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A POLYGENIC EXTENSION OF THE POLYNOMIALS
OF BERNOULLI AND EULER

by John DeCicco and Arun Walvekar

SUMMARY. The polygenic ¢ - polynomials, B - polyhomials, Bernoulli
‘polynomials, n - polynomials and Euler polynomials are defined. Se
veral results concerning these polynomials are obtained. The analg
gues of complementary argument theorem and Euler-MaclLaurin theorem

for polynomials are derived.

1u~fTHE POLYGENIC ¢ - POLYNOMIALS. Consider the following equation:

f1%1|‘-fp q(t.{)eazt+b(zE+E:)+cEE+g(t,E)

- ) (at + bE)™ (bt + ct)"
O<m+n< min!

00’0 (a*b)z 5 (b+c)i}

.”where z, z, t and t are four independent complex variables; a, b, ¢
are three complex constants such that b% - ac # 0 ; g(t,t) is an a-
nalytic polygenic function in the two independent complex variables
t and t.

It is remarked that m # 0 , p # 0 , iff a # 0 , or b# 0, and n # 0,
q¥ 0, iffb#0, orc¢¥0.

Let fp q(t,t) be an analytic function, with region of convergence

’ -
given by |t - t | < r, , and |t - t,| < s,. Further,let 8 ()
"have a region of convergence about the center (to,fo) given by
e - tol <T, |t - Eol <s, . If r=min(r,,r,) and s=min(s,,s,),
then it is seen that

=y azt+b(zt+zt)+czt+g(t,t)
£, q(t:t)e ,

has a region of convergénce given by

[1.2] [t -t |l <r , [E-F|<s .

It is recalled that, by the principle of permanence the coefficients

of (at + bt)™ (bt + ct)® in the equation [1.1] can be compared in
the region of convergence given by |1.2] .

In equation |1.1] , use the substitution
|1.3] u=at+bt , v =>bt+ct ,

then equation |1.1| becomes
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11.4] £ (t i)eazt+b(zi+;t)+cii+g(t,E)
: Psq "’ ’

m n .
ocatnge BTAT 4013 ((avbh 3 (bee)E)

The expression ¢£'g {(a+b)z ; (b+c)z} , is defined to be the po-
’
lygenic ¢ - polynomial of total order p+q and total degree m+n.

In equation |1.4]| , let z = 0 and z = 0 , then

T g(tDE)
11.5] fp’q(t,t)e

m . n
- . Z uyv ¢p’q
O<m+n<» min! 'm,n

where ¢:’: are the ¢ - numbers of total order p+q and total de-
L
gree m+n.

In equation |1.4] , let z = z+w and Z = z+w , where w and w are two
independent complex variables, and then equate the coefficients of

u™v™. Here without loss of generality, it may be assumed that m > n.

The result is symbolically written as
[1.6] 029 {(a+b) (z+w) ;5 (b*c) (ZFW)}

= (6P* 9 (a*b)w ; (b+c)W} + z)™ (sP’%{(a+b)w ; (b+c)W}+ Z)" ,
where (¢P’9{(a+b)w ; (b+c)w} 4 z)™ is expanded according to w, and

(4P*3{ (a*b)w ; (b+c)w} + z)® 1is expanded according to W.

THEOREM 1.1. The ¢ - polynomials for polygenic functions obey the
following symbolic identity.

[1.7] ¢:;g~{(a+b)z 5 (brc)Z) = (o0 + )" (o700 + D)7
This is obtained by letting w = 0 in |1.6].

2.  THE LAPLACEAN v?2 ¢g’: OF A ¢ - POLYNOMIAL. Differentiate |1.7]|

with respect to z , then

2] eB (Gab)z 5 (r)T) = m(P ¢ PP s D)7
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Similarly ,

12.2] 5% eB:2 ((a*h)z ; (b+c)Z} = n(4P*% + 2)® (479 + )7L .

From the theory of polygenic functions, it is known that

32

9292

v2 f(z) = 4

f(z)
Thus, the Laplacean of a ¢ - polynomial is given by

|2.3] v2 ¢§': {(a+b)z ; (b+c)Z} = 4mn(éP?T + z)~1 (4P»q 4 7)n-1 |

THEOREM 2.1. A ¢ - polynomial for polygenic functions is harmoniec
~iff either m = 0 or n = 0 .

This follows directly from |2.3].

From |2.1| and |2.2| , it is seen that

2.4 J: ¢g:: {(a*+b)z ; (b+c)Z}dz = E}T {(ép,q + z)0H (4Pa 4 3y
- (P29 4 @)mtl (gPra )}

an&

l2.5] J; ¢g:§ {(a+b)z ; (bfc)z}di = E%T {(¢P29 + z)® (¢P»9 + 3)0¥]
- (0P2T 4 2)® (4P2 T4 )R]}

By operating on both sides of the equation [1.4| by operators Z%V ,

2v , %A, %A , the following equations are established.

