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INTRODUCTION. The theory of sheaves, as it is exposed in the clas­
sical book of R. Godement {2}, has been generalized in sucessive 
stops. Ending this process, M. Artin introduced the notion of Gro­
thendieck topology and developed the fundamental part of the theory 
in a functorial way (cf. {1}). Although, the concept of Grothen -
dieck topology seems to be insufficient to relate certain aspects of 
the theory of sheaves; for example, the notion .of subspace (not 
necessarily open !) is omited and so, induced sheaves and relative 
cohomology must be ignored. 

The purpose of this paper is to obtain the essential results about 
induced sheaves (the concept of topological category enable us to 
work in this direction; cf. §1). Topological methods play an im­
portant role in the problems in question, as Godement shows (cf. 
{2} , Ch. II, §2.9). Therefore, we are forced to introduce a var­
ious kind of axioms, val ids -of course- in the classical situation 
of a topological space. We mention that the results of this paper 
are useful also in not conventional cases, namely, the "ihale" Gro­
thendieck topology for preschemes (cf. {I} , Ch. III). 

Resuits and notations of Artin's seminar ({I} , Ch. I, II) are con­
tinuosly used, frequently without specific reference. This results 
are stated in {I }for sheaves of abelian groups, but all of them 
could be generalized taking an arbitrary category of values and in­
serting axioms where necessary.Here, we have followed the abstract 
formulation (the basic facts about limit of functors, existence of 
injectives, adjoint situations, derived functors of a composition, 
etc. are stated in the usual literature; for example, cf. {3} ) .' 
Of course, the reader could suppose that all sheaves in this paper 
are abelian sheaves. 

1. TOPOLOGICAL CATEGORIES AND INDUCED SHEAVES. This section is 
of introductory character. Its aim is to lay down the terminology 
used throughout this paper and to collect the basic facts. We be­
gin with the following: 

DEFINITION 1.1. A topoZogiaaZ aategory is a tripZe (M,T,,) suah 

that M is a aategory, T is a family of Grothendi~ak topoZogies 

(TM)MEObM ,is a. famHy of morphisms in M ('M:M - X)ME ObM and the 

following axioms are satisfied: 
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toll For an objeot M in M Cat TM is a fuH suboategory of M. X 

is an object of Cat Tx and ~x is the identity morphism eX of X. 

t(2) The diagram 

is commutative. for an morphism f: U -+ Vin C'at T x. 

tc3).M has fibered products of the fo~m ",U x,,,,M (b3'ti,ej"J.JI noted 
'wm :ow!!!! 

U XXM). where U is an object of Cat Tx and M is an objeot of M. 
such that 

(f i : Ui -+ U)iEI E Cov Tx====> (fi xXeM: Ui xxM -+ U XxM)iEI E Cov TM 

for all objeot M of M. 

REl'olARKS 1.2. i) Axioms tcl and tc2 tell us that M is an object of 

Cat TM ' because X xX'" = M and X is an object of Cat Tx. 

ii) Recall that if X is an object in a category M, then is called 

prefinal (resp. final) iff llomM(:-I,X)'; 0 (resp. HomM(l'>I,X) is a set 

of one element), for all H E OhM. If < X > is the discret subcateg~ 

ry of ,II associated to X, one easily checks that the following state 

ments are equivalent (cf. {1} Ch. I, §O): 

a) M satisfies axiom Ll and < X> is a final subcategory of M. 

b) X is a final object of M. 

c) M satisfies axiom L2 and X is a prefinal object of M such that 

I1omM(X,X) = {ex>' 

Clearly, if (M,T,~) is a tc (topological category) then X is a pre­

final object of M. 

Let M be a category wi th final obj ect X and let ~ be the family of 

'morphisms canonically associated to X. If T is a family of topolo­

gies satisfying tcl and tc3, respect toM and~, then (M,T,~) is a 

tc of the following type: 

DEFINITION 1.3. A topoZogical oategory (M.T.~) is oaHed tcO iff 

. it satisfies: 

t02') For all morphism f: ~I -+ N' in .II the diagram 

"I~N 
\ / . 

<PM . X'" ~N 
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is aommutative. 

Given a tc C = (M,T,cj», we shall be using a naive nomenclature: 

M is called the category of subspaces of C (consistently, an object 
M in M is called a subspace of C). The object X is referred to as 
the space of C and so, an object M of M is also called a subspace 
of X refering to cj>M as the inclusion morphism of M in X. 

If M is a subspace of M, TM is called the relative topology of .M 

and Cat TM is called the category of relative open objects of ;., 
Abusing language, Tx is called the topology of C and Cat Tx is cal­
led the category of open subspaces of C. 

A morphism f: M --+ N in M is called a cj> -morphism iff the diagram 

M~N 
<l>M '\. / cj>N 

X 

is commutative. We define a category Mcj> putting: 

ObMcj> ObM 

Hom Mcj> cj> -morphisms of M 

Mcj> is a subcategory of M and clearly is. a full subcategory (equiv! 
lently, is equal to M) iff C is tcO. 

DEFINITION 1.4. A morphism of topoZogiaaZ aategories F: C ~ C' 
is a funator F: M - M' suah that: 

mtal) 

of TM 

mta2) 

mta3) 

For aZZ objeat M of M Pleat TM isa morphism of topoZogies, 

inTF(M)' 

F(cj» = cj>' (i.e. P(X) = X' and P(cj>M) = cj>F(MY' for aH ~,'e:ObM). 

