 25-1_" (e5).ry; i=1,...,m

By the purity of R in R_ there exist elements xi , j=1,...,n in R
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satisfying

= yn ' i=
u(uy) Zj_l LR IT i=1,...,m

‘Consequently the mapping defined by

e, — Xx!

J J
gives an extension of .

PROPOSITION 1.4, Let A be a Left R-module. Then A {8 injective
4§ and only if eveny homomorphism U — A of§ a submodule U of R'®
into A is nealized by an element of A®, that is, there exists y ¢ A"
such that y(u) = u.y for all u el,

2. MAIN RESULTS.
Let Rr denote an injective right R-module containing R

THEOREM 1. The following implLications hofd in R:
R 48 night punre 4in Rr <=

(h®), —
(h®°), =
(@®),

Proof: R is right pure in Rr ==>(h°)1
Let H be a finitely generated submodule of R'™and 1let

2} = [zli""’zni] e '™, i=1,...,m

be a set of generators of it. Let a = [a
ment of H®, that is, such that

preeeaag] € R'™® be an ele-

QD) ueR'", z;.u = 0, i=1,...,m == a,u=0
Let H" be the submodule of R""™ generated by the vectors
z; = [zil""’zim] , i=1,...,n
Then (1) says precisely that
ue zi — a;
defines a homomorphism
ue H" — R
There exists then by Prop. 1.4, b = [bl""’bm] e R_ satisfying
a; = u(zi ) = b.zi i=1,...,n

By the purity of R in R_we find u ¢ R'™ with

a; = u.zi i=1,...,m
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that is
m m
a, = . u.. z.. or a= St UL.Z,
i zJ-l R j=1 7373
which amounts to saying that a ¢ H#, as we wanted to prove.

(h®) = R is right pure in Rr'

Let a, ¢ R, z; ¢ R'®, ue R: , i=1,...,m satisfy

(2) a; = u.z; i=1,...,m

If b ¢ R"™ satisfies z}.b = 0, then by (2) we have a.b = 0 and
by condition (h")l we have that there exist r; € R, i=1,...,m

. m f
w = . ..2!

ith a j=1 Ti°2%§
that is a, =r.z; i=1,...,m

with r = [rl,...,rn]. This proves our claim.

(h°)1 ==>(h°°)1 is trivial.
Finally we prove the equivalence (h°°)1<==>(a°)r

(h°°), =—>(a®)_
Let I = (al,...,an) be a right ideal of R generated by CPPRERIY S
Let ¢: T — R be a homomorphism of I into R, as right R-modules.
Let bi = ¢(ai), i=1,...,n. Since ¢ is a homomorphism, for any

?oa..t, =0 ="

tyseeent, in R i=1 25°% i=1

b..t, =0
1 1
. 1 ,
This means that [b,,...,b ] ¢ [al,...,an]r = {[a;,...5a ).
So there is k ¢ R satisfying

fbl,...,bn] = k.[a;,...,a]
that is ¢(ai) = bi = k.ai
and this proves (a°)r.
(a°), = (h°°),

This implication will be proved following the scheme of the proof
of Th. 5.1 in {1}. We recall that by PROP. 1.1 (or its dual),
(a°)r ==o(b°)r,(c°°)1. Let S be a submodule of R'"™ generated by
a;,...,a .

The proof will proced by induction on n. For n =1, S is a prin
cipal left ideal of R and by (c°°)1 we have that S = S. Let 2 <n
and assume that every cyclic submodule of gt (r-1) ¢ closed. Let

Ty = {[x{,0,...,0] ¢ R"™™ 7/ a .x] = 0}
T, = {[0,x,...,x!] ¢ R"™ / a,.x} +...+ a .x! =0}

Clearly T, T,= st
Then for every U = [u,,...,u ] ¢ S we have U ¢ Ti, so u

~and by the closeness of {a,> we get u, = t.a, , te R.

! =
1°X4 0
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Now U - t[al,...,an] = [0,v2, ..,vn] =VeSec T;. By the closure
of the principal left submodule generated by [az,...,an] we have
[O,vz,...,vn] = r[O,az,...,an]

Let I, = (al) » 1, = (az,...,an). Then w e I, n1, if and only
if there exist XyseeesX € R such that

w =‘a1.x1 = -(az.x2 ...t an.xn)
But

v = [O,r.az,...,r.an] €S and we I, nI, as above
give

0 = r.a,.x, ...t r.a .X = -T.a;.x;
that is

T € (11 n 12)1

and since we have condition (b°)l, r can be written as

T =m + m, y Mo o€ Ii , 1=1,2
Hence
v = [O,r.az,...;r.an] = [O,ml.az,...,ml.an]
= ml.[al,...,an]
and

Uu=v+tfa,...,a]=(m +t)fa,...,a]es

Theorem is now proved.

AN EXAMPLE.

