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1. INTRODUCTION. 

By S = (0,A,B,C,P l ,P 2 ) we shall denote a system consisting of two 
a-algebras B, C of subsets of n, the generated a-alg~bra A=T(B~C), 
and probabilit.ies PI' P2 defined on B,C respectively, which are 
compatible in the sense that PI = P2 = P on the intersection a-al
gebra V = B " C. 

A probability Q on A such that its restrictions to B, C a~e Pl ,P 2 , 

respectively, is said to be comarginal with PI' P2 , or briefly co
marginal. 

A probability Q on A, not neccesarily comarginal, is called commu

tative if on A-measurable Q-integrable functions: 

(1 ) [QJ 
G where EQ denotes the conditional expectation operator with respect 

to the a-algebra G c A and to the measure Q. 

The main problem we consider here is to search under'what condttions 
a system S admits a comarginal and commutati~e measure Q. For such 
a measure we can assert its uniqueness. Owing to this fact and to 
the following example we shall call Q the ~enerali2ed) product mea-

8ure on S. 

Given the probability spaces (Ol,B' ,Pi) , (n 2 ,C' ,P~) the system S 
formed by 0= 01 x °2 , B = III l(B'), C = lli 2 (C'), A = T(B,C) , 
Pi = Pi Il i ' (Il i = projection on oil, i=1,2, admits the comarginal 
and commutative measure Q = Pi x Pi. The relation of commutation 
(1) is here Fubini's theorem. 

In this example V = {"O} ;' the opposite extreme case, when V = B 
(or V C), gives us also an example very trivial for a product mea 

sure: Q = P2 (or Q = PI)' 

Intermedia,te cases can be given as follows: 

Let n = ° x ° x nand probabilTties dx, dy, dz be given on a-al-x y z 
gebras Bx' By' Bz of ox' 0y' o;-respectively. We define B = {"Ox} 8 
8 B 8 B , C = B 8 {"O } 8 B and the probabilities dP l = dy dz , 

y z x y z 
dP 2 = dx dz. Here V is isomorphic to Bz and the system (o,A,B,C,Pl~) 
has the product measure dQ = dx dy dz. 

The preceding situation always appears in a. Markov process. Assume 
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{X i }i_l,2" is a Markov chain and B T(X l , ... xn) , e= T(Xn,Xn+ l ,,) 

and V = T(Xn). The product ~easure Q turns out to be the probability 
associated with the process. and the rela:tion of commutation (1) can be 
rewritten as expressing the conditional independence of past (B) 

and future (e), given the present (0). (cf. {1},§14,or {4}, part A, 

ch. II). 

For fU't'ther ·examples we refer to {1} , § 3. 

2. COMARGINAL MEASURES AND BILINEAR FORMS. 

We shall say that T: B x e --+ [O,+~) is a (positive) bilinear form 
on the system S .. Co,A,B,e~Pl,p2) if T(B,C) is additive in each va
riable separately; and T will be said to be aompatible (with Pl ,P2) 
if T{B,Il)" Pl(B) ,T(Il,C) .. P2 CC) , for any B € B, C € e. 

To each finitely additive measure Q on the algebra Ao .. B v e coma£ 
ginal with Pl ' P2 we associate the compatible bilinear form T(B,C)= 
• Q(BC), which verifies: TCB,C) = 0 if BC = ¢. Conversely: 

THEOREM 1. Every aompa*ible bilinear form T on e suah that T(B,C)=O 
~henever BC = ¢. defines on Ao a unique finitely additive aomarginal 
probability given by Q(B.C) = T(B,C). 

Proof: We define Q(BC) = T(B,C). If BC = B'C', then BC=(BB')(CC')
= BlC l . To prove that T(B,C) .. T(B',C') it is enough to prove that 
TCB,C) = T(Bl,Cl ). It follows from T(B,C) = TeBl,C) + T(~-Bl'C) = 
= TCBl,C), since (B-Bl)C .. ¢, and from T(Bl,C) .. T(Bl,C l ). Hence Q 
is well defined on sets of the form BC , B £ B. C £ e. 

Let BC .. LaBaCa' where a runs on a finite family of indices. Tffor 
der to prove that Q can be (uniquely) extended to ~o as a finitely 
additive measure it is enough to prove that Q(BC) .. LaQ(BaCa)' 

Let {Bi } be the partition of B defined by the B~s and {Cj } that de
fined by the C~s on C. We can assume from the beginning that Ba c B. 

Ca c C. Since Ba = L~Ba.m • Ca .. LnCa •n , denoting by Ba •n (Ca.n)the 
sets of the mentioned partition of B (C) included in Ba (Ca ). we have: 

Li.jBiCj = BC .. LaBaCa .. La(LmBa,m)(LnCa,n) = La(Lm.nBa,mCa.n) 

This means that in the first and last sums appear the same non-void 
terms. Therefore, from the bilinearity of T we get 
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Q.E.D. 