F preserves fibered produats of the form U xxM,UEOb(Cat Tx) 
and 1>1 e: ObM. 

REMARKS 1.S. i) Now we can talk about the category of small topo­
logical categories. 

ii) If P: C - C' is a mtc then we have 

U e: Ob(Cat Tx) ---~ F(U) xx,F(M) e: Ob(Cat TF(M») 

(fi:Ui '-+ U)ie:1e: Cov TX=> (F(f i ) xX,eF(M):F(U i ) xx,P(:.I) 

+ F(U) xx,F(M))ie:I e: Cov TF(M) 

for all subspace M of C. 
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iii) A mtc F: C ---+ C' induces for each subspace M of C amor -

phism of topologies F/eat TM: TM ---+ T~(M) and so, induces the u­
sual functors (direct and inverse image) between the corresponding 
categories of presheaves or of sheaves. 

Let 1>-1 be a subspace of a tc C. If A is an arbitrary category, the 

category of presheaves P(TM,A) is briefly denoted by PM' and a pr~ 
sheaf in PM is called apreslleaf over 11. Similarly, if A is a cat 

egory with products, SM denotes the category of sheaves S(TM,A) , 
and a sheaf in SM is called a sheaf over M. 

PM: Tx ---+ TM is the morphism of topologies defined by the assig~ 
ment of objects U ---+ U xxM. 

A category A will be called: 

0) AO iff it is a complete category (respect to functorial direct 

.limits) with products and zero object. 

i) Al iff it is AO and abelian. 

ii) A2 iff it is Al and satisfies the Grothendieck axiom A.B.S. 

iii)A3 iff it is A2 and has a generator. 

Let C be a tc and let A be an Al category (as category of values). 

DEFINITION 1.6. If M is a subspaae of C and F is a sheaf over X • 
then we aa II PMs (F) the sheaf induaed by F ove1' M. and we denote 

it by F/M. 

DEFINITION 1.7. If ~1 is a subspaae of C and a:F -- G is a mor­

phism of sheaves ove1' X.then we aaLL PM (a) the m01'phism induaed by 

a over M. and we denote it by a/M. s 

REMARKS 1.8. i) Since Px = eTx it is clear that F/X = F and a/X = a 

ii) Since PM s is a functor it is clear also that eF/M 

(ea) 1M = (e/~l) (a/M). 
eF 1M and 

iii) Remark that expresions of the type (F/M)/N have nO sense here, 
because the "absolute" topology Tx plays a special role in our devel 

opments. 

Now we need to prove some previous results. In the next lemma, and 
only in the next, A may be an arbitrary category. 

LEMMA 1.9. If f: K ---+ K' is a morphism of small aategorie.s.the 

foLLowing statements are true: 
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iJ If f is a full and representatiue functor. then fP: P'---+ P is 

fun. 

ii) If f is representative and (II £ Hom P' is such that fP(a) is an 

isomorphism. then a is also an isomorphism. 

Proof i) We want to show that the function Homp' (PI ' P2 ) --

a - fP (a) , is surjective. Given 

a £ Homp (rP (PI) , fP (P2 » we define a morphism a £ Homp ' (PI ' P2 ) 

in the following way: since f is representative, given an object V 
in K' there exists an object U in K such that feU) = V; therefore, 
we take a (V) = a (U) • The good definition of a is obtained by the 
following argument: if U' is an object of K such that f(U')=V,since 
f is a full functor there exists a morphism m: U'- U such that 

f (m) = ev . Now, since 13 is a morphism of presheaves, we have the 
commutative diagram 

_....::I3 ...... (=-U},--+, fP (P 2) (U) 

I fP(P2)~) 
---:I3;:-(:;-:u:"i,"",,"}-, f P (P 2)(U ' ) 

i.e. we have the commutative diagram 

P1(V) I3(U} , P2 (V) 

epl(V} I I ep2 (V} 

PI (V) 13 (u') , P2 (V) 

and so, 13 (U) I3(U'). It is trivial that fP(a) = 13 . 

ii) Given (II £ Hom P' and V £ ObK', observe that 

V = feU) => a(V) = fP(a)(U). 

COROLLARY 1.10. If f: T -- T' is a morphism .of topologies, the fol 

lowing statements are true: 
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i) If f is a full and representative funator, then fS: S'-r S is 

full. 

ii) If f is r~presentative and a E Hom S' is suah that fSfa) is an 

isomorphism, then a is also an isomorphism. 

Proof: Apply the lemma, taking in mind toot ifs " fP i ' where i 

Crespo i') is the inclusion functor of S Crespo S') in P Crespo P') 

COROLLARY 1.11. If f: T --+ T' is a full and representative mor-

phism of topologies, then fs: S S' is a representative funator. 

Proof: Since fs is left adjoint to f S , there exists a canonical 

morphism of functors A: fso fS --+ eS ' Now, since fS is full by 

1.10,i, we-have thilt fSCA F ,): fSCfso fSCF')) --+ fSCF ' ) is an iso­

morphism, for all sheaf F' inS'. Therefore, applying 1.10, ii, 

AF ,: fSfs (F') --+ F' is also an isomorphism; and so,given a sheaf 

F' in S' the sheaf fS CF') is a preimage by fs of F'. 

