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ON QUASI-GALOIS EXTENSIONS OF COMMUTATIVE RINGS
by Yasuji Takeuchi

In the ordinary Galois theory of fields the notion of quasi-Galois
extension (in the other words, normal extension) plays an important
role. Auslander, Goldman Chase, Harrison, Rosenberg and others
have developed Galois theory of commutative rings. On the one hand
Villamayor and Zelinsky studied weakly Galois theory of commutat1ve
rings. However the author thinks that in their theory there is no
explicit notion corresponding to quasi-Galois extension of fields.
Recently he studied on a characterization of the notion of Galois
extension of commutative rings {5} . It suggests a possibility for ,
extending the notion of quasi-Galois extension of fields to the case:
of commutative rings. In this paper we shall try to do it.

In our first section we shall introduce a notion of quasi-Galois ex-
tension of commutative rings. In our second section we shall extend
to our case theorems concerning to fixed rings in theory of fields.
In our final third section we shall study on relations between Ga -
lois extensions and quasi-Galois extensionms.

In this paper we shall assume that all rings have the identity and
are commutative. If R is a commutative ring and if S is a R-algebra
Aut (S) will denote the group of all automorphisms of S over R. If
T 1s an integral domain, <T> will denote the quotient field of T.

DEFINITION. We begin with introducing a notion of quasi-Galois ex-
tension of commutatiﬁe rings.

\/
DEFINITION 1.1. Let R be a commutative ri@g and S a commutative R-

algebra that is integral over R. Let G be(fhe group of all automor-
phisms of S over R. Then S will be caZZed a ‘quasi-Galois extension

of R if, for any prime ideal p of R, the following conditions hold:

1) ‘If P'is a prime ideal of S lying over p, the quotient field
<S/P> i8 a quaai-GaZoia extension of <R7p>

2) G operates transitively on the family of all pripme ideals of S
lying over p, t.e. if P and P' are two prime ideals of S lying
over p, there is o ¢ G such that o(P) = P'. '

3) Any automorphism of S/P over R/p is canonically induced by an
element of G.

In particular we shall call S a purely inseparable extension of R
if, for any prime ideal p of R, there exists only one prime ideal P
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of 8 lying over P and <S/P> is a purely inseparable extension of <R/p>.

REMARK. Let S be a commutative ring and G a finite group of auto-
morphisms of S. If R is the fixed ring of S under G, then S is a
quasi-Galois extension of R {c.f. 1, n® 2, theorem 2} .

Let R be a commutative ring. R denotes the afine scheme induced
by R. Then there exists a canonical bijective correspondence bet-
ween the geometric points of R with value in a field K and the ho-
momorph isms of R into K. If p is a geometric point of R with value
in K, we shall denote with the same p the corresponding homomor -
phism; R — K and call it a geometric point of R with value in K
(or simply, a geometric point of R).

If S is a R-algebra, the afine scheme § forms canonically a R -
scheme. Let p be any geometric point of R. Then E:(S) will denote
the set of geometric points of S over p with value in an algebraic
closure @ of <Im(p)> . Theset E§(S) can be identified to the set
of homomorphisms P of S into @ such that the diagram

S

T\P

R — @
P

Il

is commutative where the vertical mapping is the structure homomor-
phism of R-algebra. If o is a R-automorphism of S, we consider a

right operation of ¢ on E:(S) by (Po)(x) = P(o(x)) for P ¢ E:(S) ,
X € S. Let G be a group of R-automorphisms of S. Then E:(S) con-

sists of the orbits of it's element under G i.e. E?(S) = UPPG.

THEOREM 1.2. Let R be a commutative iing and S a commutative R-al-
gebra that is integral over R. S is a quasi-Galois extension of R
if and only if, for any geometric point p of R, the set E:(S) con -
sists of only one orbit of it's element under G.

In particular, S is a purely inseparable extension of R if and only
if, for any geometric point p of R , Ez(s) congigts of only one ele-

ment.

