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1. INTRODUCTION.

By S = (Q,A,B,C,PI,PZ) we shall denote a system consisting of two
c-algebras B, C of subsets of 2, the generated c-algebra A=1(B,(),
and probabilities P, P2 defined on B,C respectively, which are

compatible in the sense that P, = P2 = P on the intersection o¢-al-
gebra D = B n C.

A probability Q on A such that its restrictions to B, C are Pl’Pz’
respectively, is said to be comarginal with Pl’ P
marginal.

g» OT briefly co-

A probability Q on A, not neccesarily comarginal, is called commu-
tative if on A-measurable Q-integrable functions:

B c B _ D
(M Eqy - Eq = Eq « Eq = Eg @] ,
where Eg denotes the conditional expectation operator with respect
to the o-algebra G < A and to the measure Q.

The main problem we consider here is to search under’what conditions
a system S admits a comarginal and commutative measure Q. For such
a measure we can assert its uniqueness. Owing to this fact and to
the following example we shall call Q the (generalized) product mea-
sure on S.

Given the probability spaces (2,,8',P]) , (nz,c',pé) the system S
formed by @ = @) x 9, , B = 171 (8') , € = m;2(C') , A = <(3,0) ,
Pi = Pi L, (ni = projection on ni), i=1,2, admits the comarginal
and commutative measure Q = Pi x Pi . The relation of commutation

(1) is here Fubini's theorem.

In this example D = {¢,R} ; the opposite extreme case, when D = B
(br'v = C), gives us also an example very trivial for a product mea
sure: Q = P2 (or Q = Pl)'

Intermediate cases can be given as follows:

Let @ = Q,  x Qy x Q, and probabilities dx, dy, dz be given on o¢-al-
gebras Bx, By, Bz of Q. ny, ﬂé“respectively. We define B = {¢,ﬂx} -]
® By ® Bz, C = Bx (] {¢,ny} ® Bz and the probabilities dP1 = dy dz ,
sz = dx dz. Here D is isomorphic to Bz and the system (Q,A,B,C,PIIE)
has the product measure dQ = dx dy dz.

The preceding situation always appears in a Markov process. Assume
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{xi}i-l,z.. is a Markov chain and B = r(xl,... xn) » €= v (x ,X 4q.)
and D = r(xn). The product measure Q turns out to be the probability
associated with the process, and the relation of commutation (1) canbe
rewritten as expressing the conditional independence of past (B)

and future (C), given the present (p). (cf.{1},§14,0or {4}, part A,

ch. II).

For further examples we refer to {1} , §3.
2. COMARGINAL MEASURES AND BILINEAR FORMS.

We shall say that T: B x C — [0,+=) is a (positive) bilinear form
on the system S = (Q,A,B,C?PI,PZ) if T(B,C) is additive in each va-
riable separately; and T will be said to be compatible (with Pl’PZ)
if T(B,q) = P, (B) , T(2,C) = PZ(C) , for any Be B, C e C,

To each finitely additive measure Q on the algebra A, = Bv C comar
ginal with Pl' P2 we associate the compatible bilinear form T(B,C)=
= Q(BC), which verifies: T(B,C) = 0 if BC = g. Conversely:

THEOREM 1. Every compatible bilinear form T on C such that T(B,C)=0
whenever BC = g, defines on Ao a unique finitely additive comarginal
probability given by Q(B.C) = T(B,C).

Proof: We define Q(BC) = T(B,C). If BC = B'C', then BC=(BB')(CC')=
.= B;C;. To prove that T(B,C) = T(B',C') it is enough to prove that
T(8,C) = T(B;,C;). It follows from T(B,C) = T(BI,C) + T(B-BI,C) =

= T(B,,C), since (B-BI)C = g, and from T(Bl,C) = T(Bl'cl)' Hence Q
is well defined on sets of the form BC , B¢ B, Ce C.

Let BC = ZaBaCa, where o runs on a finite family of indices. 'In or
der to prove that Q can be (uniquely) extended to 50 as a finitely
additive measure it is enough to prove that Q(BC) = ZGQ(BuCu).

Let {B;} be the partition of B defined by the B}s and {Cj} that de-
fined by the Cys on C. We can assume from the beginning that B e B,
C, © C. Since B, = sta’m » Cy = chu,n» denoting by B, . (C, ,)the
sets of the mentioned partition of B (C) included in B, (Cu), we have:

zi,jBicj = BC - zaBuca = zu(ZmBu,m)(ana,n) = zu(zm,nBa,mCa,n)

This means that in the first and last sums appear the same non-void
terms. Therefore, from the bilinearity of T we get

QBC) = T(B,Q) = [; 5T(B3,Cq) = Loy oT(B00G0) = L T(UgBy olnGoed =
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= 1, T(B,,C,) = ZGQ(BG.CG) Q.E.D.