The situation above suggest us the following 

DEFI NITION 1.12. A ta C is aaZZed tal iff the morphism PM 

fuZZ and representative funator, for all subspaae M of C. 

is a 

RHIARK 1.13. If C is tcl we can apply both corollaries to the mor­

phism PM : Tx ----+ TM. In particular, 1.11 tell us that the restric-

tion functor .hl: Sx----+ 3M is representative, for all subspace ;-1 

of a tcl C. 

In order to obtain the classical theorems about "characteristic" 

sheaves (cf. {2} Ch. II § 2.9) our first result is 

LEMMA 1.14. Let M be a subspaae of a tal C and let F be a sheaf 

over' X. If we define the sheaf pM by FM = fSf CP) then FMm " Fm. 
S 

ffisP M)· 

ppoof: Adjointness gives us a canonical morphism of functors ~ :~~ 

since f is a full functor ecL 1.10,i) f Gl F): f (F)-+ 
S S 

is an isomorphism. Hence, P/~l " pM/iv! . 
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The technique concerning to open subspaces will be obtained using 
the following type of categories 

DEFINITION 1.15. A tc C is called tc 2 iff for all open subspace 

A of C the following conditions are satisfied: 

i) TA is a subtopology of Tx' 

ii) If V is open in A. then V xxA 

-+V xxX = V is an isomorphism) . 

LEMMA 1 .16. If A is an open subspace of a tc 2 C and V is open in 

A. then. < (V,hv ) > is initial in If 
V . where f: Tx ---+ TA is the 

morphism PA and hv: V ---+ fey) is the inverse morphism of evxx$ A 

Proof: Let (U,n) be any object in If 
V If Pu: £ (U) ---+ U denotes 

the first projection, we define a morphism m: V --+ U by m = pun. 
We claim that m: (V ,hv) ---+ (U ,n) is a morphism in If ; to prove V 
this we are reduced to check that the diagram 

fey) ~ feU) 

hv~ / n 
V' 

is commutative. In fact, if gv: feY) --+ V is the morphism eVxX$A 

we have the commutative diagram 

ngv 
---'--...... f (U) 

1 Pu 
U 

m 

Therefore, recalling that gv is the first projection of feY) , an 

uniqueness result on fibered products yields f(m) = ngv Hence, 
f(m)hv = n. 

The last thing to check is that End((V,hv)) is a set of one ele -

ment. In fact, if r: (V,hv ) ---+ (V,hv ) is a morphism in I~ , then 
the diagram 
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is commutative, i.e. fer) e f (V) • Therefore, since the diagram 

fey) f(r), fey) 

gv 1 1 gv 

V V r 

is also commutative, results r = ev ' 

COROLLARY 1.17. If A is a complete category, Cat Tx has fibered 

products and V is open in A, then the following statements are 

true: 

i) If P is a presheaf over X, then f (P)(V) ~ P(V). 
p 

U) If in addition A has products and F is a sheaf over X, then 

f i(F) is a sheaf over A(i: Sx --+ Px is the inclusion functor). p 

iiiJIf A is abelian too and F is a sheaf over X, then F/A(V)~F(V). 

Proof: i) Since Cat Tx has fibered products and f preserves fib 
ered products (because is a morphism of type PM)' the category I~ 
satisfies axiom 11* (cf. {1} II, Th. 4.14). Therefore, applying 
t.he lemma, we see t.hat (V,hv ) is an initial object in I~ , and so 

fp(P)(V) = ~ Pv ~ Pv«V,hv )) = P(V). 

ii) Applying i, check the definition of sheaf. 

iii) It is clear by ii that F/A ~ f i(F). Hence, i yields the de 
p 

sired result. 

2. COMPLEMENTED TOPOLOGICAL CATEGORIES AND CLOSED SUBSPACES. 

At this point, we need the notion of closed object in a topologi­
cal category. Since we have the concept of open object, thinking 
in the closed sets of a topological space it is enough to find a 
notion replacing the set-theoretic operation of complement. Thus, 
we give the following 

DEFINITION 2.1. A complemented topoLogiaaL aategory is a ta C, t~ 

gether with a functor c: M* --+ M such that. if e = cX and Ux=CatTx ' 
the foLLowing axioms are satisfied: 

ctcl) c is an invoLution functor (i.e. c*o c = eM*). 

ata2) e £ ObUx and there exists (U i --+ e )iclc COy Tx suah that I=~ 
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ctc3) cM xxM = e and e xxM = e. for aU M e: ObM . 

REMARKS 2.2. i) Fx = cUx is called the category of closed sub­
spaces of C, and c is called the complement operator of C. 

ii) Axiom ctc3 says that the diagrams 

e 
c("'cM) , M e 

c("'CM) , M 

C("',M) 1 "'M C (",x)-ee 1 1 "'M 

cM 
"'cM 

' X e 
"'e 

' X 

are fibered products. We recall that (in the following proofs) we 
only need the first condition of ctc3 for closed subspaces, and the 
second for open subspaces. 

iii) ctcl tell us: 

a) the complement of a closed object is open. 
(The dual proposition is trivially true). From the definition of e 
and ctc2 we obtain: 

b) e is open and closed. 

Therefore: 

c) X is open and closed. 

Using ctc2 and the second condition of ctc3, we see: 

d) If M is a subspace of C, then e e: ObUM and there exists a cov­
ering (Vi-e)iEI in TM such that "I = _. 