- (t,%) eazt+b(zE+;t)+c§?+g(t,E)
q

lz.6]  (u+1) £
32

Z umvn ZyyPsrq { . =3
O<m+n<e min? ¢m,n (a+b)z ; (b+c)z

12.7] (v+1) fp,q(t’%) eazt+b(zt+zt)+czt+g(t,t)

I e s
= V_2y,Psq . 3
O<m+n<w min' v¢m,n {(a+b); 3 (b+c)z}
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ot . - azt+b(§t+z§)+c?€+g(t,§)
|z.§t (u-1) £, ,(t,8) e .

n'm .
ke BT MRS (@) s 0D

1 -, _azt+b(zt+zt)+czt+g(t,t)
|2.9| (v-1) fp,q(t,t) e

= 1

m.mn =

vV _z,.Psq >
=7 04¢ {(a+b)z ; (b+c)z} .
ocmrnge KT S0an (bve)

u
m
3. THE POLYGENIC 8 - POLYNOMIALS. In equation |1.4] , let

Py
3.1 £ t,t) = uy
| I P,q( ) (eu_I)P(ev_1)q

then |1.4| becomes

3. | uPv? eazt+b(;t+zz)+c;?+g(t,z)
(e*-1)P(ev-1)1

m_n
= Ogmznfﬂ ;E;Z‘B::: {(a+b)z ; (b*c)z} ’

where 80’1 {(a+b)z ; (b+c)Z} is defined to be the polygenic B - po

lynomial of total order p+q and total degree m+n.

The 8 - polynomials can be shown to obey,

ms::i:: {(a+b)z ; (b+c)Z} ,

|3.3] zAB::: {(a+d)z ; (b+c)z}

|3.4]  Zasl’l {(a+b)z ; (b+e)z}

“Bi:g:i {(a+b)z ; (b+c)z} , and

z, z, .Ps4q . 1 = p-1l,q-1 . s
|3.5] A “A Bm’n {(a+b)z ; (b+c)z} = man_l’n_1 {(a+b)z; (b+c)z} .

Equations |3.3| , |3.4] , |3.5] may be symbolically written as

|3.6| (BP,q + E)H{(BPNI + oz 1)m - (Bp'q . z)m}

= m(eP 109 4 ) (P19 4 BT

13.7)  (8P*% + 2)™((8P9 + Z + N - (871 + T}
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= n(eP71rq 4 5" (gP7lea 4 gyn-l

and
|3.8] {(8P*% + z + 1)"- (8P %+ 2)P}{(gP29+ Z + 1)"- (pgP29+ Z)T)

- m_n(Bp-l,q-l . z)m-l (Bp-l,q-l + -i)n-l

respectively.

THEOREM 3.1. Polygenic B - numbers obey the following recurrence
. relations.

Pyq P4 m _ .Psqy p-1,q
|3.9] so:n (8P + 1) Bm:o} m(Bm-l,n) ,

-1
|3.10] 6323 ¢(8®>% + )™ - P23 = n(el:37))

and

s -1,q-1
[3.11] €(eP %+ 1)%- 220308729 + 1)7- gP20) = men(8]7 037 ).

This is done by letting z = 0 in ,..<! , |3.7| , and |3.8] .

4. THE POLYGENIC BERNOULLI POLYNOMIALS. The polygenic Bernoulli
ﬁolynomial B::g { (a+b)z ; (b+c)z} , of total order p+q and total
degree m+n , is obtained by letting g(t,t) = 0, in |3.2]

Thus

|4 1] uPyi azt+b(zt+zt)+czt
(u-1)P (v-1)1

m_n
- ) u v e
O<m+n<e mn! ‘m

'g {(a+b)z ; (b+c)Z} ,

defines a Bernoulli polynomial.

As a Bernoulli polynomial is a ¢ polynomial and a B8 - polynomial ,
the following results are readily obtained.

o

4.2 B9 ((asb)z 3 (b+c)E) = (BP9 + 2)® (@09 + )P,

where Bg’: are Bernoulli numbers obtained by letting z = z = 0 in
b

[4.1]
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14.3] 5= B2'd ((a*b)z 5 (b+c)Z} = m BR2Y | ((a+D)z ; (b+c)z}