Proof: The second statement follows easily from the first one. We
shall show the first property. The '"only if' part is proved simi-
larly as the corollary to theorem 2 of §2 in {1}. The "if" part re
mains. Let p be ahy prime ideal of R and P any prime ideal of S
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lying over p. If @ is an algebraic closure of S/P , the inclusion

_mappings of S/P and of R/p into @ induce a geometric point P of S
and a geometric point p of R, respectively. If Q is any R/p-iso- .
morphism of S/P into 8, Q also induces a geometric point Q of S, By
the hypothesis there is o € G such that P = Qo and so S/P = P(S) =
= Q(o(S)) = Q(S/P). Hence <S'/P> is a quasi-Galois extension field
of <R/p>. Let Q be any other prime ideal of S lying over p. Since
<S/Q> is an algebraic extension of <R/p>, there exists a R/p-isomor
phism Q': S/Q — Q. Then Q' induces a geometric point Q' of S over
p with value in @, so that there is t € G such that Pt = Q'. This
implies t(P) = Q. It follows similarly as above that any R/p-auto-
morphism of S/P is canonically induced by an element of G. This com
pletes the proof,

COROLLARY 1.3, Let S be a commutative ring, G a group of automor -
phisme of S and R the fized ring of S under G. If G is compact in
the finite topology, them S is a quasi-Galois extemsion of R.

‘Proof: Let {xl,xz,...,xn} be any finite subset of S. The hypothe-
sis implies that the family U2=1 Gx; of the orbits Gx; forms a fi-

Gxil of S generated by

nite set. If we put S, u.. “hring R|u¥i‘=1

the UT_. Gx, over R, we obtain o(S,.,) < "~ all ¢ ¢ G. Let
- i=1 i~y ‘ (x)

o
= "(x)
N(i) be the set of elements of G which fix every element ot S(x) "

AN

N(x) is a normal subgroup of finite index in G and so the factor
group G/N(x) can be regarded canonically as a group of automorphisms
of S(x). Then R is the fixed ring of S(x) under G/N(x), so that S(x)
is a quasi-Galois extension of R {c.f. the remark of Definition 1.1.}.
We consider the family {S(x)}(x) consisting of such S(x) for all fi.
nite subset = (x) = (xl,xz,...,xn) of S. The family {S(x)}(*) forms
canonically an injective set by the inclusion mappings. Then we
obtain that S is canonically isomorphism to lim S(x). \
Let p be any geometric point of R and P, Q two geometric points of
S over p. 'If g(;) is the canonical homomorphism : S(x) — S , Pg(x)
and Qg(x) are also geometric points of S(x) over p. We consider the
- 1 2 n(x) R £ G

sets Gy = {0Nm TN @ Neod T ¢ 0

i = § o . s s . Th _
Pg(x)o(x) Qg(x)}. G(x) is not empty and n(x) is finite e f?

‘mily {G(x)}(x) forms naturally a projective set, i.e. if S, € S(y),
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: . _— : : i _
the morphism A(x),(y)'G(y) G(x) is defined by A(x).(y)(a(y)N(y))

i R _ . .
* 9y)Nexy Then we have lim G, # 6. We obtain easily that any
element of lim G(x) induces canonically an automorphism t of S and

so Pt = Q.

COROLLARY 1.4. Let R be a commutdtive ring. If S is a quasi-Galois
extension of R and if T is a purely inseparable extension of R, then
S O.T is a quasi-Galois extension of R.

Proof: Let p be any iéometric point of R and P, Q two geometric
points of S ;T lying over p. If we denote with f the natural homo

morphism : T — S ORT , we have Pf = Qf since they are geometric

points of T over p. On the other hand if g is the natural homomor-
phism : S — S QRT , then Pg and Qg are geometric points of S over

p, so that Pgo = Qg for some o e Aut_(S). ‘This implies P(o ;1) = Q
where o QRI is the R-automorphism of S ORT induced by o and the iden

tity automorphism of T.

2. FIXED RINGS.

We begin with an extension of a well-known theorems in'theory of
fields.

PROPOSITION 2.1. Let S be an overring of R that ie a finitely gene
rated separable R-algebra. If S is a purely inseparable extension
of R, then we have S = R.