REMARKS. 1) It is not true, in general, that Q is o-additive. In
fact, let 2 be the triangle on the plane defined by x > 0 , y > 0,
X +y < 1. B (C) the Borel sets of @ depending only of x(y). For
Be B (Ce C) we define PI(B) = m(B'), (PZ(C) = m(C')), where B'(C)
denotes the projection of B (C) on the x (y) axis and m the Lebes-
gue measure on (0,1).

The bilinear form T(B,C)=I IB.(t)1C,(1-t)dt is compatible with Pl’
0

P, but, as it is easy to see, 2 can be put as a countable sum of
rectangles B.C for which T(B,C) = 0.

2) Let us observe that if T is bilinear and comarginal then T is
also o-bilinear; i.e. o-additive in each variable. In fact,
T(13aBy»C) = T(I1.1B;,C) + T(I ,B;,C), then

IT(15a1B55C) - I3 T(B5,ON| < I, T(B ,0) = [N P (By) —0 if n—e.

Then the proof of the .theorem remains true if we assume that a runs
on a countable family of indices such that the Ba's and the C;s de
fine, respectively, countable ﬁartitions of the spaces Q.

For example, we can assert the o-additivity of Q if A is defined by
a countable partition of Q.

3) In theorem 1 we can assume T(BO,CO) = 0 if BOCo =4 for Boe Bo
c B, C° eco < C , where BO,CO are collections of sets with the ap-
proximation property : PI(B) = sup PI(B ) , PZ(C) = sup P2(C ) , for
BocB ° CocC °
B ¢ B, CecC. B°¢B° CoeCo
In fact, if B, <B, C,< C, and B.C =g : T(B,C) = TIB-B°+B°,C-C°+CJ=

= T(B-B_ ,C) + T(B,,C-C ) + T(B ,C ) < P, (B-B ) + P,(C-C ). The 1last
member can be done arbitrarily small, hence T(B,C) = 0.
4) The o-additivity of Q follows under the following hypofhesis

1) KB c B, Kc < C are semi-compact classes (i.e. every countable
family of Kg (KC) with an empty intersection has a finite subfa-
mily which also intersects in the empty set) verifying the approxi
mation property (as defined above). ‘

2) Kg.Kp = {K.L ; K ¢ Kg,

In fact, the classlL of finite unions of sets of KB.Kc enjoys the pro

Le KC} is a semicompact class of sets.

perty of approximation in BV C , since , as it was shown above ,
for KeB , L e C we have Q(BC - KL) < PI(B - K) + Pz(C -L .,
then Q(BC - KL) can be done arbitrarily small . L being compact
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and with the approximation property the g-additivity of Q follows
from a theorem of Alexandrov (cf (4}, pp. 47).

3. V-COMMUTATIVE SYSTEMS.

For any probability space (Q,A,P) we define the measurable hull of

X c 2 as a set A ¢ A containing X except by a set of P-outer measure
zero and with minimal P-measure. Of course, the measurable hull is
defined except on a null set of A, and it provides a well defined e
lement of the Boolean measure algebra: A/[P]. If B cA is a g-sub-
algebra of A the measurable hull of X ¢ A with respect to B coinci-
des with (Ef 1, > 0} , [P] .

For a system § = (2,A,B,C,P;,P,) we shall designate vlx , V22X, vX

the measurable hulls of X c @ with respecf to 8,C,0 and to the mea-

sures Pl’ P P respectively.

2 ’
If Q is a comarginal measure on S and E, F , G denote Eg , g s Eg

respectively, we can see that the condition EF = FE = G[Q] (on boun

E

-ded A- measurable functions) is equivalent to Ef = Gf [PI] (on C-mea

surable functions) and also to Ff = Gf [Pz](on B-measurable functions)
(cf {1} ,5 1).

For a comarginal measure Q on S, the condition EF = FE = G implies
vlo2x = v2ylx = vx [Q] for X ¢ A. This condition is equivalent to

v28 = vB [P,] , for any B ¢ B, and also to VlC = vC [Py], for any
CeC. (cf. {1}, §5).

We note that any of these last conditions can be introduced even if
we do not assume that a comarginal measure Q is known. Then we adopt
the following definition:

We shall say that the system S V-commutes if v2B = vB [Pz], ¥ B ¢ B.

From the above considerations it follows:

In order that there exists a comarginal and commutative measure on
S = (2,A,B,C,P,,P,) it is necessary that S be a V-commutative system.

An independent proof will be given in next theorem 2.