REMARKS. 1) It is not true, in general, that Q is a-additive. In 
fact, let n be the triangle on the plane defined by x > 0 , y > 0, 
x + y < 1. S (C)· the Borel sets of n depending only of x(y). For 
B £.S (C £ C) we define PI(B) - m(B'), (P2(C) .. m(C')), .where B'(C, 
denotes the proj ection of B (C) on the x (y) axis and m the Lebes
gue measure on (0,1). 

The bilinear form T(B,C)=!: lB,(t) lc ,(l-t)dt is co~patible with PI' 

P2 but, as it is easy to see, n can be put as a countable sum of 
rectangles B.C for which T(B,C) = O. 

2) Let us observe that if T is bilinear and comarginal then T is 
also a-bilinear; i.e. a-additive in each variable. In fact, 

T(r4_0Bj ,C) = T(r~_IBj'C) + T(r:+IBj,C), then 

IT(rj.IBj,C) - r~.IT(Bj,C)1 ~ r:+IT(Bj,n) - r:+IPI(Bj) --+0 if n--+-. 

Then the proof of the .theorem.remains true if we assume that a runs 
on a countable family of indic·~s such that the Ba' s and the C~ s d!, 
fine, respectively, countable partitions of the spaces n. 

For example, we can assert the a-additivity of Q if A is defined by 
a countable partition of n. 

3) In theorem 1 we can assume T(Bo ,Co) = 0 if BoCo = 91 for Bo£ So 
C S, Co £ Co c: C , where So'Co are collections of sets with the ap

pro~'mat'on property: PI(B) = sup PI(Bo) , P2 (C) = sup P2(C) ,for 
B sec B.cB C.cC 0 

£ , £ • B.aS. C.EC. 

In fact, if Bo c B , Co c C, and B.C = 91 T(B,C) = TtB-Bo+Bo,C-Co+CJ= 

= T(B-Bo'C) + T(Bo'C-Co) + T(Bo'Co) ~ PI (B-Bo) + P2 (C-Co). The last 

member can be done arbitrarily small, hence T(B,C) = O. 

4) The a-additivity of·Q follows under the following hypothesis 

1) KS c S, KC c Care sem'-~ompact classes (i.e. every countable 
family of KS (KC) with an empty intersection has a finite subfa-· 
mily which also intersects in the empty set) verifying the approxi 
mation property (as defined above). 

2) KS.KC = {K.L ; K £ Ks , L £ KC} is a semicompact class of sets. 

In fact, the classL of finite unions of sets of KB.KC enjoys the pro 
perty of approximation in S v C , since , as it was shown above , 
for K c B L c C we have Q(BC - KL) ~ PI(B - K)· + P2 (C - L) 
then Q(BC - KL) can be done arbitrarily small. L being compact 
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and with the approximation property the a-additivity of Q follows 
from a theorem of Alexandrov (cf {4}, pp. 47). 

3. V-COMMUTATIVE SYSTEMS. 

For any probability space (o,A,P) we define the measurable hull of 
X c: 0 as a set A I: A containing X except by a set of P-outer measure 
zero and with minimal P-measure. Of course, the measurable hull is 
defined except on a null set of A, and it provides a well <ie-fined ~ 
lement of the Boolean measure a~gebra: A/[P]. If B c A is a a-sub
algebra of A the measurable hull of X I: A with respect to B coinci
des with {E: 1x > O} , [pJ • 

For a system S = (o,A,B,C,P I ,P2) we shall designate vlX , v2 X , vX 

the measurable hulls of X cO with respect to B,C,V and to the mea
sures PI' P2 ' P respectively. 

If Q is a comarginal measure on Sand E, F , G denote 

respectively, we can see that the condition EF FE = 

B C V 
EQ ' EQ • EQ 

G[Q] (on boun 

ded A- measurable functions) is equivalent to Ef = Gf [pd (on C-m~ 
surable functions) and also to Ff = Gf [P2] (on B-measurable functions) 
(cf {1} ,§ 1). 

For a comarginal measure Q on S, the condition EF = FE = G implies 

vl v2X = v2vl X vX [Q] for X E A. This condition is equivalent to 

V2B VB [P2) for any B E B, and also to vIC = vc [pd, for any 
C I: C. (cf. {1} , is). 

We note that any of these last conditions can be introduced even if 
we do not assume that a comarginal measure Q is known. Then we adopt 
the following definition: 

We shall say that the system S V-oommutes if ~2B 

From the above considerations it follows: 

vB [P2) , Y B E B. 

In opdep that thepe exists a oomapginaZ and oommutati~e measupe on 

S = (O,A,B,C,PI,P2 J it is neoessapy that S be a V-oommutative system. 

An independent proof will be given in next theorem 2. 

A V-commutative system is said to be simpZe if VI[pJ is the Boolean 
algebra {O, 1} • 
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4. THE FINITELY ADDITIVE MEASURE ASSOCIATED TO A v-COMMUTATIVE' 

SYSTEM. 