[4.4] 'd ((a+b)z ; (b+c)Z} = n BR’R | {(a*b)z ; (b+c)z} ,

9
3z Bm, m,n-1
l4.5]  v28R:3 ((a*b)z 5 (b+c)Z} = 4 men BR2} |, ((a+d)z; (brc)z},

la.61  *a B2'3 ((a+b)z 5 (b*c)E} = m BRI ((a*b)z 5 (b*e)E}

B2 371 ((asb)z 5 (b+e)Z}

[]
=]

|4.7] Z%a Bg:g {(a*b)z ; (b+c)Z}

14.8]  *a®aBR’3((a*b)z; (b+c)Z} = men BT Tl (asb)z; (bre)T)

m (BP'I»q) ,

la.sl @D (@ . DT - B2 D) n-1,n

l4.10] (B2’D) @9+ - @0 = (Bp,q-i)

m,n-

A Bernoulli polynomial of total order zero and total degree m+n is
defined by

m-n

|4.11] B:,n {(a+b)z ; (b+c)z} = z"z" .

By repeated application of |4.6] , [4.7| , and |4.9] , the follow-
ing result is established. -

THEOREM 4.1, Ifm>pand n>q , then

|4.12] 24P Bﬁ'g {(a*b)z ; (b+c)z} = m(m-1)...(m-p+1)

B;:g,n {(a+b)z ; (b+c)z} ,

|4.13] 2a% BP*9 ((a+b)z ; (b+c)Z} = n(n-1)...(n-q+1)

Bg::_q {(a*b)z ; (b+c)z} ,

and

|4.14] 2aP 249 BP9 ((asb)z 5 (b+c)E) = it mepgntd
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Consider now the integral

z+1
J Bp'a {(a+b)z ; (b+c)Z} dz
z

1
m+

7 {BRs1 o{(a*b) (z+1); (b+e)z} - BR:T {(a+b)z;(b+c)Z}]

E%T Zp Bglg,n {(a+b)z; (b+c)Z}

BP™*9 {(a+b)2; (b+c)Z}

In particular let z =z = 0 , then
1

|4.15] J 33:2 {(a+b)z ; (b+c)z} dz = szi’q
0

Similarly,

1
[4.16] J BP*9 {(a*b)z ; (b+c)Z} dZ = B:'g‘l
0

5. THE COMPLEMENTARY ARGUMENT THEOREMS.
Consider Bg’g {(a+b)z ; (b+c)z} , then

5.1 uPv? ea(p—z)t;b{(p-z)E+Et}+cE§
(e"-1)P(ev-1)1

= Z u™v? pP:4 {(a+b) (p-2) ; (b+c)2}
O<m+n<w M!n! m,n P ’ *

Or,

! E:!: BP9 ((a+b) (p-z) ; (b+c)z}
O<m+n<e min! “m,n P ’

(-u)Pv? o-azt+b(-zE+Zt)+czt
(e™*-1)P(e¥-1)1

( 1m n
= 0<m§n<m ;!n!v Bi:g {(a+d)z ; (b*c)z}
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Thus the following. result has been established.

THEOREM 5.1. Finst Complementary Angument Theorem. A polygenic
Bernoulli polynomial obeys,

Is.2]  BP:1 {(a+b)(p-z) ; (b+c)Z} = (-1)™ BP*d ((a+b)z ; (b+c)Z} .

The following two theorems are obtained similarly.

THEOREM 5.2. Second Complementary Anrgument Theorem. ' The follow-
ing identity ie obeyed by a polygenic Bernoulli polynomial,

|5.3] B::: {(a+b)z ; (b+c)(q-Z)} = (-1)" B::: {(a+b)z ; (b+c)Z} .

And,

THEOREM 5.3. Thind Complementary Angument Theorem. For a polyge-
nie Bernoulli polynomial, we have

[s.4] B2 3((a*b) (p-z); (b+c)(q-2)} = (-1)"*"BR*3((a*b)z; (b+c)Z} .
’ »
In the next section polygenic n - polynomials are considered.

6. THE POLYGENIC n - POLYNOMIALS. 1In |1.4] , let

. +
16.1] £Psa - _____221:1_____
m,n (eu‘”)p(eu\”)q

then |1.4]| becomes

l6.2] A eazt+b(z€+2t)+c§€+g(t,i)
(e"+1)P(eV+1)?

m. n
* Oenbnee BTRT MDIE (24D 5 Gr0)D)

where nP’3 {(a+b)z ; (b+c)Z} , is defined to be the polygenic n -
polynomial of total order p+q and total degree m+n.