Proof: Since, for any maximal ideal m of R, Sm/mSm is a.separable
extension field of Rm/mRm and is purely inseparable over Rm/mRm, we

have S /mS =R /mR and so S =R + mS . Hence we obtain S = R,
m m m m m m m

PROPOSITION 2.2. Let R be a commutative ring and S a R-algebra. If
S is a quasi-Galois extension of R, then the fized ring of S under

the group G of all R-automorphisms of S is a purely inseparable ex-
tension of R.

Proof: Let p be any geometric point of R and P, Q two geometric
points of s over p. Then P and Q can be extended to geometric points
P' and Q' of S, respectively. Since S is a quasi-Galois extension of
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R, we have P'c = Q' for ¢ ¢ G and so P = Q. This proves our propo-
sition.

LEMMA 2.3. Let R be a commutative ring without proper idempotent -

and S a R-algebra. Assume that S is a direct sum of finite number

of indecomposable R-algebras which are isomorphic to each other as

R-algebras. If S is a finitely generated separable R-algebra, then
the fixed ring s is finitely generated as a R-module where G =

= AutR(S).

Proof: Let S = S1 ] S2 ® ... ® Sn be a decomposition as the assum-
ption. Then each Si is a Galois extension bf the fixed ring Ti of
Si under the group Gi = AutR(Si). Hence each Ti is finitely gene-
rated as a R-module. Now we take any R-isomorphisms oi: § — 5;
for i = 2,3,...,n and the identity mapping of S1 as ci. Set ai
= o{.(a{)'l for i,j = 1,2,...,n. Then oi is a R-isomorphism:

§; — Sj. We shall consider R-automorphisms 82 of S such that

aJi|si =07, aJilsj = c;.‘ and aJi|sk = identity mapping of S, (k#i,j)
for i,j = 1,2,...,n. Lec " " a subgroup of G generated by the Ei's.
Then G is a semi-direct product of H ana ... 7“ivect product of the
Gis. Hence we have S°¢ = (T1 ® ... 0 Tn)H = {t + Gf(t) + ...‘: Eg(t);\

te Ti} » SO -that s® is finitely generated as.a R-moéﬁle.

THEOREM 2.4. Let R be a commutative ring and S a commutative over-
ring of R which is a separable R-atgebra and is projective as a R-
modulec If S i8 a quasi-Galois extension of R, then R i8 the fixzed
ring of S under the group G of all R-automorphismes of S.

Proof: First we assume that R -has no proper idempotent. S is a
direct sum of finite number of indecomposable R-subalgebras. Hence

i P ) "r
we can write with a form S = §,” @ S, ® ... ® S_

where S, are~in-
decomposable R algebras such that Si and S\ (i#j) Qre not isomorphic

over R, and S i denotes a direct sum of n, copies of S;. If we put

Gi = Aut (S, 1), then G is 1somorph1c to the direct product of the
G' Let T be the fixed ring of S 1 under Gi‘ Then we have S¢ =
T, ® T ® ... ® T . Since each T, is finitely generated\as a R-mo-

dule, SG is so. Therefore it follows from (2.3) that s¢ ; R. In
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general R, the same conditions as our theorem are inherited uﬁder
the fibres Sx and R for any point x of' the Boolean spectrum of R.
Moreover the group of all Rx-automorphisms of Sx is equal to the

group G  of automorphisms of S, induced by the elements of G. Then

. G .
we have Rx = (Sx) X, since Rx has no proper idempotent. Hence. we

obtain R = s€ {c.f., 7} .

3. RELATIONS BETWEEN QUASI-GALOIS EXTENSIONS AND GALOIS EXTENSIONS.

Let R be a commutative ring, S a R-algebra and G the group of all
R-automorphisms of S. For any maximal ideal M of S, as usual,pT(M)
and Gz(M) (or simply, GT and Gz)’will denote the inertia group and
the decomposition group of M, respectively.,

