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PARALLEL FAMILIES OF !
HYPERSURFACES IN RIEMANNIAN SPACE v_. 1)

by John De Cicco and Robert V. Anderson

1. ELEMENTARY CONCEPTS CONCERNING A POSITIONAL FIELD OF FORCE 0.(2)

Consider a field of force ¢, whose force vector acting at any point
(xi), of a Riemannian space V_, is ¢ = Qi = ¢;. The force vec-

tor ¢, is considered to be a vector function of position only, and
to be of class two over a certain region of V. Thus the force vec
tor ¢ is a continuous function and possesses continuous partial de
rivatives with respect to the x! of first and second orders through
out the given region of Vn. Such a field of force ¢, is termed a
positional f§ield of force ¢ in the Riemannian space V-

The positional field of force ¢ may be given by e1ther the cova-
riant components ¢,, Or the contravariant component ¢ = ng.j
Here the gil = glJ(x), are the contravariant components of the fun
damental metric tensor of the given Riemannian space V It is as

sumed that |¢| = |e gids, ¢J|1/2 >0, e =+ 1, The trivial case
when ¢ is identically zero, which leads to the w2n-2
Vn, is omitted from consideration.

If a particle of constant mass m > 0, is constrained to move along
a path C of the given region of Voo then its speed v is governed by
the law

geodesics of

X

2

2 .
_ mv = i + mve
(1.1 T ch,idx Y ,

Xo

where the initial speed at the point xo, is vo > 0. The integral
appearing in (1.1), is termed the work W performed in moving from
Xo to x along the curve C. The quantity T = 1/2.mv2, is called the
kinetic enengy of the particle.

If the work W is independent of the path (,then the positional
field of force ¢ is said to be conservative. In this -case there
exists a potential function V = V(x), such that

(1.2) 0, = - 2L = -grad(V).

For a conservative field of force ¢, the relation (1.1), becomes
the energy equation, namely
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'mV2
(1.3) T+v=S+v(x)=E |,

where E is the total constant energy.

For any positional field of force ¢,conservative or not, the sim
ple family of «n-l Farnaday Lines of force C, is composed of the
-l integral solutions C of the system of n first order ordinary
differential equations

:

di_ij_ i
EEE 5

where s denotes the arc length along any Faraday line of force C.

THEOREM 1.1. I§ ¢ 44 a conservative field of force 4in V., Let L
be a curve such that at each point P of L, there exists a Faraday
Line of force C, tangent to L. Assume that these ! Fanaday Lines
0f force are all transversal to some cuxve L*. Let AD denote zhe
Line of force at the initial point A on L and Zerminal point D on
L*., Simifanly BE denotes the Line of force at B on L, terminating
at E on L*. Then

(1.5) [ 1etas = [ tetas - [ telas.
LaAB Cap CBE
Another way of writing this is in terms of the characteristic
function T of Vn. Thus

(1.6) I r(x;%%)ds = J r(x;%%)ds - J r(x;%%)ds.
' Las Cap CBE

It is noted that if Py is an absolute covariant vector, then

'1/2’ e = +1. If the characteristic function

. = ij
r(x;p) = |eg™'p;p;
r(x;%%) = +1, then (1.6), becomes an analogue of the Jacobi string
condition for Vn' Also r(x;%%) = 1, is then the Hamilton Jacobi

partial differential equation of first order.

2. THE LAME DIFFERENTIAL PARAMETERS OF FIRST AND SECOND ORDERS. (3
If u(x) and v(x) are two absolut€ scalar functions of at least class

Cl, then their gradients iﬂi and 3!1 , are two absolute covariant
X X

vectors orthogonal to the *two (n-1) dimensional hypersurfaces u(x)=
constant and v(x)=constant. The inner product between these two
gradients is called the Lamé differential parametern of orden one.
It is written as '
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(2.1) A,(u,v) = (grad u,grad v) = g-.——

In particular if u(x) = v(x), this becomes

(2.2) AI(U) = A]_(u:u) = gij a_u. 3_1;1_. .
axt axd

Now since in a conservative field of force there is a potential
3V

function V = V(x), such that ¢; = -, it is seen that
' 39X
(2.3) lo] = lgrad V| = ea, M2 5 0

If ¢; is the covariant form of the force vector ¢, then the di-
vergence of ¢ is defined by the absolute scalar

. ik ik . : .
(2.4) o = div(s) = g %,k =g [%’2‘ " Tik °j]
)

A field of force ¢ is said to be sofenoidal if and only if the di
vergence of the force vector ¢ is zero throughout the region of Vn
under consideration.

