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1) INTRODUCTION: During a recent investigation of existence and
equality almos everywhere of the cross partial derivatives fx and
fyx, a somewhat different derivative Df for a function f(x,y) was
used {4} . This derivative Df is also defined for a function f of
n-variables. The purpose of this paper is to establish a mean val
ue theorem and a Darboux property for the function Df, and to gen-
eralize these results to the derivative T'* as defined on pp. 268-
271 of {8}. A similar result was obtained by L. Misik in {7}, but
the technique is much more cumbersome. The method of proof is the
same as that given in {5}. In the case n=2 the technique of proof
is used to establish a theorem concerning the equality of the three
derivatives. For simplicity the proofs and definitions will be given
for n=2,

I1) THE DERIVATIVE Df: Let R = [a,bjc,d] = {(x,y) |xe[a,b],ye[c,d]}.
If £f(x,y) is a function whose domain contains R, then the f-area of
R is denoted by F(R) = f(b,d) - £(a,d) - f(b,c) + f(a,c). The or-
dinary area of R will be denoted by A(R). A rectangle R [a,b;c;ﬂ
is said to be of order M, if M > 1 and 1/M < (d-c)/(b-a) < M. One
then defines the upper and lower derivatives of order M at a point
(x,y) to be 1iIm and lim respectively of ratios of f-areas to ordi-
nary areas of rectangles or order M which contain (x,y) and whose
areas converge to zero. Then f is said to have a derivative of or-
der M, DMf(x,y) = DMf(P), at P = (x,y) if the upper and lower deri-
vatives of order M are equal. The function f is said to be two non-
decreasing if the f-area of each sub-rectangle of R is non-negative.
It follows {2}, that if f is of bounded variation in the sense of
Hardy, then except for a set of measure zero, DNf = DMf for each

N >M > 1. The common value is denoted by Df. It also follows {4},
that fxy and fyx each exist except possibly on a set of measure zero

111) THE MEAN VALUE THEOREM:

THEOREM 1: If DMf exists at each point P of a closed rectangle R of
order M and f is continuous at each point of R, then there exists a
point Q € R such that D £(Q) = F(R)/A(R).
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Proof: Suppose R1 =R = [a,b;c,d] and divide R1 into four rectan
a+h/2 , y = b+k/2 where h = b-a and k =d-c.
Denote the rectangles, beginning in the lower left hand corner and
proceeding counterclockwise, by Rll’ R12’ R13, Rla’ and observe that
each of the four rectangles is similar to Rl. It follows that

gles using the lines x

4 - 4 -
Zi=1F(Rli) F(Rl) and zinlA(Rli) = A(Rl)
and hence there must exist a j and a k such that

F(le) > (1/4)F(R) and F(R (1/4)F(R1).

1) <

We now proceed 'to find a rectangle R2 of order M with sides paral-
lel to the sides of R1 such that R2 c R1 , F(RZ) = (1/4)F(R1), and

A(Rz) = (1/4)A(R1). 1f F(Rli) = (1/4)F(R1) for some i, then choose

R2 = Rli' Suppose equality does not hold for any i and consider the"
case j=3 and k=1. The other cases would follow in a similar manner.

Let o = h/k and define the auxiliary function
g(t)=f(a+t+h/2,b+at+k/2)-f(a+t,b+ut+k/2)-f(a+t+h/2,b+at)+f(a+t,b+at).

Then g(0) = F(Rll) , g(h/2) = F(R13) , and g is a continuous functim
of t for 0 < t < h/2. The ordinary intermediate value theorem for a
function of one variable guarantees the existence of a toe(O,h/Z)
such that g(to) = (1/4)F(R1). This value t, defines R2 and we note
" that F(Rz)/A(Rz) = F(Rl)/A(Rl). In the sequel we shall refer to the
above selection process for determining R2 as the sliding technique.
We proceed inductively to define a nested sequence of closed rectan
gles {Ri} , each of order M with sides parallel to Rl’ such that

DOFRyp -

ii) A(Ri+1)

By the nested interval theorem there exists exactly one point Qe(\Ri,

(1/4)F(Ri) and
(1/8)A(R,).

and DMf(Q) = }iﬂ F(Ri)/A(Ri) = F(Rl)/A(Rl)'

We shall say that the set function F has property I provided the aux
iliary function g(t) has the intermediate value property along the
lines x = constant, y = constant, and y = tax. We have the somewhat
stronger result.