! ' f
THEOREM 3.1. Let R, S and G be as qboveJ Then S is é quo{s ex -
tension of R with a Galois group G if jand only if S ie a'faithful,
projective, separable R-algebra and i a quasi~Galois extension of
R such that the inertia grouprT(M) of a maxzimal jdéal M of, S %y?ng
over any maximal ideal m of R reduces to the identity. = ',
Proof: The "only if" part follows from {2}, so that it is sufficient
to show the "if" part. It follows from (2.4) that R is the fixed
ring of S under G. Let M be any maximal ideal of S. If we putm =
= RN M , then S/mS is a finitely generated separable R/m-algebra so
that the number of R/m-automorphisms of S/mS is at most finite. Now
each element (# 1) of G induces a non-trivial R/m-automorphism of
S/mS. Hence G is finite. Furthermore the inertia group of any maxi
mal ideal of S reduces to the identity, since all inertia groups of
maximal ideals of S lying over a maximal ideal of R are conjugate to -
each other. This completes the proof.

COROLLARY 3.2. Let S be a Galoies extension of R with the group of
all R-automorphisms of S as a Galois group. If R is a field, then
8o 18 S.

THEOREM 3.3. Let S be a Galois exteneiéﬁ‘af a ring R with a Galois
group G and T an intermediate ring of S and R. Then there exists a
normal subgroup N of G with T = sV if and only if T i8 quasi-Galotis
and separable over R.

Proof: The "only if" part is trivial. It is sufficient for proving
the "if" part to show o(T) = T for all ¢ ¢ G. Let p and P be the na
tural homomorphisms : R — S/M and T — S/M, respectively, for any .



175

maximal ideal M of S. Then p is a geomeg&ic point of R and P is
also a geometric point of S over p. On the other hand, if f is the
natural homomorphism: ¢(T) — S/M, then f¢ is also a geometric
point of T over p. Since T is a quasi-Galois extension of R, we
obtain Pr = f¢ for some 1t e‘AutR(T). Then P(T) = Px(T) = £(5(T))
and so T + M = ¢(T) + M. Now let m be a maximal ideal of R and
{MI’MZ"°"Mn} the set of all maximal ideals of S lying over m.Then
S/M, @ S/M, @ ... ® S/M, is a Galois extension of R/m with a Galois
group G. Hence there exists a canonical bijective correspondence
between the separable R/m-subalgebra of S/M ] S/M ® ... ® S/M

and the separable R-subalgebra of S. This 1mp11es that T and a(T)
coincide, since the natural images of T and ¢(T) in S/mS coincide.

PROPOSITION 3.4. Let R be a commutative ring and S a commutative
R-algebra. If S is weakly Galois over R {e.f. 7} , then S is a
quasi-Galois extension of R. Conversely if S is a faithful, projeec
tive, separable R-algebra and is a quasi-Galois extension of R,then
S i8 weakly Galois over R.

Proof: The first statement is trivial {c.f. 7} and the remark of
Definition 1.1. Assume that S is a faithful, projective, separable
R-algebra and is a quasi-Galois extension of R. Then it is clear
that, for any point x of -the Boolean spec¢trum of R, the ‘properties
are inherited under the fibre S {c.f. 7} . Hence the fibre R is
the fixed ring of S, under the group of all R automorph1sms of S .
Then we have p(S )G = Homp, (S S ) and so p(S)G = Hom (s,S) where
p: § — HomR(S S) denotes the usual regular representat1on of S
and G = Autp (S). This completes the proof.

REFERENCES

{1} N.Bourbaki. Algébre commutative, Chap. 5-6, Hermann Paris 1964.
{2} s.u.Chase, D.K.Harrison and A. Rosenberg. Galo1s theory and Ga-
lois cohomology of commutative rings.Mem.Amer.Math.Soc. N°52

(1965) 15-33,

} D.K.Harrison. Abelian extension of commutative rings. ibid.

} N.Jacobson. Lecture in abstract algebra, Vol., III, Nostrand New
York 1964.

} Y.Takeuchi. A note on Galois coverings (to appear). :
} o0.villamayor and D. Zelinsky. Galois theory for rings with fini-
tely many idempotents, Nagoya Math. J.,Vol.27 (1966) 721-731.
(7} femmmmmeeee . Galois theory for rings with infinitely many idem-

/ potents.
{8} 0.Zariski and P.Samuel. Commutative algebra I, II. Nostrand,
New York (1960).

Universidad de Buenos Aires.‘
Osaka Kyoiku University.