A V-commutative system is said to be simple if D/[P] is the Boolean
algebra {0,1}
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L, THE FINITELY ADDITIVE MEASURE ASSOCIATED TO A v-COMMUTATIVE
SYSTEM.

Given the system S = (n,A,B,C,Pl,Pz) we observe that the conditional
expectation operator G can be calculated on B ((C)-measurable functions,
with respect to P1 (Pz) even if there is no comarginal measure. Hence
we can define the compatible bilinear form:

(2) T(B,C) = J G1B.G1C dp

THEOREM 2. In order that Q(BC) = T(B,C)defines a finitely additive co
marginal measure on S it is neccesary and sufficient that S be a v-com
mutative system.

In this case, if Q is a probability on A (i.e. if Q is g-additive), (
is the unique commutative comarginal measure on S. (uniqueness of the
product measure).

Proof: By theorem 1, to prove that v-commutativity implies that Q is
a finitely additive measure, we have to show that B.C = g implies
T(B,C) = 0. From B.C = g we get v2B.C = VB.C = p[PZ]; i.e. {61,>0}.cC=

= ﬁ[Pz]. Then T(B,C) = J G1B.dP2 = 0. Conversely, if Q is a finite
C
ly additive and comarginal measure, S v-commutes. In fact, V2 B

C,VB[PZ] and on the other hand from P;(B - y2B) = 0 we have B - v2B
cC' ¢ C with PZ(C') = 0. Hence Q(B - v2B) < Q(C') = PZ(C') = 0. Then,
Q(B - v2B) = J G1_.dP, = 0.

v2B B 2
This means {G1B > 0}.Cv2B =g [PZ] which implies VB < VZB[PZ].

If Q, as defined above, is a measure, and E, F the conditional expec-
tations with respect to B,C :

(3) Q(B.C) = IG1B.G1C ap = I G1, dQ = JCF1B dq
Cc

Then GIB = F1B , V B¢ B. This implies the commutation of Q. Another
comarginal commutative measure Q' must verify (3), but since

JcmB 4Q' = JCF1BdQ' = Q' (B.C) = Q(B.C) ,

Q and Q' coincide on B v ¢, and therefore on A. QED.

REMARK: The condition y2B = ¢B [Pz]’ B ¢ B, defining a v-commutative
system implies the symmetric one y¢lC = vC [Pl], Cec.

In fact, the first one implies that [G1_.G1_ dP defines a finitely ad
ditive measure, and from this we derive V!C = vC [Pl] as it was done
with v2B = vB [Pz] in the proof of theorem 2. Now, we obtain easily
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v2ylx = vlv2X = vX (P] for each X ¢ Bv C.

THEOREM 3. i) If the V-commutative system S is simple (i.e. D/[P]:=
= (0,1}) then Q(B.C) = P,(B).P,(C). 1In particular for a system S
obtained from a cartesian product (as described in the introduction),
Q=P x P} |

ii) If, conversely, Q(B.C) = PI(B)'PZ(C) defines a finitely additive
measure on B v C, S ig a simple V-commutative system.

Proof: i) "It follows from theorem 2.and the fact that Gl = PI(B).kr
Glg = P, (C).1,.

ii) If D e D we have Q(D) = P(D) = Q(D.D) = P(D)2 , then P(D) = 0 or
1. Glz , Gl; are computed like in i), then [ Gl1g.G1, = Pl(B).PZ(C).
From theorem 2) it follows that S is a V-commutative system.

We shall say that a system S is complete with respect to a comarginal
probability P defined on A if every P-null set of A belongs to D.

THEOREM 4. If the system S is complete with respécet to a comarginal
probability P and R is a commutative probability on .S equivalent to P

then the product measure Q exists and it is equivalent to P.

Proof: Assume f = %% . By hypothesis F; = Gp on B-measurable func-

tions and E; = G on C-measurable functions. We have (c.f. {1} §2):

R

Ep(h) = E(£.0) /¢ gy ,

Fa(@) = F(E.8) [ pegy » Gpm) = GCEm) /gy

" where E, F, G denote here the conditional expectation 6perators with
respect to the measure P and B, C, D respectively.

In {1}, th. 2, §10 , it is proved that the probability measures e-

quivalent to R th%t also commute are characterized as those whose Ra-
don-Nikodym derivd;ives with respect to R are of the form: g.h, where
g (h) is a B(C)-measurable function (both positive and finite [RJ ).

Let us consider the functions:
=+VG—f h=
g —Ef_ ’ F
Then, g.E(h.f) = Gf.E(f/Ff) /Ef = Gf.ER(1/Ff) = Gf.GR(1/Ff) = G(f/Ff) =

= GF(f/Ff) = 1. Analogously h.F(g.f) = 1. From J ghf dP=J gE(hf) dp=
: B B
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- J 1dP = P(B) and j ghf dP = P(C)
B c
We see that the probability Q defined by

QA) = J gh.f dP = J g h dr
A A
is comarginal with P and since Hg = g.h , it commutes and obviously

Qv R. QED.

