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INTRODUCTION. In this paper, which has a purely theoretical aim
and interest, we develop the rudiments of the general Structure-
Semantics (meta) adjointness of Categorical Algebra. We do so by
means of two different and parallel techniques, one using the con
cept of Monads (often called Triples, sometimes Standard Construc
tions, and some other times Triads), the other using the concept
of Theories. We then relate (specifically) these techniques and
prove them to be equivalent.

We do all this in the enriched context of a V-world, that is, our
categories are V-categories and our functors are V-functors, where
Vis a given (fixed) closed (symmetrical monoidal closed) category

V-Monads have already been considered in many places in the litera
ture, [1] [3] [6] [8] and probably more. In [8] a Semantics-Structu-
re (meta) adjointness is established in which the Structure (meta)
functor is only defined on V-functors which have a V-left adjoint.
Here, in sections §1 and §2 we have reproduced parts of Chapter II
of [3] , where we developed the Semantics-Structure (meta) adjoint
ness by means of a technique relying heavily on the concept of Kan
extensions. Structure is defined on the broader domain consisting
of those V-functors for which the (right) Kan extensions of them -
selves along themselves exist . The Semantics-Structure (meta) ad
jointness is given by (essentially) a direct instance of the ad -
jointness of .this Kan extension.

V-Theories have not been considered yet in the literature. We in-
troduce them here, and in doing so we have developed in detail the
case in which the V-category involved is the base category V. We
did so because of certain peculiarities (due to the presence of a
V-codense cogenerator in V°P) which are not present in the more ge-
neral case. These peculiarities allow us to styess the similari-
ties with the first and original treatment of the subject (at least
‘in its modern form), conceived by Lawere ([71) in his work on Al-
gebraic Theories in the category of sets. Here the concept of co-
tensors takes the role of products. A V-theory in V is a V-catego
ry with the same objects as V and in which any object is a coten-
sor of the unit object I. An algebra is then a cotensor preserving
V-functor into V. We develop in sections §3 and s4 a Semantics-
Structure (meta) adjointness in this context.



In section §5 we prove the equivalence referred to at the beginning
of this introduction,and in doing so we take advantage of the (sim-
ple) equivalence between the structure (meta) functors to deduce
the equivalence of the two semantics. In this way we avoid the
need for the more complicated theorems of V-triplability and charac
terization of V-categories of algebras.

In section §6 we (briefly) indicate how to generalize these results
to the general case of a V-theory in a V-category A, adopting in
this case the V-versions of what have been considered as theories
and algebras in [9] .

Throughout this paper (although it is not always necessary) we as-
sume our base category V to be complete (all small inverse limits)
and well powered. All the concepts and results (as well as the no-
tation) of V-category theory used here can be found in [3]. All
the logically illegitimate constructions, preceded here by the word
(meta), become licit mathematical objects in any of the current
foundations suited for category theory.

§1. Semantics of V-Monads.

§2, The V-Monad Structure.

§3. Semantics of V-Theories.

54, The V-Theory Structure.

§5. Equivalence between the V-Monad and the V-Theory techniques
of producing a Semantics-Structure (meta) adjointness.

6. Remarks about V-theories in a general V-category A.

V-MONADS. Given a V-category A, recall that a V-monad in A is a V-
endofunctor A — A together with a pair of V-natural transforma -
tions TT ¥ T and idA 4 T, u is associative and n is a left an right
unit for u in the sense that the following diagrams commute:

T
T 2L 77 T L= TT T =Sy TT

b AN e NI
v
TT == T W T v T




We write T = (T,u,n) and call ® the multiplication and n the unit.
A morphisms of monads T $ T'is a V-natural transformation T 3 T'
such that the diagrams

TT —90 T'T! T =g>4'rv
N
l u "u' and \\gl/// n'  commute.
—¢
T > v idy

V-monads in A with morphisms of monads between them form a (meta)
category that we denote M(A).

§1. SEMANTICS OF V-MONADS.