Given the system S = (n,A,B,C,P 1,P 2) we observe that the conditional 
expectation operator G can be calculated on B (C)-measurable functions, 
with respect to PI (P2) even if there is no comarginal measure. Hence 
we can define the compatible bilinear form: 

(2) T(B,C) = I G1 B·G1 e dP 

THEOREM 2. In order that Q(BC) = T(B,C)defines a finiteZy additive c£. 

mapginaZ measure on S it is neccesary and sufficient that S be a v-co~ 

mutative system. 

In this case. if Q is a probabiLity on A (i.e. if Q is a-additive). Q 
is the unique commutative comarginaZ measure on S. (uniqueness of the 

product measure). 

Proof: By theorem 1, to prove that v-commutativity implies that Q is 
a finitely additive measure, we have to show that B.C = ~ implies 
T(B,C) = O. From B.C = ~ we get v2B.C = vB.C = p[P 2]; i.e. {G1 B>0}.C= 
= p[P2]· Then T(B,C) = Ie G1 B·dP2 = O. Conversely, if Q is a finit~ 
ly additive and comarginal measure, S v-commutes. In fact, v2 B 
c.vB[P2] and on the other hand from Pi(S - v2B) = 0 we have B - v2B 
eC' E C with P2 (C') = O. Hence Q(B - v2B) s Q(C') = P2(C') = O. Then, 

Q(B - v2 B) = I G1 .dP o. 
CV2B B 2 

T.his means {G1 B > 0}.Cv 2B /J [P21 which implies vB c v2B[P21. 

If Q, as defined above, is a measure, and E, F the conditional expec
tations with respect to B,C 

(3) Q(B.C) = IG1 B.G1 e dP = IeG1B dQ = IeF1B dQ 

Then G1B F1 B , V B E B. This implies the commutation of Q. Another 
comarginal commutative measure Q' must verify (3), but since 

J G 1 dQ' = I F1 dQ' = Q' (B.C) = Q(B.C) , 
e B e B 

Q and Q' coincide on B v C, and therefore on A. QED. 

REMARK: The condition v2 B = vB [p21 , B E B, defining a v-commutative 
system implies the symmetric one VIC = vC [PI]' C E C. 

In fact, the first one implies that JG1 .G1 dP defines a finitely a~ 
B e 

ditive measure, and from this we derive VIC = vc [PI] as it was done 
with V2 B = vB [p2J in the proof of theorem 2. Now, we obtain easily 
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THEOREM 3. i), If the V-commutative system S is simple (i.e. V/[p].= 
.. {O,ll) then Q(B.C) "l' P1 (B).P2 (C). In particular for a system S 

obtained from a cartesian product (as described in the introduction), 

Q = Pi )( Pi 
ii) If, conversely, Q(B.C) = P1 (B).P2 (C) defines a finitely additive 
measure on B v C, S is a simple V-commutative system. 

Proof: i)' It follows from theorem 2. and the fact that Gl B = PI (B) .10, 

Ole = P2 (C).1 0 • 
, 2 

ii) If D E V we have Q(D) = P(D) = Q(D.D) = peD) ,then P(D) .. 0 or 
1. G1 B , G1e are computed like in i), then f G1 B.Gl e = P1(B).P 2(C). 
From theorem 2) it follows ~hat S is a V-commutative system. 

We shall say that a system S is complete with respect to a comarginal 
probability P defined on A if every P-null set of A belongs to V. 

THEOREM 4. If the system S is complete 1JJith l'espect to a comal'gina1. 
probabHityP and R is a commutative probability on S equivalent to P 

then the product measure Q e:x:ists and it is eq.u'ivalent to P. 

Proof: Assume f = ~ By hypothesis FR = GR on B-measurable func-

tions and ER = GR on C -measurable functions. We have (c. f, { 1 } § 2) : 

ER (h) .. E(f.h) / E(f) 

F~(g) = F(f.g)/ F(f) GR (m) = G (f .m) / G (f) 

where E, F, G denote here the conditional expectation operators with 
respect to the measure P and B, C, V respectively. ' 

In {1} , tho ~ , §10 , it is proved that the probability measures e
quivalent to R th~t also commute are characterized as those whose Ra
don-Nikodyin deriva'~ives with re~pect to R are of the form: g.h, where 
g (h) is a B(C)-measurable function (both positive and finite [RJ ). 

Let Us consider the functions: 

+ VGI 
g =-U- h =:..w 

Then, g.E(h.f) = Gf.E(f/F'f) IEf = Gf.ER(l/Ff) = Gf.GR(l/Ff) =1](f/Ff)

.. GFct/Ff) = 1. Analogously h.F(g.f) .. 1. From JBghf dP"JBgE(hf) dP= 
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= fBl dP = PCB) and f cghf dP • P(C) 

we see that the probability Q defined by 

Q(A) • fAgh.f dP • fAg h dR 

is comarginal with P and since ~ • g.h , it commutes and obviously 
Q ~ R • QED. 

