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INDUCED SHEAVES AND GROTHENDIECK TOPOLOGIES
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INTRODUCTION. The theory of sheaves, as it is exposed in the clas-
sical book of R. Godement {2}, has been generalized in sucessive
stops. Ending this process, M. Artin introduced the notion of Gro-
thendieck topology and developed the fundamental part of the theory
in a functorial way (cf. {1}). Although, the concept of Grothen -
dieck topology seems tobe insufficient to relate certain aspects of
the theory of sheaves; for example, the notion of subspace ( not
necessarily open !) is omited and so, induced sheaves and relative
cohomology must be ignored.

The purpose of this paper is to obtain the essential results about
induced sheaves (the concept of topological category enable us to
work in this direction; cf. §1). Topological methods play an im-
portant role in the problems in question, as Godement shows (cf .
{2} ; Ch. II, §2.9). Therefore, we are forced to introduce a var-
ious kind of axioms, valids -of course- in the classical situation
of a topological space. We mention that the results of this paper
are useful also in not conventional cases, namely, the "étale" Gro-
thendieck topology for preschemes (cf. {1} , Ch. III).

Resuits and notations of Artin's seminar ({1} , Ch. I, II) are con-
tinuosly used, frequently without specific reference. This results
are stated in {1}for sheaves of abelian groups, but all of them
could be generalized taking an arbitrary category of values and in-
serting axioms where necessary.Here, we have followed the abstract
formulation (the basic facts about limit of functors, existence of
injectives, adjoint situations, derived functors of a composition,
etc. are stated in the usual literature; for example, cf. {3} )

0f course, the reader couldsuppose that all sheaves in this paper
are abelian sheaves.

1. TOPOLOGICAL CATEGORIES AND INDUCED SHEAVES. This section is
of introductory character. Its aim is to lay down the terminology
used throughout this paper and to collect the basic facts. We be-
gin with the following:

DEFINITION 1.1. 4 topological category is a triple (M,T,¢) such
that M is a category, T is a family of Grothendieck topologies
(T_M)MeobM ¢ts a family of morphisms in M (¢ M — x)Me obM and the

following axioms are satisfied:
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tel) For all object M in M Cat Ty te a full subcategory of M. X
is an object of Cat Ty and ¢y is the identity morphism ey of X.

te2) The diagram
U—YV
oy N\ 4y
X
18 commutative, for all morphism f: U — V in Cat TX'

te3) M has fibered products of the form ,U &wM (briefly noted

.¢ 9

i) M
U XXM), where U is an object of Cat Tx and M is an object of M,
such that

U e Ob(Cat Ty) ==> U xg4M € Ob(Cat Ty)

(fi: Ui b U)iel € Cov Tx===> (fi Xyely' Ui XXM — U XXM)ieI € Cov TM

for all object M of M.

REMARKS 1.2. i) Axioms tcl and tc2 tell us that M is an object of
Cat T, , because X x,M = M and X is an object of Cat T,.

ii) Recall that if X is an object in a category M, then is called
prefinal (resp. final) iff Homy (M,X) # @ (resp. Homy (M,X) is a set
of one element), for all M e ObM. 1If < X > is the discret subcatego

ry of M associated to X, one easily checks that the following state
ments are equivalent (cf. {1} Ch. I, §0):

a) M satisfies axiom L1 and < X > is a final subcategory of M.
b) X is a final object of M,

c) M satisfies axiom L2 and X is a prefinal object of M such that
HomM(X,X) = {egl.

Clearly, if (M,T,¢) is a tc (topological category) then X is a pre-
final object of M.

Let ¥ be a category with final object X and let ¢ be the family of
‘morphisms canonically associated to X. If T is a family of topolo-
gies satisfying tcl and tc3, respect to M and ¢, then (M,T,¢) is a
tc of the following type:

} . 0o ..
DEFINITION 1.3. A4 topological category (M,T,¢) is called tc <iff
it satisfies:

te2') For all morphism £: M — N in M the diagram
P
£

M —— N

\
oy \x‘/ .
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18 commutative.

Given a tc C = (M,T,$), we shall be using a naive nomenclature:

M is called the category of subspaces of C (consistently, an object
M in M is called a subspace of C). The object X is referred to as
the space of C and so, an object M of M is also called a subspace
of X refering to ¢, as the inclusion morphism of M in X.

If M is a subspace of M, Ty is called the relative topology of M
and Cat T, is called the category of relative open objects of M
Abusing language, T, is called the topology of C and Cat Ty is cal-
led the category of open subspaces of C.

A morphism f: M — N in M is called a ¢-morphism iff the diagram

f

M —— N

w N\
X
is commutative. We define a category M¢ putting:

ObM¢ = ObM

Hom M¢ : ¢-morphisms of M

M¢ is a subcategory of M and clearly is a full subcategory (equiva
lently, is equal to M) iff C is tc?.

DEFINITION 1.4. A morphism of topological categories F: c — C'
ig a funetor F: M —— M' such that:

mtel) For all object M of M F/Cat Ty is.a morphism of topologies,
: [

of TM in TF(M)‘

mte2) F(¢) = ¢' (i.e. F(X) = X' and F(¢M) = ¢ﬁ(MY’ for all MeQObM).

mte3) F preserves fibered products of the form U XXM,UeOb(Cat T/
and M € ObM.