Recalling that, in a category with zero object, the product of an 
empty family of objects is the zero object, we obtain: 

e) If A is a category with products and zero object and P is a 
pre sheaf over a subspace M of C, then 

P monopresheaf ===> pee) 0 

In particular, 

P sheaf ~> pee) = 0 

(In the sense of {ll, a monopresheaf is a presheaf satisfying (+)). 

Now, we have the necessary technique in order to prove one of the 
crucial results of this paper. 

THEOREM 2.3. 1 If A is an Al category And M is a subspace of a tc C. 
then for any sheaf F over X we have: 
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i) The sheaf FM defined by FM ~ fSfs(F), where f: Tx --+ TM is the 

morphism PM' satisfies FM/M ~ F/M. 

If A is an A2 category.C is. in addition. tc 2 and has a compZement 

ope1'ator c. Cat Tx has fibered products. and X is finaZ in Cat Tx' 
then fo1' any sheaf F ove1' X we have: 

ii) If M is a cZosed subspace .Df ;C~ then pM/eM .. 0; if the sheaf 

F cM is defined by the exactness of the sequence O--+F cM- F ~ FM 

(i.e. FCM = Ker t:. F ). then FcM/cM F/cM and FcM/M ~ O. 

P1'oof: i) it is 1.14, exactly. 

iiJ We begin with the first statement. Since eM is an open sub­
space of C, applying 1.17, iii it is enough to show that FM(V) = 0, 
for any V open in cM. Recalling that fP preserves sheaves, because 
f is a morphism of topologies, we see that FM ~ fPiMfs(F). There-. 
fore, we have FM(V) ~ f (F)(f(V)); but fey) = a, because V is an ob . 

s -
ject of TCM and PM is a representative functor (see axiom ctc3) , 
and fs(F)(a) = 0, because fs(F) is a sheaf (cf. 2.2, iii, e).Hence, 

FM/cM ~ 0 . 

Now, we prove the second statement. Since Cat Tx has fibered pro! 
ucts, X is a final object in Cat Tx ' A is an A2 category, and PA: 
Tx -+ TA ' where A is any subspace of C, preserves the "spaces" 
of the topologies and fibered products, then PAs: Sx -+.SA is an 

exact functor (cf. {1} II, tho 4.14). Hence, fs and gs are exact 
functors (f = PM and g = P cM) . 

In Sx we have the exact sequence 

0 -+ F 
t:.F FM --+ F -'-+ cM 

Thus, the sequence 

is exact, or equivalently, is exact the sequence 

Ilence, F eM / cM " F / c;'[ 

In a similar way, we obtain the exact sequence 
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Since 6F/M is an isomorphism, the exactness of this sequence yields 

FcM /l>1 '" 0 • 

The main purpose of the latter part of this section is to provefuat, 
under certain restrictive conditions, 6 F : F ~ FM is an epimorphism. 
Until this moment, (C,c) will denote a fixed ctc. 

If A is a category with products and zero object, we give the follow 
ing 

DEFINITION 2.4. If M is a subspaae of C and F is a sheaf over X,we 

say that F is null outside M iff for all open subspaae U of C we 

have: 

U xx~1 = 6 => F(U) = 0 

If M is any subspace of C, SCM) will denote the full subcategory of 
Sx defined by the sheaves null outside M. If f: Tx ~ TM is a 
morphism of topologies and A is an Al category, fo: S (~1)~SM will 
denote the functor f JS (M) • 

TIIEOREI>I 2.5. (A of type Al). If ]\I is a subspaae of C and f: Tx-> 

-+ T M is the morphism PM ' then the funa tor f 0: S (1)1) ---+ SM has a 

right adjoint e: SM ---+ SCM) . 

Proof: Since fS is right adjoint to f , it is enough to shJW that 
S 

the image of fS is a subcategory of SCM). (Then, fO is fS with 

SCM) as codomain). 

Given a sheaf G over N, notice that fS(G) '" fP iM (G) , ",here iM is the 
inclusion functor of SM in PM , and so, we only need to show that 

U xx~1 = 6 =--=---=> fPiM(G)(U) = 0 

for any open subspace U of C. In fact, we have 

G (6) o 

(the last equality is true because G is a sheaf). 

Now, we wish to obtain a theorem of equivalence between the catego­
ries SCM) and SM. A similar result of Artin concerning to closed 
subschemes (cf. fl} III, Th. 2.2), guide us in the generalization 
process. 

LHI)lA 2.6. Let f: K ---+ K' be a funator and let V be an objeat of K' 

suah that for any A E ObK and any n E Hom K, (V,f(A)) there exist 
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U e: ObK and m e: HomK(U,A) satisfying V + feU) and f(m)oh = n 

Then. the fU'L7, subaategol'Y If (V) of I~ defined by the alass {(U, h) ; 

U e: ObK. h e: Iso K, (V,f(U))} is initial in I~. 

Pl'oof: Let (A,n) be any object in I~ ; applying the hypothesis on 
Vto the morphism n: V -+ f(A), we can find a morphism in K m 

U ----+ A and an isomorphism in K' V ....h... feU) such that f(m)h = n 
Therefore, the diagram 

f (U) f'(m) J f (A) 

h ~V/ n 

is commutative and so, m: (U,h) --+ (A,n) is a morphism in I~ • 

COROLLARY 2.7. If f: K --+ K' is a full and l'epl'esentative funat~ 

then If(V) in I~ • fol' all objeat V of K'. 