If g = |gij |, the determinant of the gij , then another form of
(2.4), is
. 1 9 i
2.5 e =d = = -
(2.5) () = [axl /|gl¢] .

It is noted that the form of the divergence given in (2.5}, is
that most convenient for applications.

The Lamé differential parameter of the second order is the Lapla
cean. It is defined by

(2.6) Azcu)=v2u=g“‘[2—;ié]k=ﬁfxi—[/l_u SEIR

where u = u(x) is an absolute scalar function of position.

A positional field of force is said to be Lapfacean if and only
if it is both conservative and solenoidal. Thus a conservative
field of force ¢, with a potential function V(x) is Laplacean if and
only if V(x) is a harmonic function. That is #v = 0.

3. CONSERVATIVE FIELDS OF FORCE ¢ FOR WHICH THE EQUIPOTENCIAL HY
PERSURFACES FORM A PARALLEL FAMILY. Let ¢ be a conservative field
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of force with potential function V = V(x). The family V(x) = con-
stant represents a set of ! hypersurfaces, called equipotential
hypersurgfaces, each of which is of deficienéy one. It is assumed
that_Al(V) # 0. Then a unit vector orthogonal to these hypersur-
faces is '

1 3V
(3'1) £, = ————m———
P axt

The contravariant form of this vector is

1 ijav
(3.2) £, = ———— g =,
1 la, ()| axJ

Therefore the orthogonal trajectories C of this set of ! equipo
tential hypersurfaces V(x) = constant are the ! Faraday lines
of force given as the integral solutions C of the system of n first

order ordinary differential equations §£1= Ei
ds

The «® ! curves C and the «! hypersurfaces V = constant are said
‘to form a noamal family. Also a set of wl hypersurfaces V(x) =
constant is said to be paratllel if and only if it cuts orthogonally

a set of "1

geodesics C of Vn.

THEOREM 3.1. The set of =! equipotential hypersunfaces V(x) =
constant of a conservative field of force ¢, 48 a parallel family
4§ and only 4if§ the Lamé parameten 8,(V) 48 a function of the poten
2ial function V = V(x) alone. Thus

(3.3) A, (V) = g‘JiziiK. = ¢F(V)
axtaxd

"W

where € = +1, according as AI(V) 0, on a,(V) < 0.

For, in this case the ! orthogonal trajectories are the «n-1
geodesics C of Vn. Hence parallel displacements of the unit tangent
vectors along these curves C are also tangent to the respective cur
ves C. Therefore

i k
dx*) dx* _ [,-1/2_ijaV kadV  _
(3.4) [az]a's‘ - [Al g axj] et
’k ’k

where A, = Al(v)’ and the symbol ( ),k means the covariant derivati
ve of the quantity inside the parenthesis with respect to the xk.
Thus



Since Igij| # 0, it is seen that

(3.6) -% i_i gk 2_3 lgh + A gt 23;[2!%] =0
X ax’ 9x ax ‘ax"’,k
However it is easily seen that
ka 3V (V) . ke 2V (aV) _ 1 24,
wn e () () Ly
axw ‘ax'/,k 3x ‘ax /,j 3x

Substitute this result into (3.6). Then interchange the dummy
indices k and a and substract. It is evident that

(3.8) 3V gkal| 28; 3V , 3M v I =0
ax3 ax® ax®  ax® ax*
Since at least one 3!5 # 0, and since |gkal # 0, these conditions
become ox

(3.9) 38y 3V _ 3ay 3V _3(M,V)
3

k k a 3(xk’xu)

Hence A; (V) and V are functionally dependent. As these steps are
reversible the proof of Theorem 3.1, is complete.
Now recall that since V(x) is an absolute scalar function it is

. 172
known that F(x;%¥ = |ea, (V)] > 0.