THEOREM 2. If DMf exists at each point P of a closed rectangle R of
order M and the set funetion F has property I, thenm there exists a

point Q ¢ R such that DMf(Q) = F(R)/A(R).

The following example shows that theorem 2 is a stronger result.
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EXAMPLE 1: Let f(x,y) be defined as follows on the unit square:
f(x,y) = 1 if y is rational and
f(x,y) = 0 if y is irrational

Then DMf exists and is zero at each point of the unit square and the
set function F has property I.

We now proceed to remove the condition that DMf exist along the bound
ary of R.

THEOREM 3. If R ig a rectangle of order M,VDMf existe at each point
P ¢ int(R), and F has property 1, then there exists a point Qeint(R)
such that.DMf(Q) = F(R)/A(R).

Proof: We will use the same notation as in theorem 1 and modify the
selection process to obtain, for some k,an R < int(R). We consider
the following two cases:

1) If R, # Rli for any i, then RZ has at most ome edge contained
in bdry(R). '

2) If R, =Ry, for some i, say i=1, then the following argument
allows us to choose R3' with at most one edge contained in bdry().

Divide R2 into R21, R22, R23, Rza, and if F(R21) = F(Rzz) = F(R23) =

= F(RZA) = (1/4)F(R2), choose R, = R,q c int(R). 1If F(RZI) # (1/4)F@2)

for some i, then the sliding technique gives an R, with at most one
edge contained in bdry(R). For case (1), suppose the bottom edge of
_ R2 is contained in bdry(Rl) and divide R2 as before: If F(RZi) =

= (1/4)F(R2) for i=3, choose Ry = R,, and if F(R23) # (1/4)F(R2),then

the sliding technique will again give an R, C int(R).
IV) A DARBOUX PROPERTY:

THEOREM 4: Let 0 be a connected open set in E2. Suppose DMf exists
at each point of O and that F has property 1. Let P, Q e (O and sup-
pose DMf(P) = a, DMf(Q) =8, a < B, and » ¢ (a,B). If PQ is an arec
which is contained in 0 with endpoints P and Q, then for each e > 0
there exists a point S € 0 such that the distance d(s,PQ) from S to
PQ is less than ¢ and DMf(S) = ). K

Proof: Construct a polygonal arc ﬁb from P to Q consisting of hori-
zontal and vertical straight line segments such that each point of
PQ is within min(£/2,e/2) of PQ, where £ = d(PQ,bdry 0). Let u =
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= min [e/Z,(A-a)/Z R (B—x)/Z]. There exist rectangles R1 and R2 of
order M centered at P and Q respectively with edges parallel to the
coordinate axes and having the same base and height, such that

|E(R1)/A(Rl)-u| <u, |F(R2)/A(R2)-B| < u, and diam(R;) = diam(R,) <
< min(e/2,£/2).

Since F has property I the sliding technique allows us to obtain a
rectangle R or order M, with sides parallel to the coordinate axes,
centered at a point of ﬁQ such that diam(R) = diam(Rl) and F(R)/A(RF
= A. Theorem 1 implies the existence of a point S ¢ R such that
DMf(S) = 1 and d(S,PQ) < €.

REMARK. Let u be Lebesgue measure on E" and let T be any absolutely
continuous measure with respect to u. Further suppose that the de-
rivative T' *(x), as defined in {8}, exists at every point in an in
terval R < E®. The above technique may be used to establish a mean
value theorem and a Darboux property for this derivative. These re
sults also hold if T is an additive set function defined onat least
the closed intervals in E" and has the intermediate value property
along straight lines in the appropriate directions, u is a transla-
tional invariant measure which is finite on regular rectangles, and
T' *(x) exists at every point in Int (R). A further generalization
is given in Section VI of this paper.