COROLLARY 2.8. (A is a aomplete aategol'Y). Let f: K --+ K' 'be a 

mOl'phism of small aategol'ies suah that K has fibel'ed pl'oduats and f 

is a fulZ and l'epresentative funator ~hiah preserves fibered pl'od­

uats. Then·. any presheaf P in PIK,AI satisfies f (P)(V) " . p 

" ~ pv/If (V)* , V e: ObK' . 

Pl'oof: It is enough to notice that I~ satisfies the axiom Ll* , 
because K has fibered products and fpreserves fibered products. 

DEFINITION 2.9. (C,c) is aaZZed· 

i) ata l iff C is tal and fol' any aZosed subspaae M the folZo~ing 
aonditions are satisfied: 

a) Any 
b) If U 
and F is 

ii) ata 2 

for aZZ 

iii)ata 3 

aovering in TM is induaed by PM fl'om 
and U' are open subspaaes. of C suah 

a sheaf nuZZ outside M. then F (U) " 

iff C is ta 2 and aZosed subspaae any 

U xxM = e => U xxcM 

open subspaae U of C. 

. iff (C, c) is ata 1 and ata 2 

a aovering in Tx . 

that U xxM " U'~xM 
F (U') • 

M satisfies: 

u 

LEMMA 2.10. (A of type AO). If (C,C) is ata l • Cat Tx has fibered 
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products, F is a sheaf nuLL outside a closed subspace M of C, and 
f: Tx ~ TM is the morphism PM' then the following statements are 
true, for any open subspace U of C: 

i) fpi (F) (U xxM-) '" F(U). 

ii) fpi(F) is a sheaf over M. 

iii) F/M(U xxM) " F(U). 

Proof: i) Since Cat Tx has fibered products, applying 2.9 we see 
that fpi(F)(U xxM) " ~ i(F)u XXMllf(U xxM)*. Now, since (C,c) 

satisfies 2.9, i, b it is obvious that the values of the functor 
i(f)u x M are all isomorphic, because anyone is isomorphic to F(U). X 

F (U) • 

ii) Since (C,c) satisfies 2.9, i, a, applying i it follows easily 
that f i(F) is a sheaf (one only needs to check the definition of p 
sheaf). 

iii) Because of ii we have f (F) " f i(F). Therefore, i yields s p 
the desired result. 

Now, it is almost obvious how to prove: 

THEOREM 2.11. (A of type Al). If (C,c) is ctc1, Cat Tx has fibe!:.. 
ed products, M is a cLosed subspace of C, and f: Tx --+ TM is the 
morphism PM' then the funator f o : S (M) --+ SM is an equival.enae of 
categories,which inverse is fO: SM --+ SCM). 

Proof: By adjointness (see 2.5), there are natural transformatDns 
~: eS(~ fOfo and ~: fof°---+ eSM . It is a straightforward rna! 
ter,which we leave to the reader, to check that ~ and ~ are func -
torial isomorphisms. 

COROLLARY 2.12. If F and FI are sheaves nulL outside M, then 

F 1M " F I 1M => F " F I 

THEOREM 2.13. (A of type A 1). If (C, c) is ctc 2, Cat T X has fibe!:.. 
ed products and M is a cLosed subspace of C, then 

F/cM " 0 => F is nuLl. outside M 

for any sheaf F over X. 
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Proof: Let U be an open subspace of C such that U xxM = 6j taking 
in mind that (C,c) is ctc 2 and applying 1.17,iii we see that F(U)~ 
~ F(U xxcM) ~ F/cM(U xxcM) = O. 

COROLLARY 2.14. If (C.c) is ctcS and F and F' are sheaves over X. 

then 
F/M ~F'/M F/cM ~ 0 ~ F'/cM -> F F' 

Now, we can obtain the desired result: 

THEOREM 2.15. (A of type A2). If (C, c) is ctcS , Cat T X has fiber.. 

ed products, X is finaL in Cat Tx and M is a cLosed subspace of C, 
then the foLLobJing statements are true, for any sheaf F over X : 

0) A F FM • • h· 
" il F : --+ 'LS an ep'Lmorp 'Lsm. 

ii) FM is uniqueLy determined by F. 

Proof: i) Recall that fs and gs are exact functors (see the proof 
of 2.3). Let C be the sheaf over X defined by the exactness of the 
sequence 

Then, we have the exact sequence 

or equivalently 

FIM --> FM/cM --> C/cM --> 0 

and so, C/cM = O. 

" o 

In a similar way we obtain the exact sequence 

C/M- 0 

Therefore, since llF/M is an isomorphism, we conclude that C/M O. 

Now, 2.14 yields that C = o. 

ii) If F' is a sheaf over X satisfying F'/M ~ F/M and F'/dl ~ 0 , 

then F' 1M ~ FM 1M and F' I dl 

F' FM. 

o ~ FM/c~1. llence, 2.14 yLelds that 

We end this section with a well known result on "characteristic" 

sheaves. 
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THEOREM. Z.16. (A of type AZ). If (e,c) ia tcl and tc 2, CatTx has 

fibered products, X is finaZ in Cat Tx and M is a cZosed subspace 

of e, then for any sheaf Gover M there exists a sheaf F over X 
such that F/M " G and F/cM ,,0. If (e,c) is ata 3, then F is uniq~ 
1,y d,et13!l'mined by .G .• 

Proof: Since e is tc l , ./M: Sx --+ SM is a representative functor 
(see 1.13) and so, given a sheaf Gover M we can find a sheaf II 

over X such that H/M "G. Then, taking F = ~ , 2.3 enable us to 

conclude that F/M " G and F/cM '" 0 . 