REMARK: If the system S is complete with respect to P any other c£ 
marginal measure R is absolutely continuous with respect to P, since 
peA) = 0 implies A £ V and then R(A) • peA) = O. Then, if a product 
measure Q exists on S, we have Q« P. In spite of the fact that for 
B £ B, C £ C, Q(B.C) a 0 implies P(B.C) = 0 (since fG1BG1cdP = 0 
implies P2 (VB.C) = 0 and then P(B.C) • 0) we have not Q~P, in gene
ral. Let us see the following example: 

Let n be the product of X and Y, X = Y = (0,1), A = the Borel sets 
of X x Y, B (C) the Borel sets independent of y (x), P the probabi
lity on A equal to ~ (m the Lebesgue measure on (0,1» plus a'mea
sure of total mass 1/2 concentrated on the diagonal and uniformely 
distributed there. 

The product measure Q = m x m is not equivalent to P. 

If D £ V defines an atom of the a-algebra VI[p] it can be seen that 

SD = (D,A ~ D,B A D,C I' D,P1/P1 (D),P2/P2 (D» is a simpl~ v-commuta-

tive system, whenever S is a v-commutative system. Moreover, if Q 
is the (product) finitely additive measure on S defined above 
Q(B.C.D) 

Q(D) is the product measure on SD as it is easily seen. Since 

SD is simple' Q(B.C.D) = P~~B.D) P~fC.D) and then . Q(D) D)' D) , 

(4) Q(B.C.D) = P1(B.D).P2 (C.D)/P(D) 

THEOREM 5. If in a V-oommutative system S. A is defined by a ooun
tabZe partition of n. there e~ists the produot measure Q. If {D i } 

is the partition definin~ V. then Q is defined by: 

(5) 

Proof: The a-additivity of Q follows from the second remark in §Z. 
We have Q(B.C) = liQ(B.C.Di ), and applying (4) we obtain the equal
ity (5). 
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5. THE 800LEAN MEASURE STRUCTURE OF A V-COMMUTATIVE SYSTEM 

From a given probability space (O,A,P) and a a-subalgebra B of A , 
we get the (measure) Boolean algebra A = A/(P) quotient of A mod. 
P-null sets and the subalgebra B " B/[P]. To the Qperation of take 
ing the B-measurable hull in A corresponds in A a so called monadic 
opBPatop (c.f. {2} ). 

Let A be a Boolean algebra with a subalgebra B such that for each 
a E A there exists an element b E B which is the least element of 
B verifying b ~ a ; we set b = Va, and we call V the monadic opera
tor in A related to B. 

A monadic operator verifies the following properties: VO • 0 , 
v(avb) • Va v Vb , VVa = Va , v(a"vb) = Va" Vb. 

The algebraic system (A,B,V) is called a monadic a1.gebra. Let us 
consider a V-commutative system S = (O,A,B,C,P1,PZ) with a product 
measure Q. By passing to the quotient mod. [QJ we get the Boolean 
(measure) algebras A,B,C,D, which are the images of A,B,C,V resp.; 
B,G.,D are subalgebras of A and D = B (\ C. If we denote by Ao = B v C 
then Ao .= B v C " Ao/ [Q) , where B v C is the Boolean algebra gene
rated by Band C. 

If Vl ,V2,V designate the monadic operators in A corresponding to the 
measurable hull operations in A denoted before with the same symbols 
we have vlv 2a = v2v l a = Va for any a E A. The same hold if we res
trict our-selves to elements a E Ao .. B VC. So we have an instance 
of ,,,hat is called a biadic algebra (c.f. {2}). 

The algebraic system (Ao ,B,C,Vl,V2) is called a biadic a1.gebpa if 
(A ,B,Vl), (A ,C,v 2) are monadic algebras, A = B v C and V1 V2 = 

o 0 0 

= V2Vl. It is easy to see that in this case v = V1 V2 defines the m~ 
nadic operator related to D = B (\ C. 

We can say that the underlying Boolean structure of a v-commutative 
system is a biadic algebra. We have seen this when a product mea~re' 
Q is given in the system and it is easy to see that the same is true 
even if Q does not admit a a-additive extension from Ao to A. 

In particular, if S is a simple v-commutative system,. we obtain a 
simple biadic algebra (A ,B,C,Vl,V 2) i.e. it verifies D = B A C 

o . 
={ 0,1} For such simple algebras we have Ao .. B e C, direct sum 
of B, C which means that A = B V C and, for bE B, c E C, b" c = 0 

o 
implies b = 0 or c = 0 (in fact, if b" c = 0 then 0 = v (b" c) = 

Vl v2 (b"c) = vl(v 2bl' c) Vl{V2V l bl'c) = Vl (V 1 V2b"c) = vbl'vlc 
= vb"vc , therefore vb .. 0 or vc = 0, so b = 0 or c = 0) (The con-
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verse also holds: if Ao = B • C , (Ao ,B.C,V 1 ,V 2 ) is a simple biadic 
algebra). 