REMARKS 1.5. i) Now we can talk about. the category of small topo-
logical categories.

ii) If F: ¢ —— C' is a mtc then we have

U e Ob(Cat Ty) — F(U) xz F(M) e Ob(Cat Tpy,)

(fi:Ui;—» U)iEIe Cov TX~—~>(F(fi) x :F(Ui) xx,F(M) —_

X' CF (M)
-+ F(U) xx,F(M))ieI e Cov T%(M)

for all subspace M of C.
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iii) A mtc F: ¢ —— C' induces for each subspace M of C a mor -

phism of topologies F/Cat TM: TM —_— T%(M) and so, induces the u-
sual functors (direct and inverse image) between the corresponding
categories of presheaves or of sheaves.

Let M be a subspace of a tc C. If A is an arbitrary category, the
category of presheaves P(TM,A) is briefly denoted by PM, and a pre
sheaf in Py is called a presheaf over M. Similarly, if A is a cat
egory w1th products, Sy denotes the category of sheaves S(Ty-A)
and a sheaf in Sy is called a sheaf over M.

Pyt Ty — Ty is the morphism of topologies defined by the assign
ment of objects U — U xyM.

A category A will be called:

o) A0 iff it is a complete category (respect to functorial direct
limits) with products and zero object.

i) A1 iff it is A0 and abelian.
ii) A2 iff it is A1 and satisfies the Grothendieck axiom A.B.5.
iii)A3 iff it is A2 and has a generator.

Let C be a tc and let A be an Al category (as category of values).

DEFINITION 1.6. If M is a subspace of C and F is a sheaf over X ,
then we call Pu (F) the sheaf induced by F over M, and we denote
it by F/M.

DEFINITION 1.7. If M is a subspace of C and o:F — G is a mor-
phism of sheaves over X,them we call °M (a) the morphism induced by
a over M, and we denote it by o/M.

REMARKS 1.8. i) Since py = eTX it is clear that F/X = F and a/X = a

ii) Since PMg is a functor it is clear also that eF/M = e and

(Ba) /M = (8/M) (a/M).

F/M

iii) Remark that expresions of the type (F/M)/N have no sense here,
because the '"absolute'" topology Ty plays a special role in our devel
opments.

Now we need to prove some previous results. In the next lemma, and
only in the next, A may be an arbitrary category.

LEMMA 1.9. If f: K — K' 45 a morphism of small categories, the

following statements are true:



71
1) If f is a full and representative functor, then fP: PP— P is
full.

ii) If f is representative and « € Hom P' is such that £ (o) is an

igomorphism, then ¢ is also an isomorphism.

Proof i) We want to show that the function HomP.(Pl , P2 ) —
— Homp (£° (P,) , £7(P,)) , o — £P(a) , is surjective. Given

B e Homp(fp(Pl) , fp(Pz)) we define a morphism o € Homp, (P, , P,)

in the following way: since f is representative, given an object V
in K' there exists an object U in K such that £(U) = V; therefore,
we take o (V) = B(U). The good definition of « is obtained by the
following argument: if U' is an object of K such that f£(U')=V,since
f is a full functor there exists a morphism m: U'—— U such that
f(m) = e, . Now, since B is a morphism of presheaves, we have the
commutative diagram

Py —EE - Py (u)

£P(P)) (m) £P(P,) (m)

U —ggry— £ U

i.e. we have the commutative diagram

B(U)
Py (V) — 0 P, (V)

e e
PI(V) PZ(V)

Py (V) — 3@y P, (V)

and so, B(U) = B(U'). It is trivial that fP(a) = 8

ii) Given o € Hom P' and V ¢ ObK', observe that

Vv = £(U)

> a (V) = £fP(a) (U).

COROLLARY 1.10. If £f: T — T' is a morphism.of topologies, the fol

lowing statements are true:
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i) If fis a full and representative functor, then £5: S'— § is
full.

i) If £ 4is representative and o € Hom S' is such that £%(a) 4is an
isomorphism, then o is also an isomorphism.

Proof : Apply the lemma, taking in mind that if% = fPi' | where i
(resp. i') is the inclusion functor of S$ (resp. S') in P (resp. P')

COROLLARY 1.11. If £: T —> T' {g a full and representative mor -
phism of topologies, then fs: S — S' is a representative functor.

Proof: Since fs is left adjoint to f%, there exists a canonicél
morphism of functors A: f_ o £% —> eq) . Now, since f° is full by
1.10,i, we have that f° (hge): fs(fso f5(F')) —» fS(F') is an iso -
morphism, for all sheaf F' in 8'. Therefore, applying 1.10 , ii ,
hpv: fsfS(F') — F' is also an isomorphism; and so,given a sheaf
F' in 8' the sheaf £° (F') is a preimage by £ of F'.

The situation above suggest us the following

DEFINITION 1.12. 4 te C is called tol iff the morphism % is a

full and representative functor, for all subspace M of C.