Given a V-monad T = (T,u,n), a T-algebra is an object A€A together
with a T-algebra structure, that is, a morphism TA 2 A, associative
and for which nA is a unit, in the sense that the diagrams:

TTA —2—s TA A-DA L Ta
luA 1a and \Qj /// a commute.
TA —2— A A

We write A = (A,a) and call A the underlying object.

i - f . £ .
A morphism of algebras A > B is a map A > B in A such that the dia
gram

TA —%, TB
1 a l 8 commutes.
f

T-algebras and morphisms of algebras form a category AT provided
with a functor AT -UT A, UTA =A , u'f = £, AT is a V-category
and U" a V-functor by defining AT(A,B) T A(A,B) to be a V-equal-



izer of the pair of maps:

A(A,B) -———————+ A(TA,B)

A

A(TA,TB) -

uT is obviously V-faithful and we call it the forgetful functor.

The following prop051t10n establishes the intuitive _fact that V-
functors ¢ ¥ AT are the same thing as V-functors ¢ 3 A together
with a V-natural T- algebra structure TS 3 S.

PROPOSITION 1.1. ' Given a V-functor C » _As, S admite a Lifting into
the T-algebras, that ie, a V- funector ¢ § AT such that UT =35, if
and. only if there 18 an action of T on S, that is, a V-natural
transformation TS % S such that the diagrams.

Ts

TTS === TS S === TS

u us ns and dd l s commute.
v v v

TS == § h S

Proof. It is clear that 1n both cases we have the same data, i.e.,
a family of arrows TSC -3&, SC, Ce€c, and that the equations of T- al
gebra for each one of the sC are exactly the equations of T-action
for s. Consider now the diagram:

ccc,0) —— AT (5c,3D)
s (1) u’
A(sc,SD)\\\\\\\\\\I\\\$
AGCO) A(TSC,TSD)

A(TSC,SD) A (D, sD)



S equalizes the two maps of diagram (2) (that is, s is V-natural)
if and only if there is a map S making diagram (1) commutative
(that is, if there is a V-functor structure for the function
C~-TSC 28 SC). This completes the proof. .E.D.

REMARK. Since UT, being V-faithful, reflects V-naturality, it
follows that V-natural transformations § $ i are the same thing
that V-natural transformations S 3 H such that the diagram

commutes.

The identity V-functor AT ig AT is the 1lifting of UT, and so there
is an action TU' = UT, ul = a.

Also, since TT 57T is an action of T on T, there is a 1lifting of T
into the T-algebras A f» AT, UTFT = T, FTh - (TTA 2A5TA). Tt is
clear that uFT = u. One of the equations in the definition of an
action is exactly diagram (1) above for u, and so there is a V-na-
tural transformation FTUT s id, UTe = u, that, together with

ja 3 UTFT, establishes the fact that FT is V-left adjoint to UT

TFT T

U
\\\U € is the other
—_— U

equation in the definition of action, and

U
T
The triangular equation nu

T T T TT
4
F n /// \\\ TZ// \\C
id id
F e talked downstairs is T =—> T

So we have just proven the following:
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PROPOSITION }.Zi The V-functor UT has a V-left adjoint FT and the
V-monad (UTF ,U eFT,n) ig equal to T. Q.E.D.

We call the V-functor FT the free functor and a T-algebra of the
T
form F A a free algebra.

Given a;morphism of monads T' ¢ T it is trivial to see that

1] . .
TfUT : TUT = U 1is an action of T' on UT, and so,. there is
a V-functor, denoted A¢, which makes the triangle:

A commutative.

Given a composite ¥+¢, the V-functors AY"?® and A%-AY both correspond
to the same action, and so, they are equal. The assignment of

T
AT U to a V-monad T and of A% to a morphism of V-monads ¢ is
then a contravariant (meta) functor between}b(A) and the (meta)
comma category (V-Cat,A):

opc;m
JO(A) F—— (V-Cat,A) ;

the semantics (meta) functor.

IfT $ 1 is a morphism of V-Monads and T'S 25 is an action of T'
on S; the composite TS g5, T's =% s is an action of T on S, and it
is not difficult to check the following:

PROPOSITION 1.3. The one to one and onto correspondence

s =& (M)
(Proposition 1.1)
TS =.S
i8 natural in T with respect to morphisms of V-monads. (Where the

above arrow is understood to be a map in (V-Cat,A) and the above

double arrow an action of T on S).



§2. THE V-MONAD STRUCTURE

S
Given a V-functor C -~ A, the right Kan extension of S along itself,
RanS(S)
——— A, if it exists, has a structure of V-monad given by:

s 44 ¢
T i and
% ja = Rang(S)

RanS(S) ~id, RanS(S)

RanS(S)e T,
Rang (S) Rang(S) § ————— Rang (S) S

> S

RanS(S) RanS(S) —— RanS(S)

(where T, is the one to one and onto correspondence which defines
the right Kan extension).

