Revista de la Unión Matemática Argentina Volumen 25, 1970.

IDEALS AND UNIVERSAL REPRESENTANTIONS OF CERTAIN C*-ALGEBRAS Horacio Porta*

Dedicado al Profesor Alberto González Dominguez

INTRODUCTION. Let H be a Hilbert space and B(H) the C*-algebra of all bounded linear operators T: $H \rightarrow H$. Consider the following two problems:

- A) Find all the closed two-sided ideals of B(H).
- B) For each closed two sided ideal J ⊂ B(H), find all the representations of the algebra B(H)/J in some Hilbert space.

The first problem has been solved by B.Gramsch [11], [12] (see also E. Luft [16]). The second has not yet been solved, even for the case $J = \sqrt{0}$. See, however, [17, §22], [18], [20].

The solutions to A) obtained by Gramsch and Luft are based on a <u>ge</u> neralization of compactness: the ideals being characterized in terms of the "degree of compactness" shared by their constituent <u>o</u> perators. The technique involves lengthy topological arguments . We remark that such generalizations of compactness abound: [21] , [8], [9] , [14] , [23] , [12]. In this note we describe an alternate approach to problem A) having only traditional notions of Hi<u>l</u> bert space (projections, rank, etc.) as main ingredients, thereby avoiding generalized compactness. The arguments are considerably shortened.

Concerning problem B), except when J is the only maximal ideal of B(H), the dimension of the universal representation of B(H)/J is found to be equal to 2^{2^d} , where $d = \dim H$. Observe that when J is the ideal of compact operators, there are faithful representations of B(H)/J of smaller dimension [20]. This is probably true for all non-maximal J.

\$1. PRELIMINARIES AND NOTATION.

We shall observe the standard terminology for Hilbert spaces, as

Supported by NSF Grant GP 20431.

used in [6]. All throughout, H will denote a fixed complex Hilber space of dimension dim H = d = \aleph_{δ} , where δ is some ordinal number $\delta = 0, 1, \ldots$ etc. B(H) will denote the C*-algebra of all bounded li near operators T: $H \rightarrow H$, C(H) and F(H) the two-sided ideals of B(H) of all compact operators and operators with finite rank, respectively. C(H) is closed in B(H) and F(H) dense in C(H). Greek letters α , β , γ will denote ordinal numbers in the interval [0, $\delta+1$], so that $\aleph_0 \leq \aleph_\alpha \leq \aleph_{\delta+1}$. No misunderstanding should arise from a second use of β , in §3, to denote the Stone-Čech com pactification βX of a topological space X. Let $\alpha \in [0, \delta]$, K Hilbert space of dimension \aleph_{α} ; we will denote by $m_{\alpha} \subset B(H)$ the set $m_{\alpha} = \{T\}$ of all operators of the form T = QS, where S: H \rightarrow K, Q: K \rightarrow H are linear and bounded. Obviously $\alpha \leq \beta$ implies $\mathbf{m}_{\alpha} \subset \mathbf{m}_{\beta}$. According to [19] or [1, s5], m_a is a two sided ideal of B(H), and if $P \in B(H)$ is a projection (= idempotent operator) with rank $P = \aleph_{n}$ then ([19,1.3] or [1,5.14]), $m_{\alpha} = \{TPT' ; T,T' \in B(H)\}$. It follows from this characterization that $T \in m_{\alpha}$ if and only if the closed subspace generated by TH = {Tx ; $x \in H$ } has dimension at most \aleph_{n} , and this at once implies that all m_a are norm closed in B(H) (in fact, they are also sequencially closed in the strong topology [5,§3, N° 1] of B(H)). If S is a set, Card S denotes the cardinal power of S. We assume the generalized continuum hypothesis , $(2^{\aleph_{\alpha}} = \aleph_{\alpha+1})$ although it is not used until 2.7.

§2. IDEALS OF B(H).

Let J be a two sided ideal of B(H). It is well-known that J is <u>ge</u> nerated by the projections in J ([5, Chap. 1, \$1, Ex. 6], [4], [25]). Actually, the same proof gives a better result:

2.1. LEMMA. Let $J \subset B(H)$ be a two sided ideal and $T \in J$; then T can be approximated (in norm) by operators of the form TP, where P is a hermitian projection and $P \in J$.