REMARK 1.13. If C is tc1 we can apply both corollaries to the mor-
phism e, : Tx —_— TM. In particular, 1.11 tell us that the restric-

tion functor ./M: Sy — SM is representative, for all subspace M

of a td C.

In order to obtain the classical theorems about ' characteristic "
sheaves (cf. {2}, Ch., II §2.9) our first result is

LEMMA 1.14. Let Mbe a subspace of a t01 C and let F be a sheaf
over X. If we define the sheaf F' by FM = £°5€_(F) then F"/M = F/M.

(fis Py’

Proof: Adjointness gives us a canonical morphism of functors a :%+

— £5f ; since £ is a full functor (cf. 1.10,i) £ A _): f (F) —
s s F s

M . .
— fs(Fi) is an isomorphism. Hence, F/M = FM/M
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The technique concerning to open subspaces will be obtained using
the following type of categories

DEFINITION 1.15. 4 te C is called te® tff for all open subspace
A of C the following conditions are satisfied:

z) T, ts a subtopology of Tx-

it) If V is open in A, then V XyA =V (i.e. eyXgby ¢V xgA —

—V xyX =V is an isomorphism).

LEMMA 1.16. If A is an open subspace of a te? € and V is open in
A, then < (V,hy) > is initial in l‘f, , where f: T, — T, is the

morphism CIN and hV: V — (V) Zs the inverse morphism of eyXgba

Proof: Let (U,n) be any object in 15 . If Py* f(U) — U denotes
the first projection, we define a morphism m: V — U by m = pyn-.
We claim that m: (V,hv) — (U,n) is a morphism in 15 ; to prove
this we are reduced to check that the diagram

£v) £® £y

N

is commutative. In fact, if gy! f(V) — V is the morphism CyXg0a

we have the commutative diagram

F(V) —V £(U)

“ | v

\' —_— U
m

Therefore, recalling that gy is the first projection of f(V) , an
uniqueness result on fibered products yield§ f(m) = ng
f(m)hv = n.

v Hence,

The last thing to check is that End((V,hv)) is a set of one ele -

ment. In fact, if r: (V,hv) — (V,hv) is a morphism in 15 , then

£y 242 £y

S

the diagram
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is commutative, i.e. f(r) = € (v) Therefore, since the diagram

fov) —E), £y

v — \'s

is also commutative, results r = ey-
COROLLARY 1.17. If A is a complete category, Cat Tx has fibered
products and V is8 open in A, then the following statements are
true:

i) If P is a presheaf over X, then fp(P)(V) = P(V).
it) If in addition A has products and F is a sheaf over X, then
fpi(F) is a sheaf over A(i: Sx —_— Px 18 the inclusion functor).

112)If A is abelian too and F is a sheaf over X, then F/A(V)=F(V).

Proof: i) Since Cat Ty has fibered products and f preserves fib
ered products (because is a morphism of type pM), the category 15
satisfies axiom L1* (cf. {1} II, Th. 4.14). Therefore, applying

the lemma, we see that (V,hv) is an initial object in 15 , and so

£,(P)(V) = lin Py = P ((V,hy)) = P(V).
ii) Applying i, check the definition of sheaf.

iii) It is clear by ii that F/A = fpi(F). Hence, i yields the de
sired result.

2. COMPLEMENTED TOPOLOGICAL CATEGORIES AND CLOSED SUBSPACES.

At this point, we need the notion of closed object in a topologi-
cal category. Since we have the concept of open object, thinking
in the closed sets of a topological space it is enough to find a
notion replacing the set-theoretic operation of complement. Thus,
we give the following

DEFINITION 2.1. A complemented topological category is a te C, to
gether with a functor c: M* — M such that, if 6 = cX and U =CatT,,
the following axioms are satisfied:

etel) c is an involution functor (i.e. C*o C = eys).

cte2) o ¢ ObU, and there exists (Uj— o ) ;e Cov Ty such that 1=¢

I
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etes) cM x,M = 8 and © M = 0, for all M ¢ ObM

REMARKS 2.2. i) FX = cUX is called the category of closed sub -
spaces of C, and ¢ is called the complement operator of C.

ii) Axiom ctc3 says that the diagrams

c(¢ ) c(o )
e__cLM ,e__._ci,M
c(gy) j oy c(dy)=e, J oy
CMTX 6—¢->X
cM ¢}

are fibered products. We recall that (in the following proofs) we
only need the first condition of ctc3 for closed subspaces, and the
second for open subspaces.

iii) ctcl tell us:

a) the complement bf a closed object is open.
(The dual proposition is trivially true). From the definition of o
and ctc2 we obtain: '

b) 6 is open and closed.

Therefore:

c) X is open and closed.

Using ctc2 and the second condition of ctc3, we see:

d) If M is a subspace of C, then 6 ¢ OblU, and there exists a cov-
ering (Vi-——->e)ieI in T, such that I = 4.
Recalling that, in a category with zero object, the product of an

empty family of objects is the zero object, we obtain:

e) If A is a category with products and zero object and P is a
presheaf over a subspace M of C, then

P monopresheaf > P(e) =0

In particular,

P sheaf

> P(e) =0
(In the sense of {1}, a monopresheaf is a presheaf satisfying (+)).