We write T (Ran (S),u,n) and call it the codensity V-monad. If
it exists, we say that S admits a codensity V-monad. We say that
S is strongly tractable if, furthermore, RanS(S) is preserved by

the representables A Aiéi;l V. (Cf.[3], Proposition I.4.3: If A
is cotensored, a right Kan extension with codomain A is preserved
by the representables if and only if it is point-wise, that is, if
and only if the Kan formula to compute it as a point-wise end of

cotensors in A can be used).

A complete proof of the fact that the unit and multiplication defi
ned above for Rans(S) actually define a V- monad as well as of the
next two propositions is to be found in [3].

PROPOSITION 2.1. Given any other V-monad T in A, actions of T on
S and morphisme of V-monads T » TS correspond to each other under

T :
o
r —_—
o) T===>RanS(S) Q.E.D.

G . F
PROPOSITION 2.2. If a V-functor B + A has a V-left adjoint A + B,
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id a4 GF , FG S id, then it is strongly tractable and the codeneity
V-monad is (GF,GeF,n). Furthermore, RanG(G) ig preserved by any
V-funetor with domain A. Q.E.D.

THEOREM I. Given a V-functor C $ 4 which admits a codensity V-mo-
nad, for every V-monad T??@iA),'there ig, naturally in T, a one to
one and onto correspondence between morphisms of V-monads T = TS

and V-functors C ~+ AT making the triangle
T

C —— A
AT
A

commutative, that is, maps S~+G%(T) in (V-Cat.A). As usual, we

S +Gm(T)
indicate this by —_—
T~>T
S
Proof. Immediate from Propositions 1.3 and 2.1. Q.E.D.

Let é;r(V-Cat,A) be the full (meta) sub-category of (V-Cat,A)

whose objects are the V-functors admitting a codensity V-monad.
From propositions 1.2 and 2.2 we know that the semantics (meta)
functor(sh takes its values in é;;(V-Cat,A). The assignment of

TSQ/Q(A) to a V-functor C § A becomfs then, by Theorem I, a con-
travariant (meta) functor, denoted(Eh, in such a way that the one
to one and onto corresponce (in Theorem I) is also natural in §
C;h is then a left adjoint to semantics, and it is called structure.

Gy
—_—

S TET B (v-cat,A)

S :
Given a V-functor C + A in ézé(V-Cat,A), the codensity V-monad

TS =C§m(8) is the structure V-monad of S.

Notice that the (meta) adjunction:

S -——->®m(r)

T —— G, (8)
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is, essentially, just the one to one and onto correspondence which
defines the right Kan extensions RanS(S)

It 1s immediate from Propositions 1.2 and 2.2 that the arrow
T -G G;(T) in/fG6(A), T » TUT, is the equality. That is, the coden

sity V-monad of UT is T,
The arrow S *-Gﬁcﬁ(S) in ég;(V-Cat,A)

1

S
s x (1)
Z T is given by the actlon Ran (S) § =R 3,

US
\\\fi&
A
The V-functor § is called the eemantical comparison V-functor of S.
When S has a V-left adjoint we have:

c

PROPOSITION 2.2. Given any V-functor B $ A with a V-left adjoint
A £ B, (e,n): F _IV'G s the semantic comparison V-functor of G,

G Ge
B & AlG is given by the action GFG = G (that ie, Ge = 1, (id)) ,
and is unique making the following two triangles commutatzve-

G Ts G
B —— A B AG

VA Vs

A

(a simple proof of this fact is given in [3], Proposition II.1.6).
.E.D.

V-THEORIES. By a V-theory in V we mean a pair (T,T), where T is a
V- category whose objects are the objects of V(that we will write
vt when we think of them as belonging to T) and where

Vw,v) I T(V ,W ) is a V-functor structure making the identity on
objects a cotensor preserving V-functor V°P T T.

We have then for each vt e T vt = T(v,1%) (where T,I1%) is the
cotensor (in T) of V with I ), and hence, the V-objects of mor -
phisms into 1t determine the whole V-structure of T. Specifically
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ag
we have T(Wt,Vt) = V(V,T(Wt,It)) (cotensoring isomorphism).