Let R be a right Ore domain (that is, a ring without zero divisors
¥ 0 and with the right common multiple property). Then if h(R) is
the ihjective hull of R, h(R) carries a ring structure which makes
it isomorphic to the left field of quotients of R. Clearly R is
right pure in h(R) if and only if h(R) = R is a division ring. More
generally, for any n ¢ N, Mn(R) is right pure in Mn(h(R)) if and
only if R = h(R), (Mn( ) denotes the full ring of. matrices), In fact,
if Mn(R) is right pure in Mn(h(R)), then by THEOREM 1, Mn(R) sat-
isfies condition (a°)r . But this readily implies that condition
(a°)t holds in R. We are done, since a ring without zero divisors
¥ 0 and satisfying (a°)r is necessarily a division ring.

THEOREM 2. Let R be a Left semihereditany ning. Then

(a°),, (c°), —(h),
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Proof: Let S be submodule of R'" generated by the vectors

A, = [ail""’ain] i=1,...,s

Let S° be the submodule of S consisting of all vectors with 0 in
the first component. Then

LEMMA 1. S° 448 §initely genenrated

Proof: Let
A = [all,azl,...,asl] e R"S

and assume, for the time being, that the left annihilator of A in
R'S be generated by

i orpi
8* = [b}

Then if x ¢ S° we have Ty,...,T, € R satisfying

,...,b:] i=1,...,m

x=7 :=1 T, A = [O,Z:_1 ri.aizy...,zz‘l r,.a, ]

therefore
=y m h|
[rl,...,rs] =7 j=1 tj.B t; e R
that is
m s
r, =] j=1 tj‘bi k=1,...,s
But then
-7 8 -1 8 m b
x =7 k=1 TiAk k-l(zj-l tj.bk).Ak
= m s j
L j=1 tj.(Z k=1 Pk -A)
We now claim that
A; =7 z_l bi.Ak j=1,...,m

generate S° In fact, notice that x was an arbitrary element of S°

. v s S i =
and that the first component of ﬁi is } k=1 Pk 31 0
Our claim follows.

Now, in order to complete the proof of Lemma 1 we need to prove
that we can assume that the left annihilator of A in R'™ is finitely
generated. For this we shall use the hypothesis that R is a left
semihereditary ring. Let F be a free left R-module generated by
fl,...,fs and 0 —+ K — F — L — 0 be an exact sequence where L is
the left ideal of R generated by a5 500053, and ¢ be the homomorphism
defined by ¢ : fj — a.,. Notice that K is isomorphic to the left
annihilator of A in R'S, Since L is projective, that sequence splits
and K is then a direct summand of a finitely generated R-module, there
fore is finitely generated. This ends the proof of Lemma 1.
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We proceed the proof of THEOREM 2 by induction in the length of
the vectors in S. If n = 1,then S is a finitely generated left i-
deal of R, and so by condition (c°)1 is closed. Let 2 £n and as-
sume that every finitely generated submodule of R (1) 5 closed.
In particular, the submodule B r'(®"1) associated to S°, dropping
the first coordinate of the elements in S°, is closed. Next we
need to prove another partial result

LEMMA 2. 1§ [x5 ,...,x!] ¢ BY, then there exists x, e R such that

[x,,x; P N st

. ) s s -
Proof: Let r,,...,T e R satisfy | i=1 Ti'341 0. Then
s = s . s °
$e1 Ti-As 7 [005) Ti8ipee oLl Ti%ial €S
and by the hypothesis we have
= n 8 L
0 =7 pa2@ a1 Ti%5) %k
- -] n
=1 a1 T (e 200
which says that
. n [
o fag = Thas 2%k
defines an R-homomorphism of the left ideal generated by ail,i-1,..,s

into R. By property (a°)1 there is "X, € R realizing ¢, that is

+ +...+a.x' =0 i=1,...,s

]
1% T 34252 in*n
and this ends the proof of LEMMA 2.

To complete the prcof of THEOREM 2 we follow the scheme of proof
of THEOREM 5.2 of {1}. Let U = [u;,...,u ] e S. ST contains all
those vectors

[xl,o,...,o] such that a ,x, = 0, i=1,...,s
Therefore
r
X, € <311’a21""’as1>
rl
u e (all,a21,...,asl> = <a11,321,...,asl)
(by condition (c°)1),

S u, = r.a

o? 1 1711

. ] = 8
Let u i=1 ri.Ai

...t T. R
ra, , €

u' belongs to S and moreover V = U - U' = [0,v2,...,vn] e S
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satisfies

L} =
M VyXy *e.t VX =0
for any [x,,x,,...,x L] e ST,

Let D denote the submodule of R"(“ b of all elements Xpseoes X
for which there is X, ¢ R satisfying [xl,xz,...,x ] € ST,

Clearly we have D<= BY. But by LEMMA 2, B*=D. So D =

Furthermore [vz,...,vn] e ol = g*l = B according to the inductive
hypothesis. Of course we need to know that B is finitely generated,
but this follows from LEMMA 1 and the definition of B.

We have then that" [O’VZ""’vn] e $°<=S and finally

Uu="v+ U ¢38

This means that S<=S and THEOREM 2 is proved.

COROLLARY. Let R be a Left and right semiheneditany ning. Assume
that (c°)l and (c°)r holds. Then (a°)1<==>(a°)r.

Proof:Assume that (a°)l holds. Then

(a®),<=(h°), , by Theorem 2
—(h°°),
= (a®%) , by Theorem 1

The other implication follows in the same way.