Now, we have the necessary technique in order to prove one of the
crucial results of this paper.

THEOREM 2.3. If A is an Al category and M is a subspace of a thC,
then for any sheaf F over X we have:
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i) The sheaf 2 defined by FM = fsfs(F), where f: Tx —_— TM 18 the
morphism ey, satisfies /M = F/M.

If A is an A2 category,C is, in addition, tc2 and has a complement
operator C, Cat TX has fibered products, and X is final in Cat Tx,
then for any sheaf F over X we have:

21) If M is a closed subspace of L, then FM/CM = 0; if the sheaf

A
FcM is defined by the exactness of the sequence 0——»Fcu——+f?—1+ M

(i.e. Fy = Ker Ag), then FcM/CM = F/cM and FcM/M = 0.

Proof: i) it is 1.14, exactly.

ii) We begin with the first statement. Since cM is an open sub-
space of C, applying 1.17, iii it is enough to show that FM(V) =0,
for any V open in cM. Recalling that fP preserves sheaves, because
f is a morphism of topologies, we see that - fpiMfs(F). There-,
fore, we have FM(V) = fs(F)(f(V)); but £(V) = e, because V is an ob .
ject of TcM and Pu is a representative functor (see axiom ctc3) ,
and fs(F)(e) = 0, because fs(F) is a sheaf (cf. 2.2, iii, e).Hence,

/M = 0

Now, we prove the second statement. Since Cat Ty has fibered prod
ucts, X is a final object in Cat Tx, A is an A2 category, and Pyt
Ty = Ty where A is any subspace of C, preserves the 'spaces"
of the topologies and fibered products, then pAs: Sx ——»,SA is an

exact functor (cf. {1} II, th. 4.14). Hence, fs and g, are exact

functors (f = o, and g =

pcM) :
In Sx we have the exact sequence

M
cM

Thus, the sequence
M
0 — g (F ) — g, (F) — g (F)
is exact, or equivalently, is exact the sequence

0 — F_,/cM — F/cM —> M/eM = 0

Hence, FCM/CM = F/cM .

In a similar way, we obtain the exact sequence

0 —> F_, /M —> E/M — /M
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Since AF/M is an isomorphism, the exactness of this sequence yields
FcM/M =0 .

The main purpose of the latter part'of this section is to prove that,

under certain restrictive conditions, bp: F—s ™ is an epimorphism.
Until this moment, (C,c) will denote a fixed ctc.
If A is a category with products and zero object, we give the follow

ing

DEFINITION 2.4. If M is a subspace of C and F is a sheaf over X,we

say that F is null outside M iff for all open subspace U of C we
have:

U x,M =g == F(U) =0

If M is any subspace of C, S(M) will denote the full subcategory of
Sx defined by the sheaves null outside M. If f: Tx — TM is a
morphism of topologies and A is an Al category, fo: S(M)—-———»SM will
denote the functor fs/S(M).

THEOREM 2.5. (A of type Al). If M is a subspace of C and f: Ty—
—aTM is the morphism Py > then the functor fo: S(M) —> SM has a

right adjoint £°: SM — S(M)

Proof: Since f° is right adjoint to fs, it is enough to sh,w that
the image of f° is a subcategory of S(M). (Then, £° is £° with
S(M) as codomain).

Given a sheaf G over M, notice that fS(G) = fPiM(G), where iM is the

inclusion functor of Sy in PM , -and so, we only need to show that

U xeM = o —> fPiM(G)(U) =0

for any open subspace U of C. In fact, we have
P = = 3 = =
£P5, (G) (U) = i, (6) (£(U)) = i, (G)(e) = G(o) = O

(the last equality is true because G is a sheaf).

Now, we wish to obtain a theorem of equivalence between the catego-
ries S(M) and SM‘ A similar result of Artin concerning to closed
subschemes (cf. {1} III, Th. 2.2), guide us in the generalization
process.

LEMMA 2.6. Let f: K — K' be a functor and let V be an object of K'
such that for any A e ObK and any n € HomK,(V,f(A)) there exist
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U e ObK and m ¢ Homy (U,A) satisfying V —%* £f(U) and £f(m)oh = n .
Then, the full subcategory 17 (V) of 1 defined by the class {(U,h);
U e ObK. h ¢ IaoK.(V,f(U))} i8 initial in 15.

Proof: Let (A,n) be any object in 15 ; applying the hypothesis on
V to the morphism n: V — f(A), we can find a morphism in K m :
U -— A and an isomorphism in K' V - £(U) such that £(m)h =
Therefore, the diagram

fU) —2® , £opy

N\, -

is commutative and so, m: (U,h) — (A,n) is a morphism in Is .

COROLLARY 2.7. If f: K — K' is a full and representative functon
then 1f V) in Iv » for all objeet V of K'.

COROLLARY 2.8. (A is a complete category). Let f: K — K' “be a
morphiem of small categories such that K has fibered products and f
is a full and representative functor which preserves fibered prod-
ucts. Then', any presheaf P in P(K,A) satisfies fp(P)(V) =

. f
= lim pv/I (V)* , V e ObK'

Proof: It is enough to notice that 15 satisfies the axiom L1* ,
because K has fibered products and f preserves fibered products.