3. RELATIVE COHOMOLOGIES. 

This section is devoted to realize an analysis of the cohomologi­
cal effects of induced sheaves. Of course, the well known results 
exposed in the book of Godement (cf. {2} Ch. II, §4.9, §4.10, Th. 
5.11.1) are obtained here, employing functorial methods. The com­
pact exposition of cohomological theory presented in the Artin's 
seminar ({1} Ch. II) is continuosly used. Sheaves and presheaves 
are considered in this order. 

I) COHOMOLOGY OF SHEAVES. 

Let A be an A3 category and let e be a tc such that Cat Tx has fibe~ 
ed products and X is final in Cat Tx. (Notice that the hypothesis 
on Cat Tx yield the exactness of the restriction functors). 

We begin introducing the "true" cohomology. 

DEFINITION 3.1. If M is a subspace of e, for each integer n ~ 0 we 

'" define the funator' ~: (Cat T x) x Sx --+ A by: 

TIIEOREM 3.2. The foZZowing statements are true: 

i) 

ii) 

U xxM " U' xX~[ 

lln " Hn 
X TX 

'" 

F/M " F' /M => ~(U,F) " II~(U' ,F'). 

iii) 1~1 (U, ) is an exaat aohomoZogiaaZ functor. 

If the functor ./M: Sx --+ SM carries injective sheaves into fZask 

sheaves, then 
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iv) H~(U,) = Rn ~(U, ) • 

If e has a complement operator c such that re, c) is ctc 1 and 
closed subspace of e, then for any sheaf G over M hie have: 

v) Hn(uxxM,G) n( s H U,PM(G)) 

and for any sheaf F over X hie have: 

vi) H~(U,F) = Hn(U,FM) 

If e has a complement operator c such that re, c) is ctcS and 

closed subspace of e, then for any sheaf F over X hie have: 

vii) If F is null outside M, then .~(U,F) = Hn(U,F) . 

viii)There is a cohomological exact sequence of general term 

Proof: i) and ii) are trivial • .-

M is a 

M is a 

iii) Notice that Hr (U xxM, ) is an exact cohomological functor 
M 

and ./M: Sx --+ SM is an exact fUnctor. 

iv) Since Rn HTM (U xxM, ) = H~M(U xxM, ) and fS, where f:Tx--+TM 

is the morphism PM' is an exact functor,which carries injectives 
into HTM (U xxM, ) - acyclics, the proposition follows easily: 

Rn~(U, )=Rn(HTM (UxxM, )ofs) = (Rn.l.rM (Ux xM, ))ofs '" H~M(UxxM, )ofs= 

= H~(U, ) . 

v) We claim that fS is an exact functor; since the diagram 

where jM: SCM) --+ Sx is the inclusion functor, is commutative, it 
is enough to show that fO and jM are exact functors. The exactness 
of fO is clear by reasons of equivalence (see 2.11), and the exac~ 

ness of jM follows from the fact that S'(M) is closed in Sx under 
taking kernels and cokernels, as it is easily deduced from the de­

finitions. 

The spectral theorem of Artin-Leray, applied to the morphism f:Tx-4 

-4 TM ' tell us that 

=> 
p 
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for any sheaf Gover M. Therefore, recalling that 

q > 0 ---0 Rq fS = 0 

(because fS is exact), we obtain 

Hn(U,fs(G)) • Hn(U xxM,G). 

vi) Applying the above result, we have 

~~(U,FJ. 

vii) If (e,c) is ctc3 , then for any sheaf F over X we have 

P null outside M ---0 P • pM 

In fact, from 2.13 follows that pM is null outside M and so, since 
PIN. pM/M , 2.12 yiel~s that p • pM • 

Applying this result and i, we obtain 

Hence, vi yields the desired result. 

viii) By 2.3, ii and 2.15,i the sequence of sheaves over X 

llF M o --+- p cM ----+ p ----+ p ----+ 0 

is exact and so, iii yields the desired result. 

REMARKS 3.3. i) Notice that the relative (read local) character 
of the cohomology just defined appears clearly in 3.2,i, 3.2,ii 
and 3.2,vii. 

ii) Of course, the hypothesis on 3.2,iv can not be removed. Suf­
ficient conditions in the classical case are well known (cf. {2} , 
II §3.3). 

iii) Observe that the statement (notations as in 3.2, vi) 

HnM(U,P) • Hn(U,F M) 
c. c 

is not true, in general. Then, if we introduce the notation: 

under the hypothesis on 3.2,viii, we obtain an exact cohomological 

sequence of general term 
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Now, we focus our attention in the cohomology with presheaves values. 

DEFINITION 3.4. If M is a subspace of C. for each integer n ~ 0 we 

define the functor H:: Sx --+ PM by: 

THEOREM 3.5. The following statements are. true: 

ii) H;" H~x 

* iii) HM is an exact cohomoLogicaL functor. 