In simple v-commutative systems, for example the systems obtained 
from cartesian products, what really matters from the point of view 
of the theory of measure Boolean algebras are the algebras B, C and 
Ao. Explicitly, if A~ , B' , C' are obtained from another sim.ple 
v-commutative system S', then if we have Boolean isomorphisms B = B' 
and C = C' we get Ao = A~. This is due to the fact that Ao' A~ are 
direct sums. In fact, the direct sum Ao = B • C has the property of 
extension of homomorphisms: if B -+-A and C -A are Boolean homo
morphisms with range a Boolean algebra A, there exists one .and only 
one extension of them to a homomorphism: A =BeC---+A. (c.f. {5}). 

o 

On the other hand, if (B,PI ) (C,P2) are given Boolean measure alge
bras we can construct at ·least a simple v-commutative system S for 
which the associated biadic algebra is precisely (B. C,B,C,V 1 ,V 2 ). 

In fact,it is well known that the Stone space of B • C is the cart~ 
sian product of the Stone spaces of Band C, S(B • C) = S(B) x S(C) 
(Precisely the algebra of clopens of S(B) x S(C) is used to define 
B • C). We set on the clopens of S(B) and S(C) the measures PI and. 
P2 in the obvious way and we extend PI' P2 to the a-algebras gene
rated by clopens associated to elements of B, C respectively. The 

! 

p~oduct of the probability spaces so obtained gives us the required 
system S. 

For general V-commutative systems we can prove analogous results. 

To a V-commutative system S = (Il,A,B,C,PI ,P2) we have associated a 
b.iadic algebra (Ao,B,C). Moreover B,C are measure Boo-lean algebras 
with the probabilities PI' P2 defined on B, C, respectively, coinci£ 
ing in D = B A C. Let us call ~1(S) = (Ao ,B,C,PI ,P2) this Boolean 
measure structure associated with S. We shall say that the V-commu
tative systems S, S' have the same Boolean measure structure, M(S) = 
= M (S'), if under a unique Boolean isomorphism Ao = A~ , B = B' , 
C = C' and D = D'; and the probabilities Pi' Pi (i=1,2) correspond 
under the isomorphism. 

THEOREM 6. 1) Given two ppobabiZity BooLean aLgebpas (B,P1L (C,P2) 
and sub-a-a Lgebpas DeB, D t C C such that D = D' undep a fi:J: ed iso

mopphism ppesepving the measupes PI I D, P2 I D' , thepe exists a V -col!!. 

mutative system S such that M(S) = (Ao ,B,e,i\,P2 ) , whepe ii = B,e = C 

ape measupe ppesepving isomopphisms (with pespect to Pi' Pi i=1,2) 
which pestpicted to 0 = B.~ e ape isomopphi~ms 0 = D , 0 = D' commu! 

ing with the given one D = D'. 
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2) Such a V-commutative system admits a product measure Q. 

3) If S' is another V-commutati've system verifying the properties of 
S in (1), then M(S) E M(S'). 

The proof of 1) and 3) are based on an algebraic theorem concerning 
biadic algebras that we give next. 

We shall write the complete proof of theorem 6 in §7. 

THEOREM 7. 1) Given two monadic algebras (B~D,VI) and (C,D',V 2 ) 

and a fixed isomorphism: D .. D' there exists a biadic algebra (A,B,C) 
such that B .. B, C .. C are isomorphisms which restricted to D B (\ C 
give isomorphisms D .. D, D .. D' commuting with the given one: D .. D' . 

2) If there is another biadic algebra (A,B,C) with the same prope~ 

ties, then the isomorphisms ii .. B, C .. C obtained through the isomo~ 

phisms of B, C with Band C, have a unique common extension to an i--
somorphism A .. A. 

Proof: By identifying the isomorphic algebras D, D' through the gi
ven isomorphism we can, without loss of generality, cqnsider only 
the case that Band C are extensions of the same algebra D. So 
we have the monadic algebras (B,D,V I) and (C,D,V:l). 

A filter FeB corresponds in X = S(B) with the set XF of ultrafil
ters of B that contains F, this is a closed subset that represents 
with the relative topology the quotient alg~bra B/F fc.f. ,IS}). In 
other words, XF = S(B/F), and inA such a way that if b is the clopen 
set that represents b E B, then b A XF is the clopen set that repr~ 
sents the class in B/F containing b. Given an ultrafilter 0 in D, 
let us denote with (D) the filter generated in B by D. Then {X(U)} 

is a partition of X. In fact, if ~ E X corresponds to the ultrafi! 

ter M and 0 = M (\ D', then mE X(U); if mE X(U) (\ X(U')' then MnD 
~ 0, 0', which implies 0 = 0'. 