V) A THEOREM ON THE EQUALITY OF THE DERIVATIVES fxy” fyx’ and Df.
It is well known that if fxy(x,y) exists at each point of an open
set 0 and R is a closed rectangle with R ¢ 0, then there exists a
point P ¢ int (R) such that fxy(P) = F(R)/A(R). Example 1 shows
that there are functions for which fxy(x,y) and Df exist on a rec-
tangle and fyx fails to exist at any point. Also, the example can
be modified by defining f(x,y) = 2 whenever x and y are rational ,
f(x,y) = 1 if exactly one of x or y is rational, and zero otherwise
to give a function such that Df exists on a rectangle while both
fxy and fyx fail to exist at any point.

THEOREM 5. If fxy and DMf exist on an open set 0 and (a) the function
fxy is continuous or (b) the related set function F has the interme-
diate value property along straight lines in the appropriate direc-

tions and DMf 18 continuous, then fxy(P) = DMf(P) for each P e 0.

Proof: Suppose fxy is continuous. Let {Ri} be a sequence of nested
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rectangles of order M contained in 0 and closing down on P. Then

DMf(P) = lim F(Ri)/A(Ri). For each i there exists a point Pi € Ri
i+

such that fxy(Pi) = F(Ri)/A(Ri) and the continuity of fxy gives the

desired result.

Suppose that DMf is continuous and that the set function F has the

intermediate value property and hence theorem 2 applies. Let P =

(xo,yo) e 0. If ¢ > 0 then there exists t, such that 0 < t, < e and

l[fx(xo,y°+t1)-fx(xo,yo-tl)]/2t1-fxy(xo,y°)| < €/3. There exists
t, > 0 such that t, = nt, for some integer n and so that

[[f(x°+t2,y°+t1)-f(xo-tz.yo'ftl]/ [2t2] -f, (xo,y°+t1)]/[2t1] <e/3 and
A

[[f(x°+t2,yo-tl)-f(xo-tz,yo-tl]/[21:2]-fx(xo,y‘o-tl)]/[Ztl] <e/3. We
can now divide rectangle R = fxo-tz,x°+t2;y°-t1,y°+t1] into n sqares

and conclude from the sliding technique that there exists a square
R' such that R' ¢ R and F(R)/A(R) = F(R')/A(R'). Hence there is a
point P' ¢ R' ¢ R such that D,f(P') = F(R)/A(R) and hence ]DMf(P')-

- fxy(Po)l < e and d(P',P) < e. Continuity implies the desired re
sult.,

VI) A FURTHER GENERALIZATION:

We shall say that the additive set function F has property C provided
the auxiliary function g(t) as defined in theorem 1 is continuous a-
long the lines x=constant, y=constant, and y = tax. Note that pro-
perty C implies property I.

THEOREM 6. Suppose that S and T are additive set funections defined
on rectangles, u is a translational invariant measure, and S' *(p)
and T' *(p) exist at each point p € Int (R) and T' *(p) # 0 for any
P. Then there exists a point q e Int (Ro) 8o that

S(R,) 8" *(q)

T(R,) T' *(a)

Proof: Let U(R) = S(RO)T(R)-T(RO)S(R). Then U(Ro) = 0 and U has
property I. Hence there exists a point q ¢ Int (Ro) so that U' *(q)=
=0 = S(RO)T' *(q)—T(Ro)S'*(q). This holds without the condition that
T' *(p) # 0 for p ¢ R . The result now follows.

The method of proof in the preceding theorem allows one to remove the
condition of translational invariant u. Suppose- S and T are additive
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set functions defined on rectangles and having property C. Define
ds(p)/dT to be the limit of the ratio of the S area to the T area
of regular rectangles as the diameters of the rectangles tend to
zero.

THEOREM 7. If dS/dT exzists at each point p in Int (Ro), T(R) # 0
for R Ro, and S and T have property C, then there i8 a point
q ¢ Int (Ro)so that dS(q)/dT = S(Ro)/T(Ro).

Proof: Define U as in theorem 6. Then use the procedures of the-
orems 1 and 3 to, define a nested sequence {Ri} of rectangles closing
down on q ¢ Int R and such that U(Ri) = 0. Then S(Ro)/T(Ro) =

= S(Ri)/T(Ri) and the result follows.
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