If the functor ./M: Sx --+ SM carries injective sheaves into fLask 

sheaves. then 

iv) 

Without assumptions. we have for any sheaf F over X: 

v) H: (F) 0 PM" I~ ( , F) • 

IfC has a compLement operator c such that (C,C) is ctc1 and M is a 

cLosed subspace of C. then for any sheaf F over X we have: 

vi) H:(F)oP M " Hn(FM) • 

If (C,C) is ctc3, we aLso have: 

vii) If F is nuLL outside M. then H:CF)oP M " Hn(F) • 

v·iii)There is an exact cohomoLogicaL sequence of generaL term 

Proof: i), ii), iii) and iv) can be obtained as in 3.2. 

v) Knowing that H~M (G) " H~M (,G), for any sheaf Gover H, the pr~ 

position follows easily: 

H: (F) (U xx~l) l~ (U ,F) • 

vi) Applying v and 3.2,vi, we obtain: 
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vii) The statement in question can be obtained as vi, applying now 
v and 3.2,vii. Also, it can be proved in the following way: since 
(C,c) is ctc 3 , for any sheaf F over X we have 

F null outside M =--9 F ~ FM 

HnCFM) and so, the proposition follows from vi. 

viii) It can be obtained as 3.2,vii. 

II) COHOMOLOGY OF PRESHEAVES. 

Let A be an Al category and let C be an arbitrary tc. First, we 
consider the cohomology of a covering. In order to conserve a spe£ 
tral result and to obtain a new one, we adopte the following 

DEFINITION 3.6. If M is a subspaae of C and Ku is the aategory of 

aoverings of an open subs~aae U of C. for eaah integer n ::. 0 we. 

define the funator II~: Ku x PM - A by 

THEOREM 3.7. The following statements are true: 

i) (U.---+- U). ~(U~-U). => HnC(U._U). I' )~j-!n(CU!_U). J' 
1 1 e: I .1- J e: J -~ 1 1 e: "M J J e: 

Hn ~ Hn 
X Tx 
* 

ii) 

iii) ~((UrU)ie:I' ) is an exaat aohomologiaalfunator. 

If A is an AS aategory. then we have: 

iv) H~((Ui-+ U)ie:I' ) ~ RnH~((Ui- U)ie:I' ) . 

v) H~((Ui- U)ie:I,H~(F)) => H~(U,F). 
P 

If A is an Al aategory. C has a aomplement operator c Buah that (C.c) 
ata 1• Cat Tx has fibered produats and M is a alosed subspaae of C • 
then for any sheaf F over X we have: 

vi) 

If A is an AS aategory and X is finaZ in Cat Tx' we also have: 

vii) If F is null outside M. then 

IIMPCCU.- U). I,P M (Hq(F))) 
1 1e: P 

Proof. i) and ii) are trivial. 
* 

=> 
p 

iii) Notice that HTM ((UiXxM -.. U xxM)ie:I' ) is an exact cohomolo-
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gical functor. 

iv) Since A is an A3 category, H~M «Ui xxM ----+ U "xM) hI' ) 

,. RnIlTM «Ui "xM -+ U "XM)i£l' ). 

v) Since A is an A3 category, the cohomologies of sheaves are de 
fined and we have 

HtM«UixXM -+ U"XM)i&I ' H1 (F/M» -==> 
M p 

H~ (U"xM, F 1M) 
M 

vi) It follows easily fT'01ll 1.1'O,iii, by 

complex which gives the cohomology. 
a direct analysis of the 

vii) Observe that SCM) has injectives, because it is equivalent to 
the category of sheaves over M (see 2.11) (since A is an A3 categ~ 

S ry, M has injectives). 
injectives into flasks, 

the morphism PM' and fS 

Also, observe that the functor jM carries 
because fS = jMofO, where f: Tx ---+ TM is 
has this property. 

Now, consider the (two) functors given by the commutative diagram 

sr --+ PM ~ «U .-+U). I' 1 1& ~ A 

jM 

1 
f p 

Sx ~ Px 1 

Let us evaluate its derived functors. By iv, we have 

RPHo «U .--+U). I' ),. HP «U .-+U). T , -"M 1 1& -"M 1 1& ,. 

Recalling that f 
P 

and that jM is an 
clics, we obtain 

is an exact functor, by the hypothesis on Cat Tx ' 
exact functor ,which carries injectives into i-ac~ 

Rq(fpijM)" fpoRq(UM),. fpo(Rqi)ojM = fpoHqojM 

Both results elucidate the first member of the spectral convergence 
in question. Concerning to the second member, 2.10,i implies 

o (f ijM) ,. W «U.-+ U). I ' P 1 1& 
Therefore, recalling that 11° «U i ->: U)iEI' ) ° i ,. ru ' we obtain 

W«U.-+ U). I "M 1 1& 
and so, since jM is an exact functor which carries injectives into 

ru-acyclics, we have 

Rn(~«Ui-+ U)iEI ) ° (fpijM») RnCrujM) (RnrM) ° jM 

= Hn (U, ) ° jM 



87 

We introduce the limit cohomology of presheaves by a more general 
procedure than the one used by Artin in'{l}. Of course, both d~ 

finitions agree in the case that the category of values is A3. 

Let A be an Al category and let T be an arbitrary topology. If U 
i,s an object of Cat T and K is a subcategory of Ku' for each integer 
n > 0 we define the funct~r HrCK, ): PCT,A) --+ A by: 

HrC ,P) = m HrC ,P) 0 k*, P E ObP 

where k: K --+ Ku is the inclusion functor Cnotice that Hr( ,P) 
K; --+ A). 