REMARK: If the system S is complete with respect to P any other co
marginal measure R is absolutely continuous with respect to P, since
P(A) = 0 implies A ¢ D and then R(A) = P(A) = 0. Then, if a product
measure Q exists on S, we have Q « P, In spite of the fact that for
BeB, Ce C, Q(B.C) = 0 implies P(B.C) = 0 (since fG1BG1CdP =0
implies PZ(VB.C) = 0 and then P(B.C) = 0) we have not Q~P, in gene-
ral. Let us see the following example:

Let @ be the product of X and Y, X = Y = (0,1), A = the Borel sets

of X x Y, B (C) the Borel sets independent of y (x), P the probabi-

lity on A equal to E%E (m the Lebesgue measure on (0,1)) plus a mea-

sure of total mass 1/2 concentrated on the diagonal and uniformely
distributed there.

The product measure Q = m x m is not equivalent to P.
If D e D defines an atom of the o-algebra D/[P] it can be seen that
SD = (D,A A D,BAD,CA D,Pl/Pl(D),PZ/PZ(D)) is a simplgiv-commuta-

tive system, whenever S is a V-commutative system. Moreover, if Q
is the (product) finitely additive measure on S defined above ,

gi%t%igl is the product measure on SD as it is easily seen. Since

Sp is simple: ‘g'C'D = E*{%jgl . 2&%%&21 , and then

4 Q(B.C.D) = P, (B.D).P,(C.D)/P(D)

THEOREM 5. If in a V-commutative system S, A is defined by a coun-
table partition of Q, there exists the product measure Q. If {Di}
i8 the partition defining D, then Q is defined by:

D,).P, (CD,)
P(D,)

P. (B
(5) aee.cy = f, -

Proof: The o-additivity of Q follows from the second remark in §2.
We have Q(B.C) = ZiQ(B.C.Di), and applying (4) we obtain the equal-
ity (5).
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5. THE BOOLEAN MEASURE STRUCTURE OF A V-COMMUTATIVE SYSTEM

From a given probability space (2,A,P) and a o-subalgebra B of A ,
we get the (measure) Boolean algebra A = A/[P] quotient of A mod.
P-null sets and the subalgebra B = B/[P]. To the operation of take
ing the B-measurable hull in A corresponds in A a so called monadie
operator (c.f. {2} ).

Let A be a Boolean algebra with a subalgebra B such that for each

a € A there exists an element b € B which is the 1least element of
B verifying b > a ; we set b = Vva, and we call Vv the monadic opera-
tor in A related to B.

A monadic operator verifies the following properties: v0 = 0 ,
v(avb) = Vvawv Vb, VWa = Va , V(a~nVb) = Va A Vb.

The algebraic system (A,B,V) is called a monadie algebra. Let us
consider a V-commutative system S = (n,A,B,C,Pl,PZ) with a product
measure Q. By passing to the quotient mod. [Q] we get the Boolean
(measure) algebras A,B,C,D, which are the images of A,B,C,D resp.;
B,C,D are subalgebras of A and D = B n C. If we denote by A°= BvC
then A, = B v C = A,/(Q] , where Bv C is the Boolean algebra gene-
rated by B and C. -

If vl,v2,v designate the monadic operators in A corresponding to the
measurable hull operations in A denoted before with the same symbols
we have vlv2a = v2yla = va for any a ¢ A. The same hold if we res-
trict our-selves to elements a ¢ Ao = Bv C. So we have an instance
of what is called a biadic algebra (c.f. {2} ).

The algebraic system (AO,B,C,Vl,Vz) is called a biadie algebra if
(AO,B,VI), (AO,C,VZ) are monadic algebras, A = BV C and vlvZz =

= y2yl, It is easy to see that in this case v = vlv2 defines the mo
nadic operator related to D = B n C.

We can say that the underlying Boolean structure of a v-commutative
system is a biadic algebra. We have seen this when a product measure!
Q is given in the system and it is easy to see that the same is true
even if Q does not admit a ¢g-additive extension from Ao to A.

In particular, if § is a simple v-commutative system, we obtain a
simple biadic algebra (AO,B,C,vl,vz) i.e. it verifie; D=BnC=

= {0,1} . For such simple algebras we have A° =B ® C, direct sum
of B, C which means that Ao =BV C and, for be B, c ¢ C, bac =0
0 then 0 = v(bac) =

= vly2(bac) = vl (v2bnac) = vl(v2vlbac) = vl(vlv2bac) = vbavic =
= ybAavc , therefore vb = 0 or vc = 0, so b = 0 or c = 0) (The con-

implies b = 0 or ¢ = 0 (in fact, if bac
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verse also holds: if Ao =BecC, (AO,B,C,vl,VZ) is a simple biadic
algebra).