Moreover, the monadic operator VI corresponds with saturation with 

respect to th: partition {X(U)} ; i.e. if a E B, v~a = sat a = 
= U {X(U) ; a A X(U) # .6}. 

We include the proof of this well-known fact (c.f. {2}) for the sake 

of completeness. AIf d E D, then d E 0 iff X(U)c d , and it is equi
~alent to X(U) (\ d # .6, as it is easy to see. In consequ~nce, 
a (\ X(U) #.6 iff v la::> x(U)' which is also equivalent to vIa E D. In 

A C A I' 
fact, vIa E U implies a (\ X(U) # .6, since otherwise X(U)c a = Ca, 
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i.e. Ca £ (U), then for some d £ U, d ~ Ca, and hence d f'\ vIa = 0, 
which contradicts the fact that U is a proper filter of D. 

Let us observe that given a set X, a partition n of X and a algebra 
B of subsets of X stable under the sat operation with respect to n, 
if D is the algebra of saturated sets of B, we have a monadic algebra 
(B,D,sat.) 

Let us suppose now that a~ extension A of the algebras B, C exists, 
such that (A,B,C) is a biadic algebra; it is easy to verify that the 
V opera tors defined by B, C on A coincide on B, C with the previously 
given. We call V - Vl V2 = V2 Vl to the monadic operato'r defined by D. 

Since B e C applies homomorphically onto A, preserving the identity 
mappings on Band C, A = BeC/F for a filter F in Be C. Then the Sto 
ne space of A is a closed subset T of SeBeC) = X x Y. 

Calling {Y(u)} the partition of Y associated to the ultrafilters U 
of D we have, after elimination of superfluous parentheses: 

(*) 

In fact, if MET corresponds to an ultrafilter M of A, and M = (M' ,Mil) 
(M' E X, Mil E V), considering the homomorphism mentioned above it fol
lows that M' = B.M', Mil = C.M. Therefore, M'.D = M".D = U is an ultr!. 
filter of D. Therefore, M E Xu x Yu ' Conversely, if (M',M")EXuxYU' 
M'.D = M'!D = U. To see that (M' ,Mil) E T it suffices to see that there 
is an ultrafilter M of A which is a simultaneous extension of M' 
and Mil. It is enough to ve,rify that if b E M', c £ Mil then b /I. c .; O. 

But vb ~ Vc = v(b~ c) E U and therefore is not zero, which implies 
b"c'; 0 

I 
Let us consider now the following partitions of T: 

1 ) 

(X x {y}) ('I T T 
Y 

({x} x Y)" T 2) {T } , Y E Y 
Y 

3) {TU} , U ultrafilter of D, Tu Xu x Yu . 

They define the sat operators corresponding to Vi, v2 , v of the bia
dic algebra (A,B,C). This is immediate for Vi, v2 • For V we observe 
that the monadic algebra (A,D) is represented by T and the partition 
associated with the ultrafilters U of D, which is precisely {XuxYu } 
as it was shown in the prodf of (*). 

If we start with another extension A' of Band C such that (A' ,B,C) 
is a biadic algebra we get again the same set T representing SeA') 
because the second member of (*) depends only on (B,D) and (C,D). 
Then A = A' by a unique common extension of the identity isomorphisms 
of Band C. This proves 2) (except for isomorphic identifications). 
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The fact that the definitions of T, the partitions 1), 2), 3). and 
the clopens corresponding to elements of Band C depend only on (B.D) 
and (C,D) allow us to construct a biadic algebra of sets (A' ,B' .C') 
such that B ~ B' , C ~ C' and these isomorphisms when restricted to 
D give an isomorphism D ~ B'n C' = D'. That will prove (except for 
isomorphic identifications) the first part of the theorem. 

Let us define A' as the algebra of sets of the form a' 
a is a cl~pen in S(B) x S(C) = X x Y. The algebras B' 
C' {(Xxc)" Tl CEC generate A'. 

an T, where 
A 

{ (bxY) ("\ T\e:B' 

We define for a' E A' .Vla' as the 
and V2 a' that obtained from {T }. 

y 
that (A',B') is monadic. the same 

saturated set with respect to {Tx }' 

We must show that vl a' E B' to show 
for v2,and that v l , v2 commute. To 

this end, let us prove: 

(6) vl c' = 
.... 

(vc x Y) n T forc' EC'. 

vl c' = vl cr'" Xu x (~f"\ Yu))' where ~ is the projection of c' on Y. and 
the star means that the sum is extended to those U such that ~("\Yu; ¢. 

Therefore, Vlc' = p(Vl (Xu x (c nYu)) = [(PXu ) x y1" T. Then. since 

c "Yu ; ¢ is equivalent to v"c::J Yu ' i. e. to vc E U, we get L"'Xu = vc , 

which proves the formula. 