DEFINITION 2.9. (C,c) is called-

1) ctcl iff C s tcl and for any closed subspace M the following
conditions are satisfied:

a) Any covering in TM is induced by Py from a covering in TX

" b) If U and U' are open subspaces of C such that U xgM = U'&XM
and F is a sheaf null outside M, then F(U) = F(U')

i1) ctcz iff C is te? and any closed subspace M satisfies:

U xxM =8 > U xXcM =U

for all open subspace U of C.

iii)ete’ iff (C,c) is ctel and ctel.

LEMMA 2.10. (A of type AO). If (C,c) is cicl, Cat Tx has fibered
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products, F is a sheaf null outside a closed subspace M of C, and
f: Tx —_— TM i8 the morphigm Pys then the following statements are
true, for any open subspace U of C:

<) fpi(F)(U XXMO = F(U).
i%) fbi(F) 18 a sheaf over M.

ti1) F/M(U M) = F(U).

Proof: 1) Since Cat Tx has fibered products, applying 2.9 we see
that £ 1(F)(U ;M) = lip i(F), xXM/If(u xM)*. Now, since (C,c)

satisfies 2.9, i, b it is obvious that the values of the functor
i(F)U x M are all isomorphic, because any one is isomorphic to F(U).

Hence, Lin i(F)y , \/1F (U x,m)* = F(V)
X

ii) Since (C,c) satisfies 2.9, i, a, applying i it follows easily
that £ i(F) is a sheaf (one only needs to check the definition of
sheaf).

iii) Because of ii we have fS(F) = fpi(F). Therefore, i yields
the desired result.

Now, it is almost obvious how to prove:

THEOREM 2.11. (A of type Al). If (C,c) is otel, cat Ty has fiber
ed products, M is a closed subspace of C, and f: Tx —_ TM is the
morphism Pys> then the funetor fo: S(M) —> SM is an equivalencé of
categories,which inverse is £°: SM — S(M).

Proof: By adjointness (see 2.5), there are natural transformations
. o . o . . ,
®: esin £°fo and ¥: fof°— oy It is a straightforward mat

ter,which we leave to the reader, to check that ¢ and ¥ are func -
torial isomorphisms.

COROLLARY 2.12. If F and F' are sheaves null outside M, then

F/M = F'/M => F = F!

THEOREM 2.13. (A of type A1). If (C,c) is ctcz, Cat Tx has fiber
ed products and M is a closed subspace of C, then

F/cM = 0 ==> F 4s null outside M

for any sheaf F over X.
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Proof: Let U be an open subspace of C such that U x,M = 6; taking
in mind that (C,c) is ctc2 and applying 1.17,iii we see that F(U)=
= F(U xycM) = F/cM(U xgzcM) = 0.

COROLLARY 2.14. If (C,c) ie cte® and F and F' are sheaves over X,

then
F/M = F*'/M , F/cM = 0 = F'/cM ==—> F = F!'

Now, we can obtain the desired result:

THEOREM 2.15. (A of type A2). If (C,c) is cte®, Cat T, has fiber
ed products, X is final in Cat Tx and M is a elosed subspace of C,

then the following statements are true, for any sheaf F over X :
i) Apr F—> ™ is an epimorphism.
ii) F' is uniquely determined by F.

Proof: 1) Recall that fs and g, are exact functors (see the proof
of 2.3). Let C be the sheaf over X defined by the exactness of the

sequence
Ay

F—Fs Pl — = C—— 0
Then, we have the exact sequence
M
g (F) — g (F) — g, (C) —— 0
or equivalently

F/M —— F1/cM — C/cM — 0
"
o]

and so, C/cM = 0.

In a similar way we obtain the exact sequence

E/M —— Fo/M — C/M 0

Therefore, since AF/M is an isomorphism, we conclude that C/M = 0.
Now, 2.14 yields that C = 0.

ii) If F' is a sheaf over X satisfying F'/M = F/M and F'/cM = 0 ,
then F'/M = FI/M and F'/cM = 0 = F'/cM. Hence, 2.14 yields that
Fro= Bt

We end this section with a well known result on "characteristic"

sheaves.
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THEOREM 2.16. (A of type A2). If (C,e) Zs t01 andvtcz, CatTy has
fibered products, X {s final in Cat Tx and M is a closed subspace
of C, then for any sheaf G over M there exists a sheaf F over X
such that F/M = G and F/cM = 0. If (C,c) is cte®, then F is unigue
1y determined by G.

1

Proof: Since C is tc™, ./M: sx —_— SM is a representative functor

(see 1.13) and so, given a sheaf G over M we can find a sheaf H
over X such that H/M = G. Then, taking F = ot , 2.3 enable us to
conclude that F/M = G and F/cM = 0

3. RELATIVE COHOMOLOGIES.

This section is devoted to realize an analysis of the cohomologi-
cal effects of induced sheaves. Of course, the well known results
exposed in the book of Godement (cf. {2} Ch. II, §4.9, §4.10, Th.
5.11.1) are obtained here, employing functorial methods. The com-
pact exposition of cohomological theory presented in the Artin's
seminar ({1} Ch. II) is continuosly used. Sheaves and presheaves
are considered in this order.