It i's straightforward, to check the following propositions: 

i) If A is an A2 category and K is filtrant, then H;CK, ) is an 
exact cohomological functor. 

ii) If A is an A3 category and K is filtrant, then IJrCK, )=RnHiCK, ). 
CConcerning to i, the usual statement about the exactness of the Ii 
mit is required; and for ii, the ptoposition i tell us that it is 
enough to show that HrCK, ) vanishes on injectives, if n > 0). 

Notice that all the other results of {l}, concerning to ~imit coh9m~ 
logy, are prese'rved by o'ur definition. 

v 
The Cech cohomology of presheaves is introduced fO'llowing {l}. 

Now, we focus our attention in the relative limit cohomology. 

DEFINITION 3.8. If M is a subspaae of C and K is a subaategory of Ku 
for eaah integer n ~ 0 we define the funator I~CK, ): ~M ---+ A by 

CNotice that K"xM is a subcategory of Ku"xM , which is a subcategory 

of Ku" M). 
X 

THEOREM 3.9. The fot.zowing statements are true: 

i) K"xM = K' "xilf => I~CK, ) .. ~~CK', ). 

ii) H~CK,) = HrxCK, ). 

If k: K --+ Ku is the inaZusion funator, then for any presheaf P roer 

1-1 we have 

iii) ~~CK,P) IE!~ Ir:C ,P) 0 k* 

If K* is fiZtrant, then: 

iv) I~CK,) 0 i M .. r u" M 
X 
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If A is an A2 category and K* is filtrant. then: 

* v) HM(K,) is an ezact cohomotogical functor. 

If A is an AS category and K* is fHtrant. then: 

vi) ~(K, "Rn~(K,). 

vii) ~(K,H~(F))=-p->H:(U,F) 

If A is an Al category. K* is fHtra'nt. C has a comptement operator 

c such that (C,c) is ctc 1• Cat Tx has fibered products and M is a 

closed subspace of C. then for any sheaf F over X ~e have: 

viii)If F is null outside M. then H:(K,F/M) " Hn(K,F). 

If A is an AS category and X is final in Cat Tx' then ~e also have: 

i;x;) If F is null outside M. then 1~(K,PMHq(F)) ~> Hn(U,F). 
p p 

Proof: i) and ii) are trivial. 

iii) If ~: KXxM --+ KuxXM is the inclusion functor, by definition 

we have for any pre sheaf P over M 

H~M(KXXM.P) " ~ H~M( ,P) 0 k~ 

and it is clear that 

iv) Notice that 

K* fil trant ~=> KXxM* fil trant 

and so, we have 

liT (KxxH, ) 0 iM " r Ux M 
M X 

* v) Since KXxM* is filtrant, then HTM (KxxM, 

cal functor. 

vi) Recalling that K* is filtrant, we have 

H~ (KxxH, )" RnBT (KxxM, 
M M 

is an exact cohomologi 

vii) By the same reasons, we have the spectral convergence 

HP (Kx 01, Hi (F/~I)) ~~> B~ (Ux x"I,F/M). 
TM X M P M 

viii) Applie 3.7, vi and pass to the limit over K;, using the pro­

position iii. 

ix) It can be obtained as 3.7,vii. 

v 

We end this section introducing the relative Cech cohomology of pr! 
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sheaves. The definition is not the expected one, because the nat~ 
ral definition do not preserves the relative character (see 3.11,i). 
However, in the special case 3.11,xi both procedures agree. 

DEFINITION 3.10. If M is a subspace of C and U is open, fol' each 

integel' n ~ 0 we define the functol' ~(U, ): PM --+ A by: 

THEOREM 3.11. The following statements al'e tl'ue: 

i) 

ii) 

iii) 

iv) HM(U,) 0 iM ~ rUxxM 

If A is an A2 categol'y, then: 
v* 

v) ~(U,) is an exact cohomological functol'. 

If A is an AS categol'y, then: 

vi) 

vii) 

viii) 

i\~(u, ) ~ Rn~(U. 

~(U,H~(F)) => ~(U,F) 
. p v 

~(U,F/~I) ~ ~(U,F) II~(U,F/M) ~ I~(U,F) 
If A is an Al categol'Y, C has a complement opel'atol' c such that 

(C,C) is ctc 1, Cat Tx has fibel'ed pl'oducts and M is a closed sub­

space of C,then fol' any sheaf F ovel' X we have: 

ix) If F is null outside M, then ~:(U,F/M) ~ ~n(U,F) 

If A is an A2 categol'Y and X is final in Cat Tx' then we also have: 

x) If F is null outside M, then i~(U'PMp(Hq(F))) => Hn(U,F). 
p 

If A is an Al categol'Y and j,1 is a subspace of C such that any covel' 

ing of UxxM is induced by PM fl'om a covel'ing of U, then we have: 

xi) I\; (U, ) n ) . ~ HH(Ku ' 

Pl'oof: i), ii), iii), iv), v), vi) and vii) can be obtained as the 

homdlogous propositions of 3.9. 

viii) It follows immediately from 

j'I}H(lJXxr.I,F/~I) ~ II}H(Ux xM,F/II) , il}M(LJxxM,F/~I) c;;;: II}M(Uxx~I,Fr.l). 

It should be pointed out that viii could be obtained from vii just 

as in the absolute cohomology case. 
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ix) and x) can be obtained as 3.9, viii and 3.9,ix, resp. 

xi)" The hypothesis on M tell us that KuxxM "Kux M' Hence, we have 
x 

or equivalently 
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