In simple v-commutative systems, for example the systems obtained
from cartesian products, what really matters from the point of view
of the theory of measure Boolean algebras are the algebras B, C and
Ao. Explicitly , if Aé » B' , C' are obtained from another simple
V-commutative system S', then if we have Boolean isomorphisms B = B!
and C = C' we get A = Al . This is due to the fact that Ao, A; are
direct sums. In fact, the direct sum A = B @& C has the property of
extension of homomorph1sms if B——A and C —A are Boolean homo-
morphisms with range a Boolean algebra A, there exists one and only
one extension of them to a homomorphism: A =BeC —A. (c.f. {5}).

On the other hand, if (B,P ) (c,p ) are given Boolean measure alge-
bras we can construct at least a s1mp1e V-commutative system S for
which the associated biadic algebra is precisely (B ® C,B,C,v!,v2),
In fact,it is well known that the Stone space of B ® C is the carte
sian product of the Stone spaces of B and C, S(B® C) = S(B) x S(C)
(Precisely the algebra of clopens of $(B) x S(C) is used to define
B ® C). We set on the clopens of S(B) and S(C) the measures P and
P, in the obvious way and we extend P, » P, to the o-algebras gene-
rated by clopens associated to elements of B, C respectively. The
pioduct of the probability spaces so obtained gives us the required
system S.

For general V-commutative systems we can prove analogous results.

To a V-commutative system S = (Q,A,B,C,PI,PZ) we have associated a
biadic algebra (AO,B,C). Moreover B,C are measure Boolean algebras
with the probabilities P,, P, defined on B, C, respectively, coincid
ing in D = B~ C. Let us call M(S) = (AO,B,C P,,P,) this Boolean
measure structure associated with S. We shall say that the V-commu-
tative systems S, S' have the same Boolean measure structure, M(S) =
2 M(S'), if under a unique Boolean isomorphism A, = Al , B=B',
C=2C' and D = D'; and the probabilities P, P{ (i=1,2) correspond
under the isomorphism.

THEOREM 6. 1) Given two probability Boolean algebras (B,P,), (C, P )
and sub-o-algebras Dc B, D' c C such that D = D' under a fized iso-
morphism preserving the measures P1|D s IDv s there exists a v -com
mutative system S such that M(S) = (Ao,ﬁ,C, 1,P ) , where B= B,C =¢C
are measure preserving isomorphisms (with respect to P,, P; i=1,2)
which restricted to D = B A C are isomorphisms D=0>D 5 D= D' commut
ing with the given one D = D'.
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2) Such a V-commutative system admits a product measure Q.

3) If S' is another V-commutative system verifying the properties of
S in (1), then M(S) = M(S').

The proof of 1) and 3) are based on an algebraic theorem concerning
biadic algebras that we give next.

We shall write the complete proof of theorem 6 in §7.

THEOREM 7. 1) Given two monadic algebras (B;D,v!) and (C,D',v2)
and a fized isomorphism: D = D' there exists a biadic algebra (A,B,0)
nC

give isomorphisms D = D, D = D' commuting with the given one: D = D',

’
such that B = B, C = C are isomorphisms which restricted to D = B

2) If there is another biadic algebra (A,é,é) with the same proper
ties, then the isomorphisms B = B, C = C obtained through the isomor
phisms of B, C with B and C, have a unique common extension to an i-

somorphism A = A.

Proof: By identifying the isomorphic algebras D, D' through the gi-
ven isomorphism we can , without loss of generality, consider only
the case that B and C are extensions of the same algebra D. So
we have the monadic algebras (B,D,v!) and (C,D,v2).

A filter F c B corresponds in X = S(B) with the set XF of ultrafil-
ters of B that contains F, this is a closed subset that represents

with the relative topology the quotient algebra B/F (c.f. {5}). 1In
F = S(B/F), and in‘such a way that if b is the clopen
set that represents b ¢ B, then b n XF is the clopen set that repre
sents the class in B/F containing b. Given an ultrafilter U in D,

let us denote with (U) the filter generated in B by U. Then (X(U)}
is a partition of X. In fact, if m ¢ X corresponds to the ultrafil

other words, X

ter M and U =Mn D, thenm ¢ X(U); if me X(U) n X(U,), then Mn D
> U, U', which implies U = U'.