I) COHOMOLOGY OF SHEAVES.

Let A be an A3 category and let C be a tc such that Cat Tx has fiber
ed products and X is final in Cat Tx. (Notice that the hypothesis
on Cat Tx yield the exactness of the restriction functors).

We begin introducing the '"true'" cohomology.

DEFINITION 3.1. If M is a subspace of C, for each integer n x 0 we

*
define the functor HQ: (Cat TX) x Sx — A by:

HM“ = n?M(. x Mo, /M)

THEOREM 3.2. The following Statements are true:

i) U x,M=U' xM o, F/M = F'/M == Hy(U,F) = Hg(U',F').
ii) Hy = HY

111) 1§(U, ) 28 an exact cohomological functor.

If the functor ./M: SX —_ SM earries injective sheaves into flask
sheaves, then
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iv) H;(U,

" HG(U, ) .

If C has a complement operator c such that (C,c) is etel and M isa
elosed subspace of C, then for any sheaf G over M we have:

v)  HU(UxM,G) = H%(U,0y(G))

and for any sheaf F over X we have:

vi) HO(U,F) = H*(U,F") .

If C has a complement operator c such that (C,c) is cte® and M isa
closed subspace of C, then for any sheaf F over X we have:

vii) If F is null outside M, then Hy(U,F) = H"(U,F)

viii)There i8 a cohomological exact sequence of general term

H (U, F ) — H*(U,F) —— H(U,F")

Proof: i) and ii) are trivial.
*
iii) Notice that HTM(U xXM, ) is an exact cohomological functor

and ./M: S — S is an exact functor.
iv)  Since R" H° (U xgM, ) = H? (U x M, ) and £%, where £:T —T
M X X M

is the morphism pM, is an exact functor,which carries injectives
into H;M(U xxM, ) - acyclics, the proposition follows easily:

[}

R%Hg (U, )=R“(H;M(Uxxm, Jof ) = ;R“n° (UxgM, ))ef_ = H“ (Ux M, Jeof
= Hy (U, )
v) We claim that £° is an exact functor; since the diagram

S
S —£f S

Ny ™

where jM: SM) — SX is the inclusion functor, is commutative, it
is enough to show that f° and jM are exact functors. The exactness
of f° is clear by reasons of equivalence (see 2.11), and the exact
ness of JM follows from the fact that S(M) is closed in S under
taking kernels and cokernels, as it is easily deduced from the de-
finitions.

The spectral theorem of Artin-Leray, applied to the morphism f:Tx—»
, tell us that

—»TM

HP (U,R9£° (G)) - H“(UxXM,G)
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for any sheaf G over M. Therefore, recalling that
q > 0 == RY £5 = o
(because f° is exact), we obtain
H®(U,£%(G)) = H"(U x4M,G) .
vi) Applying the above result, we have
H*(u,f) = H“(U,fsfs(F)) = H*(U xM, £ (F)) = Hy(U,F).
vii) If (C,c) is ctc3 ,» then for any sheaf F over X we have

F null outside M ====> F = FM

In fact, from 2.13 follows that FM is null outside M and so, since
F/M = F®/M , 2.12 yields that F = FM

Applying this result and i, we obtain

H®(U,F) = H*u,Fh
Hence, vi yields the desired result.
viii) By 2.3, ii and 2.15,i the sequence of sheaves over X

Ap
0 FcM F — F

M

0

is exact and so, iii yields the desired result.

REMARKS 3.3. i) Notice that the relative (read local) character
of the cohomology just defined appears clearly in 3.2,i, 3.2,ii
and 3.2,vii.

ii) Of course, the hypothesis on 3.2,iv can not be removed. Suf-
ficient conditions in the classical case are well known (cf. {2} ,
II §3.3).

iii) Observe that the statement (notations as in 3.2, vi)
" . oyn
Hiy (U,F) = HY(U,F )

is not true, in general. Then, if we introduce the notation:

n _ 0
et (U,F) = HP(U,F )

under the hypothesis on 3.2,viii, we obtain an exact cohomological
sequence of general term

eyl (U,F) —— H*(U,F) —— H;(U,F)
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Now, we focus our attention in the cohomology with presheaves values.

DEFINITION 3.4. If M is a subspace of C, for each integer n > 0 we

. n, .
define the functor HM' Sx —_— PM by:
n _ ,n
HM = HTM(./M)

- THEOREM 3.5. The following statements are. true:

i) E/M = F'/M

> Hy (F) = Hy(F')
o n _ ,n
i1) Hx = HTX

*
iii) Hy is an exact ecohomological funector.

If the functor ./M: Sx —_ SM earries injective sheaves into flask
gheaves, then

. n _ phgyo

iv) HM = F HM

Without assumptions, we have for any sheaf F over X:
v)  Hg(Fopy = Hy( ,F) .