]
By a morphism of theories (T,T) - (T',T') we will understand a co-
tensor preserving V-functor T i T' sending 1t into It'; or, equi-

valently, any V-functor T i T' making the diagram
$

T 2 7

\\I /// T! commutative.
o

y°oP

V-theories in V with morphisms of theories between them form a (me
ta) category that we denotezz(v).

§3. SEMANTICS OF V-THEORIES.

Given a V- theory (T,7), a T- algebra is a cotensor preserv1ng V-
functor T i V. Since vt = Tw,I ), we have aV = y(V,a(l )) and
so o on objects is completely characterized by its value at 1t
Also; the composite vOP 2T y is cotensor preserving, and hence,
since I is a V-codense cogenerator of v°P, it is representable:
weT = V(-,a(I%)) (cf. [3], Theorem III.2.3). (a is cotensor pre-
serving if and only if o.T is cotensor preserving if and only if
a+T is representable).

We can then redefine a T-algebra as being an object A € y togethex
with a T-algebra structure, that is, maps

T(Vt,wt) $ V(V(V,A),V(W,A)) giving a structure of V-functor T %y
to the function on objects Vla~s Y(V,A), and making the diagram:

Tt wh —— V(V(V,A),V(W,A))

M “\\\\\:L (ii////ﬁii,A) commutative.

vw,Vv)

We write A = (A,q) and call A the underlying object.

A morphism of algebras A H B is a V-natural transformatlon o ji> 8.
It is completely determined by its value at I' and hence we can re
define a morphism of algebras as being a map A > B making the dia-
grams:



TE W) ———2 v vt,a),vmt,a))

8 v(Q,v(E,£))

v v,y ,vt,ey) LUGEHD Lyt Ay vwt,s))

commutative.

T-algebras and morphisms of algebras form a categofy V(T) provided

T

with a functor v(T) U, y , uTa = A , uTs = £, v(T) 4 a V-catego-
T

ry and UT a V-functor by defining V(T)(A,E) Y, V(A,B) to be the

It—projection of the (large) end:
v T
v @&,5) - jvtV(avt,evt) s va,By

That the above end exists can be seen as follows:

Consider the diagram:

T
V(A,B)

V(W,—) V(V")
VV(w,A),V(w,B)) (1)v,w V(V(V,A),V(V,B))
Il I
V(awt,suwt) v(avt, vt

f f ’
(a)\ A}

VTt ,vavt, ent)
it
Vvt why v v,ay, v, B)))
v(T,O)

Vv w,v),v(v(v,A),v(W,B))
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where the arrows f; f; f, and f3 are the maps which correspond by
adjointness to:

V(-,8W%) 0

TvE,wh) V(v (oWt W), v (avt,sut))

V(aVt,-) -8

Tovt,wh V(v (avE,evt),viavt,ewt))

vow,vy L VLB V=AY, y ey (v w,A) , U (W,B)),V(V(V,A),V(W,B)))

vow,v) LA, V(LB)  yey v (v,a),V(V,B)),V (VV,A),V(W,B)))

and where E is the intersection of all the equalizers of the two
maps in diagrams (1)y y-
bl

From diagram (1) (page 13) and the above definitions it is not di-
fficult to see that diagrams [a) and (b) commute. This, together

with the equation V(A,B) = VV(V(V,A),V(V,B)) (cf. [31)

t

(V-Yoneda Lemma) easily implies that E = Jvt V(avt,BV ) .

UT is the V-functor '"evaluation at It", and from the above cons -
truction it is obvious that it is V-faithful. We call it the for-
getful functor.

t
PROPOSITION 3.1. The T-algebras T TNV o) v gre the values of a

T
V-functor V E, V(T) , V-left adjoint to UT.

Proof.
v (M (7 vE,-),a) ~avt = V(V,A)

where the above (V-matural in o) isomorphism is given by the V-Yo-
neda lemma. Q.E.D

We call the V-functor FT the free functor and a T-algebra of the

form FTV = (T(Vt,It),T(Vt,-)) a free algebra.
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Given a morphism of theories (T',T') 3 (T,T) , it is clear that
for any T-algebra T $ V , the composite T' 3 T3V is a T'-algebra.
From the universal property of ends and the fact that UT' is
V-faithful it is easy to see that this function between the objects

t
of V(T) and those of V(T ) has a (unique) structure of V-functor
ve , -making the diagram

H

v v

N

v

commutative. Again, it is completely straightforward to check the

T
equation AR BTN ,» and so, the assignment of V(T) SN V to a
V-theory (T,T) and of ve to a morphism of V-theories is a contrava

riant (meta) functor betwéenES(U) and the (meta) comma category
(V-Cat,V):

G
GW)°%? —E ., (v-cat,v)

the semantics (meta) functor.