3. VON NEUMANN RINGS.

In this section we give characterizations of von Neumann rings in
terms of purity. We recall that a von Neumann ring is a ring R satis
fying: for every a ¢ R there is x ¢ R such that a.x.a = a

We shall say that a ring is absolutely flat (resp. pure) if any
right R-module is flat (resp. pure).

THEOREM 3. Let R be a aing. The foLLowing conditions are all e-
quivalent: '
a) R is absolutely puak
b) R is a*von Neumann ning
c¢) R is absolutely {lat
d) every cyeclic night R-module is pune

Proof: a) =—>b) Let z ¢ R. Then the right ideal z.R is pure in R,
Since R has identity we can write z = 1.z. By the purity there is
X e R such that z = (z.x).z as we wanted to prove.
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b) =>c) is a well known result

c) =>d) and c¢) =—>a) are clear

d) =>b)

Let T be a right ideal of R, a€ R and ¢: <(a) — R/I be a homomor-
phism of the right ideal <a) generated by a into the cyclic module
R/1. Let S be an injective right module containing R/T.

There exists s ¢ S satisfying

$(a) = s.a
and since R/I is pure in S, we can find ¢ € R/I such that
¢(a) = c.a

This means that ¢ can be extended to a homomorphism of R into R/I.
Being T and a ¢ R arbitrary we can apply Th. 3 of {2} to conclude
that R is a von Neumann ring.

Proof of Theorem 3 is now complete.

REMARK 1. Using the absolute purity of von Neumann rings, as shown
in THEOREM 3, we can give an immediate answer to a question posed
in {4 }, §25.(1). Namely: Let A be a right R-module, where R is a
von Neumann ring. Suppose that A is generated by n elements. Then
every finitely generated submodule of A is generated by n elements.
In fact, let A' be a finitely generated submodule of A ay,.0058,

a set of generators of A and aj,...,ay a set of generators of A'.
We have Tii € R satisfying

n .
al = ) j=1 25°Ty4 , i=1,...,m
Being A' pure in A there exist xé e A', j=1,...,n satisfying

" = n f
a} = 1 jay X§oTyy
Clearly, x} is a set of generators of A'.
Next we characterize those right semihereditary rimgs which are von

Neumann rings.

LEMMA. (Compare {3}, Chap. I, §2, Exer. 18 a)), Let R be a night
semiheneditany ning and Let B be an injective night R-modufe con-
taining R such that R is pune in B. Then any finitely genenrated
submodule of a projective night R-module is a direct summand of 4Lt.

Proof: Let P be a projective right R-module and let M be a finitely
generated submodule of it. Without loss of generality we can as-
sume that P is finitely generated and free. In fact, if F is a free
module of which P is a submodule then we can write F = F; ® F, ,
with F, free, finitely generated and.containing M. If M is a direct
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summand of Fl, it is also a direct summand of F and therefore of P.
Being R right semihereditary,M is a projective module. Let a,..5a
be elements of M and ¢1,...,¢; mappings of M into R, satisfying

a =] 3. 2-4i
for every a ¢ M.

Since R is pure in B, by PROP. 1.3, the mappings ¢£ can be ex-
tended to mappings 4 P — R. Let ¢: P — M be the mapping defin-

ed by o x — [ 7. 34,00

Clearly ¢ defines a pro§ection of P onto M. M is then a direct
summand of P.

REMARK 2. The previous Lemma permits to give an immediate answer
to a question posed in {4}, §25.(1). Namely, let R be a von Neu-
mann ring. Then if every torsion free R-module is projective, R
is a left self-injective ring. In fact, let.h(R) be an injective
hull of R. Then h(R) is torsion free, therefore it is projective.
Let T = {e) be a principal non-zero left ideal of R, e an idempo-
tent. By the previous Lemma T is a direct summand of h(R) and so
1 is injective. Since I was arbitrary, we have also that J={1-e)
is injective. Therefore R = 1 ® J is injective as we wanted to
prove.

THEOREM 4, Let R be a ning. Then R is a von Neumann'ning A4
and only if R {8 night semihereditary and pune (in some injective
night R-module containing 4it).

Proof: Apply the previous Lemma to P = R to get that every fini-
tely generated right ideal of R is a direct summand of R. This is
enough to assure that R be a von Neumann ring.

Base in the same Lemma we have

PROPOSITION 3.1. Let R be a ning. Then R 48 a von Neumann ning if§
R 48 night semiheneditanry and satisfies condition (a‘-’)r

Proof: To prove part "if'" we proceed as in the proof of the Lemma
applied to the situation P = R and using condition (a°)r to extend

the mappings oi.

COROLLARY. Let R be a Left noetherian, Left hereditany ning sat
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{84ying condition (a°)r. R 4is then a semisimple (d.c.c.) ning.

Proof: According to a result by L.W. Small ({5} , COROLLARY 3) the
two first hypothesis imply that R is right semihereditary. Condi-
tion (a")r and the previous proposition prove our claim, since a
left noetherian von Neumann ring is necessarily semisimple (d.c.c.).
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