If C has a complement operator c such that (C,c) is cte! and M is a
closed subspace of C, then for any sheaf F over X we have:

vi)  HR(Flopy = H™(F")

If (C,é) 18 ctcs, we also have:

vii) If F is null outside M, then HQ(F)OQM = H™(F)

vii%)Therg is an exact cohomological sequence of géneral term
HP(F ) — HP(F) —— H (F)

Proof: i), ii), iii) and iv) can be obtained as in 3.2.

v) Knowing that H?M(G) = H?M( ,G), for any sheaf G over M, the pro

position follows easily:

Hi (F) (U x M) H?M(F/M)(U x M) = HE (U x;M,F/M) = Hy (U, F).

vi) Applying v and 3.2,vi, we obtain:

Hy (F) (U x4 M) H;tu,F) = Hh U, = HP(E) ().
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vii) The statement in question can be obtained as vi, applying now
v and 3.2,vii. Also, it can be proved in the following way: since
(C,c) is ctc3 » for any sheaf F over X we have

F null outside M == F = M

Hence, Hn(F) = Hn(FM) and so, the proposition follows from vi.

viii) It can be obtained as 3.2,vii.
ITI) COHOMOLOGY OF PRESHEAVES.

Let A be an Al category and let C be an arbitrary tc. First, we
consider the cohomology of a covering. In order to conserve a spec
tral result and to obtain a new one, we adopte the following

DEFINITION 3.6. If M is a subspace of C and Ky ©s the category of
coverings of an open subseace Uof C, for each integer n > 0 we

define the functor MP:

i Kyx Py — A by

n

_ 0
HM = HTM(. xxM, .)
THEOREM 3.7. The following statements are true:

1
ii) H; = H

. - — n ~yn 1
P U Dy Um0y = (U —0) o, )= (0 —0) L )
n .
Tx

*
i11) HM((U{—>U)161, ) 28 an exact ecohomological functor.

If A is an A3 category, then we have:

i) Hy((U=— U); 1, ) = RPMg((U;— ), ., )

v) Hﬁ((ui——» U) ;1o M (F)) —;:» Hy (U, F).

If A is an 41 category, C has a complement operator ¢ such that (C,c)
ctcl, Cat Ty has fibered products and M is a closed subspace of C ,
then for any sheaf F over X we have:

i) If F is null outside M, then Hy((U;—> U)o g F/M)=HY ((U;—U) F)

i iel?
If A is an 43 category and X is final in Cat Ty> we also have:

vii) If F is null outside M, then

P q n
”M((Ul——) U)iEI’pMP(H (F))) 0 > H (U’F)
Proof. i) and ii) are trivial.
s s . . * .
iii) Notice that HTM((UixXM — U xxM)ieI’ ) is an exact cohomolo-
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gical functor.

iv) Since A is an A3 category, HT. ((U.x M — U x M) =
™ iX X “iel’?

y ).

v) Since A is an A3 category, the cohomologies of sheaves are de
fined and we have

- Niro
R ”TM((Ui xxM — U xxM)ieI

P q U n
HTM((UixxM — UxxM)ieI , HTM(F/M)) > HT (UxxM,F/M)
P M
vi) It follows easily from 2.10,iii, by a direct analysis of the

complex which gives the cohomology.

vii) Observe that S(M) has injectives, because it is equivalent to
the category of sheaves over M (see 2.11) (since A is an A3 catego
ry, SH has injectives). Also, observe that the functor jM carries
injectives into flasks, because f5 = jM°f°, where f: Ty — Ty is
the morphism p,, and £% has this property.

Now, consider the (two) functors given by the commutative diagram

s) — R W(G;—Wy 00 ),

Let us evaluate its derived functors. By iv, we have

RPHO ((U,—U), . , ) = HP(WU,—U), -, )
i iel i iel

‘ Recalling that fp is an exact functor, by the hypothesis on Cat Tyo

and that jM is an exact functor,which carries injectives into i-acy
clics, we obtain )

RACE ij.) = £ oRY(ijy) = £ o(R¥i)ejy = £ o %e]

p M P M P M P M

Both results elucidate the first member of the spectral convergence
in question. Concerning to the second member, 2.10,i implies

o s ~ o
Ho((U— U); ;5 ) o (£,i§y) = H°((U,— U)
Therefore, recalling that H°((Ui——* U)ieI , ) o 1= Iy » we obtain
Hy ((U,— W) r 5 ) oo (fpijM) = Tyoely

and so, since jM is an exact functor which carries injectives into

cep 0 ) Uiy

FU-acyclics, we have

RMHS ((U,— ), s ) o (£,05)) = R(rgdy) = (R7ry) o gy =

=HYNU, ) o dy
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We introduce the limit cohomology of presheaves by a more general
procedure than the one used by Artin in {1} . Of course, both de
finitions agree in the case that the category of values is A3.

Let A be an Al category and let T be an arbitrary topology. If U
is an object of Cat T and K is a subcategory of KU, for each integer
n 2 0 we define the functor Hy(K, ): P(T,A) —> A by:

H?( ,P) = lim H;‘.( sP) o k* , P e ObP
where k: K — KU is the inclusion functor (notice that H?( »P)
*
Ky — A).
It is straightforward, to check the following propositions:

i) If A is an A2 category and K is filtrant, then H;(K, ) is an
exact cohomological functor.

ii) If A is an A3 category and K is filtrant, then H?(K, )=RnH?(K, ).
(Concerning to i, the usual statement about the exactness of the 1i
mit is required; and for ii, the proposition i tell us that it is
enough to show that H?(K, ) vanishes on injectives, if n > 0).