§4. THE V-THEORY STRUCTURE.

Given a V-functor C g V; we will say that it is tractable if for
any pair of objects V,W € V, the end

JC V(v (v,sc),vw,sc)) exists in V.

‘That is, if for any pair of objects V,W € v, the class of V-natu -
ral transformations between V(V,S( - )) and V(W,S( - )) is a set,
and furthermore, it is the underlying set of an object of V, name-
ly, the end displayed above.

There is no difficulty in checking that the objects of V together
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with the above end between them form a V-category, TS , the clone
of operations of S;

ToOvE WY - Jc V(v (V,5C),V(W,SC))

The collection of maps (which is a V-natural family):
vow,v) LS8 v v,s0),v (W,50))

1ifts into the end, providing a structure of (contravariant) V-
functor to the identity map between objects:

voP s T

TS has a V-left adjoint [ putting W = I in the definition of tracta
ble, it follows that JC v(v(v,sc),sc) = RanS(S)(V) (see Proposi -

tion 5.1) exists, then, for any other W,

V(W,I ¢ VV(V,50),8C)) = TWE,WE) = T4(vE,Tg(W)) ] and therefore

it preserves cotensors. We have then that the pair (TS,TS) is a
V-theory in V, V-theory which we call 'the structure of C Sy,

PROPOSITION 4.1. If a V-functor B $ V has a V-left adjoint V £ s,

then it is tractable and

TG(Vt,Wt) ~ B(FW,FV) ~ V(W,GFV)

Proof. JB V(V(V,GB),V(W,GB)) = JB v (B(EFV,B),B(FW,B)) ~ B(FW,FV)

The second isomorphisms given by the V-Yoneda Lemma. Q.E.D.

THEOREM II. Given a tractable V-functor C S , there is a V-func

tor C $ V(TS) making the triangle



5§ Ty

—_— |/

(M .
\s y's )
commutative

v

nd such that given any other V-theory (T,T) together with a V-fune

or € § V(T) making the triangle

c ——%—» v(T)
2
\S yUT :
v

commutative, there is a unique morphism of theories T $ TS making
the triangle

S (Tg)
_S,ys

(3 1 ve

G eommutative.

)
Proof. For any C € ¢ define §Cc € v(Tg) | & = (SC,a) where

o
TV, W) —£ v (v,s0),v(W,S5C)) is the C-projection of the end.

By'definition of Tg (page 17)

tl

S(v W € L vev,scy,vw,sc))

\\\\\\\ ///////1(- sC)
VW, V)

commutes, and so (SC,aC) is a Ts—algebra. The collection of maps
(which is a V-natural family)

ccc,c') $ vese,scry YOLt) ywev,sc),v(v,sc')) = Vg (V) acr (V)
1lift into the end V(TS)(QC,SC'), providing a structure of V-functor

to § whic.. (in particular) makes triangle (1) commutative,
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Given C § V(T) , GC =(SC,YC) , then, there is a unique

Tve, %) 3 T (v*. W) such that for all C € C, the diagram:

Tt,wth) 4. TSV, Wh)

4
e 4 l oc commutes

V(V(V,SC),V(W,SC))

(recall that a. was (by definition) the projection of the end).
But the commutative diagrams (4) are exactly the equation vt.5 = G,
that is, commutativity of triangle (3). .E.D.

Let GSJV-Cat,V) be the full (meta) sub-category of (V-Cat,V) whose
objects are the tractable V-functors. From Propositions 3.1 and
4.1 we know that the semantics (meta) functor(Si takes its values

in E%;V—Cat,V). The assignment of (TS,TS) E{E(V) to a V-functor
c $ V becomes then, by Theorem II, a contravariant (meta) functor,

WV,
denoted(Ef, left adjoint to semantics.
G
N
BW)?P & G v-cat,V)
—t

From the V-Yoneda Lemma and Propositions 3.1 and 4.1 it is clear
that the arrow (T,T) +(5¥Ei(T) inzg(v) , T > T T is the equality
. U
(or rather, an isomorphism). That is, the clone of operations of

T

U is T.