Moreover, the monadic operator v! corresponds with saturation with
respect to thf partition {X(U)} ; i.e. if a € B, JTa = sat a =
=U(X(U) 3oa 0 Xy # 4},

We include the proof of this well-known fact (c.f. {2}) for the sake
of completeness. .If d e D, then d ¢ U iff X(U)c d , and it is equi-
Yalent to X(U) n d # g6, as it is easy to see. In consequﬁpce,

# 4 iff viasXx

anX , which is also equivalent to vla e U. 1In

v) (u) ~
fact, v'a ¢ U implies a n X(U) # 4, since otherwise X(U)c Ca = (a,
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(a € (U), then for some d ¢ U, d < (a, and hence d n vla = 0,
which contradicts the fact that U is a proper filter of D.

Let us observe that given a set X, a partition I of X and a algebra

B of subsets of X stable under the sat operation with respect to I,
if D is the algebra of saturated sets of B, we have a monadic algebra
(B,D,sat.)

Let us suppose now that an extension A of the algebras B, C exists,

such that (A,B,C) is a biadic algebra; it is easy to verify that the
V operatorsdefined by B, C on A coincide on B, C with the previously
given. We call v = vlv2 = v2yl to the monadic operator defined by D.

Since B @ C applies homomorphically onto A, preserving the identity
mappings on B and C, A = B®C/F for a filter F in B ® C. Then the Sto
ne space of A is a closed subset T of S(B®C) = X x Y.

Calling {Y(U)} the partition of Y associated to the ultrafilters u
of D we have, after elimination of superfluous parentheses:

*) T = ZUXU x YU

In fact, if M ¢ T corresponds to an ultrafilter M of A, and M = (M',M")
M' € X, M" ¢ Y), considering the homomorphism mentioned above it fol-
lows that M' = B.M, M" = C.M. Therefore, M'.D = M".D = U is an ultra
filter of D. Therefore, M ¢ XU x YU. Conversely, if (M',M")eXUxY
M'.D = M'"D = U. To see that (M',M") ¢ T it suffices to see that there
is an ultrafilter M of A which is a simultaneous extension of M'

and M". It is enough to verify that if b ¢ M', c ¢ M" then bac # 0.

. But Vb ~ Vc = V(bac) € U and therefore is not zero, which implies
bac # 0 .

Let us consider now the foliowing partitions of T:
1) (Tx} y X € X, Tx = ({x} x Y)n T 2) {Ty} s, YeY,

y " X x {yDDnT - 3) Ty} , U ultrafilter of D, Ty = Xy x Yy
They define the sat operators corresponding to v!, v2, y of the bia-
dic algebra (A,B,C). This is immediate for v!, v2, For V we observe
that the monadic algebra (A,D) is represented by T and the partition
associated with the ultrafilters U of D, which is precisely {XUxYU}
as it was shown in the proof of (*).

If we start with another extension A' of B and C such that (A',B,C)
is a biadic algebra we get again the same set T representing S(A')
because the second member of (*) depends only on (B,D) and (C,D).
Then A = A' by a unique common extension of the identity isomorphisms
of B and C. This proves 2) (except for isomorphic identifications).
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The fact that the definitions of T, the partitions 1), 2), 3), and
the clopens corresponding to elements of B and C depend only on (B,D)
and (C,D) allow us to construct a biadic algebra of sets (A',B',C')
such that B = B' , C = C' and these isomorphisms when restricted to
D give an isomorphism D = B'Aa C' = D'. That will prove (except for
isomorphic identifications) the first part of the theorem.

Let us define A' as the algebra of sets of the form a' = ;r\T, where
a is a clopen in S(B) x S(C) = X x Y. The algebras B' = {(bxY)n T%cn’
c' = ((ch)r\T)ceC generate A'.

We define for a' ¢ A',vla' as the saturated set with respect to {Tx},
and v2a' that obtained from {T }. We must show that vla' ¢ B' to show
that (A',B') is monadic, the same for v2,and that v!, v2 commute. To

this end, let us prove:

(6) vle' = (Ve x Y)nT , forc' eC'.

vig' = vl (J* Xy * (thY )), where ¢ is the projection of c' on Y, and
the star means that the sum is extended to those U such that thY #4.
Therefore, Vlc' = Z*(V‘(XU x (cr\YU)) = [ Z*XU) x Y]r\T. Then, 51nce

-~ A ~
cnYy # # is equivalent to Vc::YU, i.e. to vc ¢ U, we get Z*XU = vc ,
which proves the formula.

To show that vla' e B', for every a' ¢ A', it suffices to see it for
a' =b'ac' , b eB'" ,ceC' ;V(bnc') = b'Aavic' =

[(an.c) x Y]nT e B'.