To show that. Vla' E B'. for every a' E A'. it suffices to see it for 
a' = b'" c' , b '. E B' , C' E C' j vl (b' n c') = b'" vl C' = 

= [(b f'I VAc) x Y) n T E B'. 
A 

!f b'A= c', then from (6) b' = (d l x Y)nT = (X x d2)nT.which implies 
dl = d2 . Therefore, D' = B'~ C' is defined as those sets of A' such 
that are Saturated with respect to {Tu } and project on the same ele -
ment of D. Therefore, (6) means that VlC' E D', which is equivalent 
to the commutation of vl , v 2 (c. [. {1} ). 

6. AN APPROXIMATION PROCESS. 

The generalized product measure Q, when it exists, and in general the 
finitely additive product measure Q. associated with a v-commutative 
system S, can be obtained as a limit of simpler measures in the way 
described in the next theorem. We need the following preliminary re 

suIt: 

PROPOSITION 1. i) If F is a finite part of (A,D,v), a monadic aZg~ 

bra, and al, ... ,ar , the atoms of the BooZean subaZgebra generated py 
F, then al, ...• ar , val"" ,var generate a subaZgebra Ao which is the 
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the least one oontaining F and stable fo1' v, (i.e., VAocAo )' 

ii) Assume Ao is a finite subalgeb1'a of thebiadi,o algsibra (A;B,C, 

Vl,V2), stable fo1' V = V1V2. D = B"C. If Bo" ~I\Ao' Co = CI\Ao 

then the1'e e~ist ope1'ato1's v!.v: • suoh that (Ao"o'Co'V!'V:) is a 
biadio algeb1'a. 

iii) Suppose that (A")"EA is the family of all the finite subalge

b1'as of A stable fo1' v. o1'de1'ed by inolusion. and gene1'ated by th~ 
e~ements be~onging to B 01' C. Then: 

1) eve1'Y (A".B"=A,,n B .C1 =A"n C.vt.v~) is a biadio a~geb1'a. 

2) (A")"EA is fiZte1'ing, if o1'de1'ed by inoZusion. 

3) U"A1 = A 

P1'oof: i) It is evident that every subalgebra containing F and s~ 
ble for V must contain the ai'S and the vai's. Then, it suffices ro 
prove that Ao is stable for V. Every atom of Ao is of the form a 

a 1. 1\ A. Va. where j runs on some indices 1, ••• , r. 'Therefore, Va = 
J J 

Va. "I\,va. E Ao' 
1 J J 

To finish the proof it suffices to observe that every element of Ao 
is a union of atoms and that V distributes over the union. 

ii) V! exists because Ao is finite. 
< V2 V1 a < V a = Va, where V denotes 
- 0 0 - 0 0 

Then V2V1 = V and analogously, V1V2 o 0 0 0 0 

a E A implies Va = v2V 1a ~ o 
the operator relative to D (\ Ao 
= V • 

o 

iii) It follows from i) and ii) and the observation that every aEBv C 
belongs to a finite subalgebra generated by a finite set F uG with 
FeB GeC. 

Given the V-commutative system S = (n,A,B,C,P1 ,P2) let M(S) = (Ao,B, 
C,P1 ,P2) be the associated Boolean measure structure. We apply pro
position 1 to the biadic algebra (Ao,B,C) to get the filtering fami 
ly (A"),, described in iii). For each" we select a representative 

Sa = (n,A",B",C",P1 ,P2) of (A",B",C",P1 ,P2), that means: B1 , C" are 
finite subalgebras of B, C such that M(Sa) = (A",B",C",P1 ,P2), A" = 
= B"v C". Here a = A", and we assume the a's ordered by inclusion 
of the AAs. Ussing theorem 5 we know that the measure Qa associated 
to Sa is defined by 

Qa(B.C) = L/1 (BDj ) P2 (CDj )/P(Dj ) 

where the sum is on the atoms of V" (it defines a comarginal commu
tative measure on Sa)' Denote with Ga the conditional expectation 
operator relative to V" and the probability Qa in the system Sa.Then 
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THEOREM 8. In a V-commutative system S. it hoZds: 

i) For B £ B • C £ C • Gal B --+ G1 B and Gal C --+ G1c' "'hen ilt • u-
niformeZy a.e. [p) . 

-€i) Q(A) .. Hm Qa(A) • for any A £ B v C • a 

Proof: ii) follows from i) and 

Qa(B.C) . J GalB·Gal c dP - J G1B·Gl c dP Q(B.C) 

i) For B £ B). ,a = A). ,we have G'B - r.(P1(BD.)/P(D.» 1D ' 
. a J J J j 

where the sum is on the atoms of VA' since Q (BD.) - J G 1B dP 
a J D. a 

J 

Given G'B' let us divide the set of real numbers on intervals Ii = 
.. [mi,Mi ) of le.ngth £ > O. Only for a finite number of them Di -

- (G1 B)-1 (Ii) ~ ~ [p). Consider any finite system Sa such that 
Di £ VA for all those Di • Call {Dij } the family of atoms of VA con 
tained in Di • 

Since, 

we obtain: 

a.e [p) QED. 