THEOREM 3.2. If§ V(x) = constant, with A, (V) # 0, form a set of
‘wl equipotential hypensunfaces of a conservative field of gorce ¢,
each of deficiency one, which form a parallel family, there exLsis
a non-constant function x = x(V) which obeys the Hamifton-Jacobi
partial differential equation of §inst onden, namely

, 172 (i sy 8y |172
(3.10) r;d%) = fea ol = fegtd 3 ia‘%‘a| =+

Convensely if x(x) = constant obeys the Hamilion-Jacobi equation
then it nepresents a parallel family.

—d4v__
Y|E(V) |
constant function of V = V(x), and note that V(x) = constant is pa
rallel if and only if

For, in Theorem 3.1 set x(V) = J , where F(V) is a non-



-54-
1/2 ii 9 Py 1/2 ¥
(3'11) [EA.I (x)] = [eglJ ;:i ;_:_j] = -I‘(X', :—i) = +1

Thus, Theorem 3.2 is proved.

1
4. SOME CONDITIONS FOR PARALLEL FAMILIES OF » HYPERSURFACES IN

RIEMANNIAN SPACE Vn. If Aiis an absolute covariant vector in Vh ,

its covariant first order partial derivative is given by

6).-' a
4.1 . s = —1 - T,
( ) Al,] 53 ij Aa

In particular if V = V(x), is an absolute scalar function

2
4.2y v, =3 v, =2V _ra 3V
1 »1] axlaxJ 13 8xa

Thus the ordinary partial deriwative of the first order Lamé dif
ferential parameter A; = A, (V),with respect to x* is

a,
(4.3) o

2 :
2gii v v, =2g3| 23V 3V _a 3VaV
X »1 ,Jo

axdax® axt 3% axaxd
Let T ,, denote the absolute covariant tensor of second order de
fined by

2 13V aay 3V aa] L Ldj N
(4.4) TC‘B 7[3)(8 ax® 3x% QXB] g v:i[vys v’ju v’“ vsjB]
Now supposing that (V) > 0, and since g = |g..| # 0, the follow

ij
ing result is evident.

THEOREM 4.1. Let the potential function V = V(x), of a consderv-
ative field of force ¢, be of at Least class two in a given open
negion of Riemannian space V., with 4y (V) positive. Then the fam
ily 0f =! hypersunfaces, each of deficiency one, defined as the
equipotential hypersunfaces V(x) = constant of the field of fonrce
¢, 48 a parallel family if and only if

= gij - v .1 =
(4.5) TGB g v.i[V98 V;ja V:a ,JB]

Modeovea, each component of this tensor, when o # B, ao,B fixed,
namely

. .. -V vV .
(4 6) ‘y,ﬁ V,J“ & »JB s»

48 onthogonal to V(x) = constant.
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Now the condition (4.5) can be written in the form

(4.7) v, gldv. v, =v giv._ v

)B s1 iju\ ’ O 51 ’jB.

Let p be defined so that

(4.8) gdiv v, =ov_ , gdlv, v

I T,je ’ »1 ",38

= pV’B.
The second set of equations in (4.8) follows from the first since
at least one V‘“ is not zero.
THEOREM 4.2, A family of ! equipotential hypersunfaces V(x) =
constant of a consenvative field of fornce ¢, with potential function
V=V(x), and A; (V) > 0, 48 a parallel family if and only 4if

(4.9) Ll I AN
X

where a=1,2,...,n, and p 44 an absolute scalar function. Thus if
Ay > 0, 48 not a constant the two families Ay= constant and V(x)=
constant are identical.

It is noted that if A; = c > 0, is identically constant. then by
a suitable homothetic map T, the conservative field of force ¢,
with potential function V = V(x), is such that the force vector
3V

¢; = - 5 > has unit magnitude.
ax*

5. CARTOGRAMS AND PARALLEL FAMILIES. Let Vn and Vn » be two Rie
mannian spaces whose metrics are given by the two definite quadratic
differential forms: ds? = gi.dxidxj, and d3? = éijdxidxj, where each
of the 2n? functions gij(x), éij(x), is of at least class three in
an n dimensional region of points of V , OT V . Two points, one of
Vn and the other of V , are said to correspond if and only if they
are determined by the same curvilinear coordinates x=(x ,xz,...,x ).
This establishes a point to point transformatien between V and Vn'
Such a transformation between Vn and Vn, is called a cartogram T.