The arrow S +G€=‘t (S) in 61(V-Cat,V)_ , C $ V(TS) has been construc

ted in Theorem II and it is called the semantical comparison V-fungc
tor.
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§5. EQUIVALENCE BETWEEN THE V-MONAD AND THE V-THEORY TECHNIQUE
OF PRODUCING A SEMANTICS-STRUCTURE (META) - ADJOINTNESS.

First let us check that the domain (meta) categories of the two
structure (meta) functors coincide, that is, that they are both
the same full (meta) sub-category of (V-Cat,l).

PROPOSITION 5.1. Given a V-functor C $ V, then: S admits a coden-
sity V-monad if and only if S is strongly tractable if and only if
S is tractable.

Proof. The first two statements are clearly equivalent since any
right Kan extension with codomain V is pointwise.  That tractable
implies strongly tractable is easily seen by putting wt =1 in the
definition of tractable (page 16). The resulting end is just the
Kan formula for pointwise computing of RanS(S). Vice-versa, assum
ing that RanS(S) exists, since the representables preserve it, for
every V € V, RanS(V(V,S( - ))) exists, and, being with codomain v,
it is pointwise. Then, the pontwise Kan formula shows that S is

tractable. Q.E.D.

In order to relate the domain (meta) categories of the two seman-
tics (meta) functors it is in order to define the Kleisly V-cate-
gory associated to a V-monad in V (cf [81]).

Recall that given a V-monad T = (Tyu,n), the objects of V with the
following V-structure between them

(1)
KT(Wt,Vt) =" vw,TV)
def

constitute a V—category,KT , the Kleisly V-category of T. The maps

, T
vVw,Vv) V{©,nV KT(Wt,Vt) give a structure of V-functor V i» Ky to

the identity between objects,which,just by definition has a V-right
T

adjoint KT LIN7 sending vt into TV. The adjunction isomorphism is

given by the equality (1). The V-monad associated to the adjoint

T

pair fT, u = KT(It,-) is clearly T again.

The pair ((fT)Op,Kgp) is obviously a V-theory in V, and there is no
difficulty in seeing that the passage Mp(V) E&EZ(V),

Ke(T) = ((fT)OP,Kgp) is a (meta) functor [ the V-functor correspon-

ding to a morphism of V-monads T 3 T' is given by
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t yty V
K wt,ve LRV it vty )
On the other hahd, given any V-theory (T,T), the V-functor

t
T T(.17) VOP is a V-left adjoint to vor I 1 (the adijunction given

by the cotensoring isomorphisms T(wt,Vt) = T(wt,T(V,It)) g

g V(V,T(Wt,It)). Hence, we rediscover T by means of the formula

T = T(-,1%).

The following formal manipulation,

vev, TAm,IY 1Y) 21w, 1Y,Tv,1%)) = TwE,vY , proves that
the Kleisly V-category associated to the V-monad determined by the
V-adjoint pair o: T(-,It) ——{V T(-,It) 1s the dual of T, while the

commutativity of the diagram below

v (Q,nV)

vw,v) vow,T(Tv,1h,1h

¢ Qo
T(',I )
TAw,1%,7m,1%))

[where nV = o (T(v,1%) 3¢ T(v,1%) , v X 7(F(v,19.1")  (nV could
properly be called "the Gelfand transformation')]shows that the de
finition of fT produces in this case the V-functor T. Therefore we
wholly recover the starting V-theory (T,T). This implies that the
assignment of the V-monad T(T(-,It)Jt)to a given V-theory (T,T) is
actually a (meta) functorz;(V)&Ki}k(V) which together with the (me
ta) functor Kg¢ establishes an equivalence of (meta) categories bet
weenZ:(V) and/@(v). (Notice that this V-monad sends an object

W € V into the V-object of W-ary operations).

THEOREM 111. There is an equivalence of (meta) categories

) —%/%(V)
2
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between the (meta) categories of V-Theories in V and of V-Monads
in V such that the following diagram:

G (v)°P ‘\\\\\EEE\\\\\\\‘
Gt

2K |Ke iy %r = Sgr(V-Cat,V)

commutes up to natural isomorphisms.