By methods similar to those in section 3, the following equations
are readily obtained.
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16.3  ®vn2:d(asb)z ; (b)) = P lad faeb)z ; (bec)T)

l6.4]  Fonrd((asb)z ; (b+e)T) = nB?271 ((arb)z 5 ()T}
Psq Psq,1y0 p.q = 2,P-1,q

|6.5] (ngra) {(aPraem)™ o oy = 227 ,
Psq P>q n , . Psdy - o.P»q-1

16.6]  (ng2g) {(n™*R+)T +m >0} = 2nyy

and

|6.7| {(np,q+1)m + n:.g}{(np'q+1)n Psq} = 4nP ioq -1

where . p,q is , the polygenic n - numbers of total order p*q and
’

total degree m+n , obtained by letting z =7z =0 in |6.2]

7. THE POLYGENIC EULER - POLYNOMIALS. In |6.2] let g(t) = 0 , then

2p+q
(e+1)P(ev+ 1)

azt+. (_+7t)+czt

[7.1]

m
* O<mfnce ‘THT ED’3 ((a*b)z 5 (b*c)Z}

where Ez’: {(a+b)z ; (b+c)z} , is defined to be a polygenic Euler
’

polynom%al of total order p+q and total degree m+n.

The polygenic Euler number Eg’: , of total order p+q , and total

.degree m+n is defined by

Psq9 - gP>sd P . q
|7.2]  ER'3 = EP: ((a*b)P/2 ; (b+c)¥/2)

Polygenie C - numbers C:’g are obtained by letting z = zZ =0 in

|7.1] . Thus
P>q o 9P+q gPsdrg.
|7.3] Coa \;- Ep al0;0} .

The following results are readily obtained,
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[7.4] EP°3 {(a+b)z ; (b+c)Z} = (1/2CP*%4z)™ (1/2cP*%z7)®

|7.5] ﬁzﬁz:: {(a*+b)z; (b+c)Z} = lmnﬁzjg'n_lﬁ(a+b)z;(b+c)i} ,

|7.6] v'v?E;::{(a+b)z;(b+c)i} = E::;’q-l{(a+b)z;(b+c)i} .
Define
[7.7]  EJ’0 ((a+b)z ; (b+c)z} = 2" 2"
then
z? 23 p.q : - m =n
17.8] v %v E {(atb)z ; (b*c)z} =z Z° .

THEOREM 7.1. (I) Finst CompLementarny Theonrem.
[7.9]  EP*d{(a+b) (p-2);(b*c)Z} = (-1)“E:’gf(a+b)z;(b+c)iJ ,
(II) Second Complementary Theonrem.

|7.10] Ez::{(a+b)z;(b+c)(q-i)} = (-1)“E§::{(a+b)z;(b+c)2) ,

(I1I) Third Complementary Theorem.
17.11]  ER*30(a*b) (p-2); (b+c) (a-%)} = (-1 PEP’d((a+b)z; (b+c)Z} .
The proofs are similar to those in Section 5.

8. THE THEOREMS OF EULER-MACLAURIN FOR POLYGENIC POLYNOMIALS.

Define

. Bi»o - g2l - ,
|8 1| 0,3 Jso 0

for all i and j, then it can be shown that

1,0}

18.2] 52 P(z,7) = P(z+B 0} - PlzewsBD0 ; 74

where P(z,z) is a polygenic polynomial of total degree m+n.
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Hence
|18.3] 2 P(z+w;Z) = P{z+w+B}*041 : 2+B1’0}-P{z+w+B1’o;2+Bl’0).
3 (z+W) . )

Now, if m > n , then by Taylor's theorem we have

P(z+B1'0 3 z+p120

R O R A -~ R I

1,0

1,0 3 9. m
(B7*" =~ + B =)
e — 2 o2

P(z,2) s
m!

or

|8.4] P(z+B'+0 ; 348120y = p(z;3) + B*0 2 P(z,7) +

Thus,
|8.5] 5%;%;7 P(z+w ; z) = 2AP(z;z) + Bi’g {(a+b)w ; (b+c)w}

z ) = 1 Ll
A{§7 P(z;z)} +..... +toT Bm

The following result may now be established.

THEOREM 8.1 The Finst Theonrem of Eulen-Maclaunin For Polygendic
Polynomials. If P(z,z) is a polygenic polynomial of total degree
m+n , where m > n , then

- - 1, ) -
|8.6] 3> P(z,2) = %aP(z,3) + Bl,ig 2At2 P(z,2)) ...,
1 1,0 z f .=
* o Bm,O A{;;E P(z;z)}

This is done by letting w =W = 0 in |8.5] .

,0 ranmaZ ey 30 -
o{(a+b)w 3 (b+c)w)A{— P(z,2)}.
’ B azm N
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THEOREM 8.2. The Second Theorem of Eulen-Maclaunin For Polygenic

PoLynomials. If P(z,z) is a polygenic polynomial of total degree
m+n , with n > m , then

F - z - 0,1 z -
18.7] 25 P(z,2) = *aP(2,2) + By’) 2ty P(2,1)} *+.....
+ B 32 p(z,3)) |

n O,n ain ’ *

The proof is similar to Theorem 8.1.
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