REMARK: If a coma~ginal probability P exists on A we;have Ga 1B • 
• Ep('BIVA) .. Using a result from martingale theory due to Helms {3}, 
we know that the G~s form a uniformly integrable martingale conve!.8. 
ing in Ll to G lB' which implies ii). 

7. PRODUCT MEASURE 

foot special cas.es of v-commu·tative systems we can. assert that a prod
uct measure exists. 

One of these cases, the discrete case, was considered in theorem S. 
Using remark 4) of §2 we have also: 

THEOREM 9. If the V-commutative system S 
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that there are semi-compact classes KBcB, KCC:C with the property 

of approximation and KB.K C = {K.L ; K E KB ' L E KCHs alsosemi-c<;!!l 
pact, then Q(B.C) = /G1 B .Gl cdP defines, when extended to A, a pr£ 
bality, i.e. the product measure on S. 

Another case in which we can assert the existence of product meruure 
is referred in theorem 6, the proof of which we give now: 

Proof of theorem 6. We will suppose, like in the proof of theorem 

7, that D is identified to D' through the given isomorphism. By 

theorem 7 we have an extension algebra Ao of B, C such that (Ao,B,C) 

is biadic and B" C = D. A The!,l we A have in the Stone space T of Ao 

the algebras ofAclopens Ao ' ~ , C relative to Ao ' B , C. A WeAset B= 
= T(B) ,C = T(C) and A = T(Ao) = TeB,C). We define in B, C the 

measures PI' P2 given in B, C in. the canonical way and extend them 
to B, C. 

~et ~s pro~e t~at S = (T,A,B,C!P1 ,P2) is a V-commutative system. IT 

b E Band c E C are such that b.c = pJ , i.e. b "AC : 0 in A ; we hAave. 
o = v2 (b~c) = v2 b" c = V2 v 1 b f\ c = Vb" c. Then vb.c = pJ , where VbE 
EB n C contains b. Hence {Gl b > O} c VAb [p], and then 

JGlb·Gl~ dP = JGlb·l~ dP2 ~ P2 (Vb.c) = 0 

where G is defined on B(C)-measurable functions is the expectation 

operator relative on V = B r-. C. 
A A 

But B c Band C c C have the approximation property. Using remark 

3 of §2 we can assert that Q(B.C) = /G1 B .Gl c dP is a finitely ad
ditive comarginal measure on S, and from theorem 2, S is a V-com

mutative system. 
A 

Q being finitely additi~e on B v C ::J Ao is a fortiori a-additive on 
the algebra of clopens A and then can be extended uniquely to A = 

A 0 

= T (Ao) • 

This proves 1) and 2) of the theorem (except for identifications) 

3) follows immediately from theorem 7. 

Finally we shall prove: 

THEOREM 10. If S 
the property: 

(n,A,B,C,P 1 ,P2) is a v-commutative system ~ith 

(P) n is the onZy set of B containing a set C E C ~ith P2 (C) > O. 
then Q(B.C) = PI (B).P2(C) can be extended to a probability on A. 

((P) implies that S is simple). 
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Proof: Let us define the "section" in x of a "rectangle" B.C by 
(B.C)x .. C if x £ Band" otherwise. 

In order to prove the a-additivity of Q = P1. P2 it is enough to 

prove that ~aBa.Ca - 0 implies ~aP1(Ba).P2~) .. 1. For each pair 

a ~ a of indices the set Na,a = {x ; (BaCa)x.(BaCa)x ~ " [p2)} is 

contained in a set of 8 of PI-measure zero.In fact,from BaCaBaCa=¢ 

we have eithe.r P1 (Ba .Ba) = 0 or P2 (Ca .Ca) .. o. In the first case, 

it follows from Naa C BaBa' in the second one, since'(BaCarx.(BaCa)x 

C Ca.C a for every x, we have Naa .. " • 

Then except for a set Bo of ,8 of PI-measure zero (~~a Naa ) 

(7) P2 (Y(Ba ·Ca )x) = ~aP2«Ba·Ca)x)" ~~P2(Ca)·lBa(x) 

Let bx be the set of the partition of 0 defined by the sets Ba such 
that bx a x 

(8) 

In fact, let y £ bx and suppose y £ Ba .Ca , then Ba;:) bx a x and this 

implies (Ba.Ca)x .. Ca. Since y £ Ca we have y £ \( (Ba.Ca)x. This 
proves (8). 

From 8 3 bx C \J (Ba.Ca)x £ C , and the assumed property (P) we have 

P2( Y (Ba·Ca)x) .. 1 for every x. 

Hence, by virtue of .(7) we have yx t B : ~ P2 (C )lB (x) .. 1. i.e. o a a a 

~aP2(Ca).lB - 10 [PI)· By integration with respect to PI : 
a 

QED. 

Remark: Condition (P) is equivalent to: (P*) if C £ C contains B,I¢, 
B £ B, then C .. n a. e. [p 21 • 
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