Notice that all the other results of {1}, concerning to limit cohomo
logy, are preserved by our definition.

v
The Cech cohomology of presheaves is introduced following {1}.

Now, we focus our attention in the relative limit cohomology.

DEFINITION 3.8. If M is a subspace of C and K is a subcategory of K
for each integer n > 0 we define the functor H;(K, ): PM — A by

u

Hy (K, ) = Hp (KegM, )

(Notice that Kx,M is a subcategory of K, x_M , which is a subcategory
X gory ux

of KUXXM)'

THEOREM 3.9. The following statements are true:
i) KxgM = K'x M =—> u;;(K, ) = HMn(K', ).
ii) H;(K, ) = H?xck, ).

If k: K — KU is the inclusion functor, then for any presheaf P wer
M we have

iii) HJ(K,P) =lim u;( »P) o k*
If K* is filtrant, then:

iv) HQ(K, ) o iM = FUXXM
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If A ig an A2 category and K* i filtrant, then:
*
v) HM(K, ) is an exzact cohomological funetor.
If A is an A3 category and K* is filtrant, then:
vi) Hy(K, ) = R°Hy(K, ).
.o p q n
vit) HM(K,HM(F))='77'>HM(U.F)

If A ig an Al category, K* {8 filtrant, C has a complement operator
c such that (C,c) is ctcz, Cat Tx has fibered products and M 18 a
closed subspace of C, then for any sheaf F over X we have:

viii)If F ie null outside M, then Hy(K,F/M) = H*(K,F).
If A is an A3 category and X is final in Cat Txs then we also have:

iz) If F is null outside M, then Hﬁ(K,p“Hq(F)) > H®(U,F).
P P

Proof: i) and ii) are trivial.
iii) If kM: KXXM —_— KUxXM is the inclusion functor, by definition
we have for any presheaf P over M

H?M(KxxM,P) = li$ H?M( P) o ki
and it is clear that
lin u?M( ,P) o kit = linm H?M(.xXM,P) o k*
iv) Notice that
K* filtrant > Kx,M* filtrant
and so, we have

19 3 -~
1ITM(KXXM, ) o iy = FUXXM
* .
v) Since KxxM* is filtrant, then HTM(KxxM, ) is an exact cohomologi

cal functor.

vi) Recalling that K* is filtrant, we have
n ~ Nyro
HTM(KxxM, ) = R HTM(KxXM, )
vii) By the same reasons, we have the spectral convergence
H%’.M(KXXM , H‘}M(F/,\l)) — H'.} (Ux M, F/M) .
P M

viii) Applie 3.7, vi and pass to the limit over K*, using the pro-
position iii.

ix) It can be obtained as 3.7,vii.

v
We end this section-introducing the relative Cech cohomology of pre
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sheaves. The definition is not the expected one, because the natu
ral definition do not preserves the relative character (see 3.11,i).
However, in the special case 3.11,xi both procedures agree,.

DEFINITION 3.10. If M is a subspace of C and U is open, for each
integer n > 0 we define the funetor ﬁ;(U, ): Py — A by:

Hy(U, ) = Hp (Ux,M, )

THEOREM 3.11. The following statements are true:

L) UxM = Utk M > (U, ) = HA(U', )
Hy W, )

lim n;( ,P)

i) HI(U, ) o iy = -

If A is an A2 category, then:

i) HR(U, )

n

iii) ﬁg(u,p)

v) ﬁ;(U, ) is an exact cohomological functor.
If A is an A3 category, then:
vi)  Hy(U, ) = RPH(U, )
vii) Hg(U,Hg(F)) - H;(U,F)~

ey vl 2 2
viii) Hy(U,E/M) = Hé(U,F) » Ty (U,E/M) © Hy (U,F)

If A is an Al category, C has a complement operator c such that
(C,c) is ete”, Cat Ty has fibered products and M is a closed sub-
space of C, then for any sheaf F over X we have:

iz) If F is null outside M, then Hy(U,F/M) = U"(U,F)
If A is an A2 category and X is final in Cat TX’ then we also have:

x) If F is null outside M, then HP(U

.oMp(Hq(F))) == H"(U,F).

If A is an Al category and M is a subspace of C such that any cover
ing of UxxM is induced by Py from a covering of U, then we have:

zi)  HR(U, ) = HR (K, ).

Proof: i), ii), iii), iv), v), vi) and vii) can be obtained as the
homologous propositions of 3.9.

viii) It follows immediately from
v1 1 . -2 2 MR
g, (Ux LB = By (UxMLE/M) gy, (Ux M, E/M) C gy (UxM,E/M)

It should be pointed out that viii could be obtained from vii just
as in the absolute cohomology case.
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ix) and x) can be obtained as 3.9, viii and 3.9,ix, resp.

xi) The hypothesis on M tell us that KUXXM = Kyx Hence, we have

XM

n . oyn
HTM(KUxXM, ) = HTM(KUXXM’ )

or equivalently

v

Hg (U, ) = Hy(Ky, )
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