If p is a positive scalar point function of at least class three
in the given region of V such that ds = pds, then the cartogram T
is said to be conformal and the two Riemannian spaces Vn and V are
said to be conformally equivalent. Hence g =p g ., and g*J =

= lz gij. In this case Vn is called a conﬂonmal imagc of the space

P
V.

n
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In particular if the positive scalar point function p is a constant
then Qn is called a homothetic imag2 gf Vh and T is called a homo-
thetic transformation T. Ifp = +1, V; is called an {sometrnic Aim-
age of‘ﬁ; and T is an {sometric conrespondence. In this case V;
is said to be applicable to v, -

Now let V(x) = constant represent a parallel family of equipoten
tial hypersurfaces of a conservative field of force ¢ in Vh. The
condition for this is

ij -
(5.1) g V’i V’ju pV,a ,
for «a=1,2,...,n, and p a scalar function.
Suppose that this parallel family in Vn corresponds to a parallel
family of w! hypersurfaces in Vn. Thus the condition (5.1) must
hold in both Vn and Vh. Hence for some scalar functions p (x) and

o (x)

2 2 i
ijoV a3V A 3V AV -ij 9V "V =X AV
(5.2) gV [ 3V _pr aV] _ oV o odj oV [ 9TV g 3V
axt{axIax® Je 5 ax® axtlaxIsx® Jo gyt
=5 2V
ax®
Hence
ij ij 3V 32V av ij=A Vv
(5.3) (gl -pg'd) = ———— - =, glJr - pgdT; ) = =0
axt axJax® ax* Joao gt

Now p and p are independent of the partial derivatives of V(x).
Clearly (5.3) is an identity for all such partial derivatives. Hence

‘necessarily

13 A

(5.4) pgtd - ogtd =0, 5gtir,

2 ° e .
Set u = % > 0. Then from the first of equations (5.4) it is seen

that Eij = 12 gij. Thus we have established that V and Vn are nec-
u

essarily related by a conformal cartogram T.
Now if T is a conformal cartogram the Christoffel symbols of the
second kind correspond by the equations
1[A 3u A 3u A8 3u ]
B

-Y A
5.5 . =TI, % =16, + 8§ —. - g.
(3-8 '3 L “[ U e LT

However the second of equations (5.4) yields
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-ij = - 1 ij.A
(5.6) g Fja 12 g Fja

Upon comparing (5.5) and (5.6), it is found that

1 ij[. au ) A8 du
(5.7) - g 8. — + 8" —. - g. g~ — | =0.
u I ax® * axd Ja ax?
Since u > 0 and g = Igij' # 0, these reduce to
A du A du AB 3du
5.8 §, — + & —. - g. —, = 0.
-8 I ax® ¢ axd Bja & 18

Multiply through by gj“. Upon simplification (5.8) reduces to

(5.9) gie 34 - g,
axJ
Again since 1/g = Igju| # 0, it is seen that 333 = 0, for j=1,2,.,n.
9X

THEOREM 5.1. Let v, and Vn be two Riemannian spaces 6on‘which the
fundamental quadratic differential forms are ds?= gijdxlde and
as? = §i.dx1dxJ nespectively. Suppose that V(x) = constant L8 paraf

Lel family of ~! hypersunfaces in v, where V(x) 48 the potential
function of a consenvative field of force ¢ 4Ln V.- Then evenry such
family will connespond to a parallel family of =! hypersunfaces 4in
Vn, by a cantogham T, if and only if T is a homothetic map.

For, in this case the scale function u(x) obeys %%u = 0, for a=
1,2,...,n. Since the scale function is always positive, it is seen
that u = u(x) = ¢ > 0, where ¢ is a constant. Thus the proof of
Theorem 5.1 is complete.
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