If b' = c', then from (6) b' = @ x )aT= (Xx d,) n T,which implies
d1 = d Therefore, D' = B'n C' is defined as those sets of A' such
that are saturated with respect to (T } and project on the same ele -
ment of D. Therefore, (6) means that vlc' ¢ D', which is equivalent

to the commutation of V! , vZ (c.f. {1} ).
6. AN APPROXIMATION PROCESS.

The generalized product measure Q, when jt exists, and in general the

finitely additive product measure Q, associated with a v-commutative

system S, can be obtained as a 1imit of simpler measures in the way

described in the next theorem. We need the following preliminary re
sult:

PROPOSITION 1. i) If F is a finite part of (A,D,V), a monadic alge
bra, and ap,.00580, the atoms of the Boolean subalgebra generated by

F, then O RRRL . va »va_ generate a subalgebra A which is the

1°
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the least one eontaining F and stable for Vv, (t.e., VAoc:Ao).

i1) Assume Ao 18 a finite subalgebra of the biadie algebra (A,;B,C,
v1,v2), stable for v = vlv2, D = BacC. If B, =BnaA, C = CnA,
then there exist operators Vé,vi s 8uch that (AO,BO,CO,Vé,Vg) is a
biadie algebra.

ti1) Suppose that {AX)A A 8 the family of all the finite subalge-
bras of A stable for V, ordered by inclusion, and generated by their
elements belonging to B or C. Then:

1) every (A,,B,=A, ~ B sC=A,n C, VA,VZ) i8¢ a biadiec algebra,

2) (AA)AeA is filtering, if ordered by inclusion,
3) UA =4 .

Proof: i) It is evident that every subalgebra containing F and sta
ble for Vv must contain the a; 's and the va, 's. Then, it suffices to
prove that A, 'is stable for V Every atom of A  is of the form a =
= a; N /\ Va where j runs on some indices 1,...,r. Therefore, va =

= Va. A /\.Va. € A .

To finish the proof it suffices to observe that every element of A
is a union of atoms and that Vv distributes over the union.

ii) V; exists because A is finite. a ¢ A implies va = v2yla <

< Vzvla < V,a = Va, where L denotes the operator relative to Dr\A .
Then VZVl = Vo and analogously, vivZ = Vo
iii) It follows from i) and ii) and the observation that every aeBv C

belongs to a finite subalgebra generated by a finite set FuG with
FcB, GcC,

Given the V-commutative system § = (2,A,B,C Pl’ 2) let M(S) = (AO,B,
C Pl,P ) be the associated Boolean measure structure. We apply pro-
position { to the biadic algebra (AO,B,C) to get the filtering fami
ly (A 2), described in iii). For each A we select a representative
Scl = (Q,A A >‘,C)‘, 1,P ) of (AA,BA,CA,PI,P ), that means: BA, CA are
finite subalgebras of B, C such that M(S ) = (AA’BA’CA’PI’P ), A, =
= B v C Here o = A » and we assume the a's ordered by 1nc1us1on
of the A' . Ussing theorem 5 we know that the measure Q, associated
to S is defined by

B. = ).P.(BD,) P, (CD.)/P(D.
Q, (B.C) = [P, (BD;) P, (CD;)/P(D,)
where the sum is on the atoms of DA (it defines a comarginal commu-

tative measure on Sa). Denote with Ga the conditional expectation
operator relative to vx and the probability Q, in the system S, -Then
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THEOREM 8. In a V-commutative system S, it holds:

i) For Be B, Ce C, GalB —_ G1B and Gu1C —_— Glc, when &1 s U=
niformely a.e. [P].

ii) Q(A) = lgm Qa(A) 5 for any A ¢ B v C.

Proof: ii) follows from i) and

Q, (B.C) = ] G 15-G 1 4P — J G1,.61, dP = Q(B.C)

i) For Be B, , a = A, , we have G 1, = Zj(Pl(BDj)/P(Dj)) 1Dj ,

where the sum is on the atoms of 7,, since Qu(BDj) = J Gu1B dp =
D3
= P(BDj)/P(Dj)~Qa(Dj) = Pl(BDj) (P, = Q, on B,).

Given G1B, let us divide the set of real numbers on intervals Ii =

= [mi’Mi) of length ¢ > 0. Only for a finite number of them D =
= (GIB)'I(Ii) # ¢ [P). Consider any finite system S_ such that

D, ¢ D, for all those D,. Call {Dij} the family of atoms of 0, con
tained in Di'

Since, miP(Dij) < J G 1B dP < Mip(Dij) ,

Dij
we obtain: miP(Dij) < Pl(BDij) < Mip(Dij)' Therefore on Dij:

16 15 - Py(BD;)/P(D )| < €, a.e (P) . Then

B
|zizj P, (BD, ) /P(Dy ) 1Dij -6 1, <« a.e [p] QED.