Nk GG, . -G G,
2) Gy kK =~ G, Gt-m ~ G

m
where the (meta) functors(;7 G; are the respective semantics-struc
ture (meta) adjointness. C

Proof. The (meta) functors £K and K¢ have been defined and proven
to be an equivalence in the considerations made before the state -
ment of the Theorem

Since the semantics (meta) functors are adjoints to the structure
(meta) functors (Theorems I and IT), it will be enough to prove
equations 1) That is: Given a tractable (equivalently, strongly
tractable, Proposition 5.1) V-functor C § v:

a) The codensity V-monad of S is the V-monad associated by 2K to
the clone of operations of S. This is clear just by the defini -
tions involved (the assignment Vt-a-RanS(S)V was seen to be a V-

left adjoint to V°P If TS , see page 17),
b) The clone of operations of S is the dual of the Kleisly V-cate

gory associated to the codensity V-monad of S. Again, this is
clear just by the definitions involved '

(Tg (v, W) = JC V(V(V,SC),V (W,SC)) = Rang(V(W,S(-)) (V) =

= V(W,Rang(S) (V) = KTS(wt,vt)).'
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These ohservations complete the proof of the theorem. Q.E.D.

Notice that equations 2) in the theorem just proven mean that
given any V-monad, the V-category of algebras is V-isomorphic to
the V-category of algebras over the dual of its Kleisly V-category
and, vice-versa, given any V-theory, the V-category of algebras is
V-isomorphic to the V-category of algebras over the associated V-
monad.

§6. REMARKS ABOUT V-THEORIES IN A GENERAL V-CATEGQRY A.

We have observed that for any V-theory in V, voP I , the V-func-
tor T has a V-left adjoint. This is ultimately due to the fact
that I € V is a V-codense cogenerator of v°P: Also, for the same
reason, given any T-algebra T $ V, the composite voP T 12y isa
representable V-functor (cf.([3], Theorem III. 2.3).

We can define then a V-theory in A as a V-functor A°P I T, bijec-
tion in objects and having a V-left adjoint. Similarly, a T-alge
bra as a V-functor T $ V sueh that A°P T T $ Vv is representable -
(c£.[9]1). All of section §3 of this paper can then be carried over
with no great difficulty. In particular, the T-algebras form a V-
category and the forgetful V-functor (sending o into the represen-
ing obJect of o+T) has a V-left adjoint (which sends A € A into
T(A ,-), which 1s a T-algebra since the composite T(A -)+T is re-
presented by Tatea (T the V-left adjoint to T)). We obtain in
this way a Semantics (meta) functor which takes its values in the
(meta) sub-category of (V-Cat,A) of strongly tractable V functors.
On the other hand, any strongly tractable V-functor C + A is trac-
table (but not vice-versa) (exactly the same proof given in Proposi
tion 5.1 applies to this general case), and hence we can apply word
by word the Structure(meta)functor construct1on developed in section
§4 to strongly tractable V-functors C-»A In this case,the clone of
operations of S, ACP I§ TS is such that TS has a V-left adjoint
(sending At e TS into Rans(S)(A)) and hence it is a V-theory in A

according to our definition above. We obtain in this way a Seman-
tics-Structure (meta) adjointness between V-theories in A (having
a V-left adjoint) and strongly tractable V-functors into A, which,
is completely equivalent to the Semantics-Structure (meta) adjoint
ness developed in sections §1 and §2. Theorem III with A in place
of V holds exactly.
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If we do not require a V-theory in A to be such that A°P I T has a
V-left adjoint, then some new kind of phenomena appears which makes
the situation different than in the case of V-theories in V.

A T-algebra is defined in the same way, i.e., any V-functor T $ v
such that a-T is representable. T algebras form a V-category with
a forgetful V-functor which now in general will not have a V-left

t -
adjoint (the V-functors T.IL&.i.l,V are not T-algebras since

T(At,-)-T is not representable any more). This forgetful V-functor,
however, is still tractable (but not strongly .tractable), and we
obtain a Semantics (meta) functor which takes its values in the (me
ta) sub-category of (V-Cat,A) of tractable V-functors. The struc-
ture (meta) functor construction (54) applies exactly (in this case,

the clone of operations A°P I§ TS will not have a V-left adjoint)
and we obtain a Semantics-Structure (meta) adjointness between V-
theories in A and tractable V-functors into A which contains the
previous ones.
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