REMARK: If a comarginal probability P exists on A we, have Ga 1B =

= EP(1B|DA)‘ Using a result from martingale theory due to Helms {3},
we know that the G;s form a uniformly integrable martingale converg
ing in L! to G 1, which implies ii).

7. PRODUCT MEASURE

rFor special cases of v-commutative systems we can assert that a prod-
uct measure exists.

One of these cases, the discrete case, was considered in theorem 5.
Using remark 4) of §2 we have also:

THEOREM 9. If the V-commutative system S = (Q,A,B,C,PI,PZ) is such
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that there are semi-compact classes KB<:B, KCc:C with the property
of approximation and KB'KC = {K.L ; K ¢ KB , L e Kc}is also semi-cam
pact , then Q(B.C) = fGTB.G1CdP defines, when extended to A, a pro
bality, i.e. the product measure on S.

Another case in which we can assert the existence of product measire
is referred in theorem 6, the proof of which we give now:

Proof of theorem 6. We will suppose, like in the proof of theorenm
7, that D is identified to D' through the given isomorphism. By
theorem 7 we have an extension algebra A of B, C such that (A »B,0)
is biadic and BAC = D. Then we have in the Stone space T of A

the algebras of clopens A , B , c relative to A, B, C. We set B=
= t(B) ,C = 1(C) and A = T(A,) = t(B,0). We define in B , C the
measures P1 P2 given in B, C in the canonical way and extend them
to B, C.

Let us prove that S = (T,A,B,C, Pl’ 2) is a V-commutative system. If
b e Band c € C are such that b ¢=4g,i.e. bac =0 in A ; we have
0 = v2(bac) = v2bac = V29lbac'= Vbac. Then Vb.c = g , where Vbe

-

€Bn C contains b. Hence {Gl; > 0} c ﬁ% [P], and then

IG]Q.G1; dpP = JG]G.I; sz < Pz(Vb.c)

’

where G is defined on B(C)-measurable functions is the expectation
operator relative on D = B n C,

But B c B and C c C have the approximation property. Using remark
3 of §2 we can assert that Q(B.C) = IGIB.G1c dP is a finitely ad-
ditive comarginal measure on S, and from theorem 2, S is a V-com-
mutative system.

Q being finitely add1t1ve on BvC o A is a fortiori o-additive on
the algebra of clopens A and then can be extended uniquely to A =
= T(A ).

This proves 1) and 2) of the theorem (except for identifications)
3) follows immediately from theorem 7.

Finally we shall prove:

THEOREM 10. If S = (n,A,B,C,Pl,Pz) 18 a V-commutative system with
the property: :
(P) @ is the only set of B containing a set C ¢ C with PZ(C) > 0,

then Q(B.C) = PI(B)'PZ(C) can be extended to a probability on A.
((P) implies that S is simple).
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Proof: Let us define the 'section'" in x of a 'rectangle'" B.C by
(B.C)x = C if x ¢B and ¢ otherwise.

In order to prove the o-additivity of Q = Pl.P2 it is enough to
prove that ZaBa.Cu = Q implies ZuPl(Ba).Pza%) = 1. For each pair

o # 8 of indices the set N o = {x ; (B,C)) .(B,Cp), ¥ 8 (P,]1} is

contained in a set of B of P, -measure zero.In fact,from B C B,C.=¢

o a BB

we have either Pl(Ba'BB) = 0 or PZ(CQ.CB) = 0. In the first case,

aB

it follows from N c BuBB’ in the second one, since (Baca)x'(BBCB)x

c CQ.C8 for every x, we have Naﬁ =g

Then except for a set B of B of P,-measure zero (> U N

a#B “B)v

(1) o0 (B,.C)) = LBy ((B,Co)y) = [ P,(C) 1, (x) .

Let bx be the set of the partition of @ defined by the sets B, such
that bx a X

(8)

bx = La) (Bu'ca)x

In fact, let y € b, and suppose y ¢ B .C , then B o b, 3 x and this

implies (Ba.Cu)x =C

ot Since y ¢ C, we have y € gg (Ba.Cu)x. This

proves (8).

From B > b_ c lg (B

a'Cu)x e C , and the assumed property (P) we have

Pz(gg (Ba'ca)x) = 1 for every x.

Hence, by virtue of (7) we have yx ¢ BO: ZuPz(Ca)IBu(x) =1, i.e.

I pP,(C).1, =1, [P,]. By integration with respect to P
a’ 2% a By Q 1 1

ZaPZ(Cu).Pl(Bu) =1 QED.

Remark: Condition (P) is equivalent to: (P*) if C ¢ C contains B#g,
B e B, then C = 2 a.e. [P,].

{2}
{3}

{4}
{5}
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