Proof. (cf. [16, Lemma 5.2]): Set S = T*T and let S = $\int_0^{\infty} \lambda dP_{\lambda}$ be the spectral decomposition of S ≥ 0 . For $\varepsilon > 0$, define K \subset H by K = P_{\varepsilon}H and let K¹ denote the orthogonal subspace. Then : a) K reduces S and $\|S\|_K \| \leq \varepsilon$, b) for $x \in K^1$, (Sx,x) $\geq \varepsilon(x,x)$. It follows from b) that $\|Tx\| \geq \varepsilon^{1/2} \|x\|$ for all $x \in K^1$ and therefore TK^{\perp} is closed and T: $K^{\perp} \rightarrow TK^{\perp}$ is invertible. Let $L \in B(H)$ satisfy LT = identity on K^{\perp} . Then, if P denotes the orthogonal projection on K, we have LTP = P, whence $P \in J$, and $\|T-TP\|^2 = \|T\|_K \|^2 = \|S\|_K \| \leq \varepsilon$ the lemma follows.

2.2. REMARK. Assume that H is separable, and let $J \subset B(H)$ be a two sided ideal. If J contains a projection of infinite rank, then J contains also the identity I: $H \rightarrow H$, and therefore J=B(H). On the other hand, if all projections in J have finite rank, then, by Lemma 2.1, J is contained in C(H). This shows an old result due to J.W. Calkin [2] : C(H) is the largest proper two sided ideal of B(H) (cf. [17, Chap. IV, §22, N° 1]).

Consider a two-sided ideal $J \subset B(H)$. We will associate to J an ordinal number h(J) and a two-sided ideal *J with some properties . First. the set of ordinals $\{\alpha \in [0, \delta] \ ; \ m_{\alpha} \subset J\}$, if not empty, is an initial segment, and therefore an ordinal h(J) is well determined by the properties a) $-1 \leq h(J) \leq \delta + 1$; b) h(J) = -1 if and only if $J = \{0\}$; c) for $J \neq \{0\}$, $m_{\alpha} \subset J$ if and only if $\alpha < h(J)$. If $J = \{0\}$; c) for $J \neq \{0\}$, $m_{\alpha} \subset J$ if and only if $\alpha < h(J)$. If $J = \{0\}$, set $*J = \{0\}$; if $J \neq \{0\}$, and h(J) = 0, set *J = F(H); finally, if h(J) > 0, set $*J = \cup \{m_{\alpha}; \alpha < h(J)\}$. It is clear that for all J, *J is also a two-sided ideal and $J \rightarrow h(J)$ and $J \rightarrow *J$ are monotonic: $J \subset K$ implies $h(J) \leq h(K)$ and $*J \subset *K$. Also, it is easy to see that $h(m_{\alpha}) = \alpha + 1$.

2.3. LEMMA. For all J we have $*J \subset J \subset \overline{*J}$.

Proof. If h(J) = 0, then (Remark 2.2) $J \subset C(H)$ and therefore $\overline{*J} = \overline{F(H)} = C(H) \supset J$. Assume h(J) > 0 and take $T \in J$; according to Lemma 2.1, there is a projection $P \in J$ with $||T-TP|| < \varepsilon$, for prescribed $\varepsilon > 0$. Clearly $m_{\alpha} = \{TPT'; T,T' \in B(H)\} \subset J$, if rank $P = \aleph_{\alpha}$, and therefore $T \in \overline{*J}$. Thus $J \subset \overline{*J}$, as desired.

2.4. THEOREM ([11], [16]). The family \mathcal{L} of all closed two-sided ideals in B(H) is well ordered by set inclusion. An ideal in \mathcal{L} is of the form \mathbf{m}_{α} if and only if it has an immediate predecessor in \mathcal{L} , different from $\{0\}$.

P: oof. We will show that the mapping h: $\mathcal{L} \rightarrow [-1, \delta+1]$ defined by h: $J \rightarrow h(J)$ is an order isomorphism onto $[-1, \delta+1]$. First, Lemma 2.3 shows that h is one-to-one on closed ideals: h(J) = h(K) implies *J = *K and therefore J = $\overline{*J} = \overline{*K} = K$. It was already observed that h is monotonic: $J \subset K$ implies $h(J) \leq h(K)$. The converse also holds: $h(J) \leq h(K)$ implies $*J \subset *K$, whence $J = \overline{*J} \subset \overline{*K} \subset K$. We show now that h is onto. Let $\beta \in [-1, \delta+1]$ and define $J_1 = \bigcup \{m_{\alpha}; \alpha < \beta\}$, $J = \overline{J}_1$. Clearly $*J \subset J_1$ and therefore $h(J) \geq \beta$. Let P_{β} be a projection of rank \aleph_{β} . Then $\|P_{\beta} - T\| \geq 1$ for all $T \in m_{\alpha}$, for any $\alpha < \beta$. This is a general fact about closed i deals; if P is an idempotent and P does not belong to a closed two sided ideal K, then $\|P - T\| \geq 1$ for all $T \in K$. The proof is as follows: if $\|P - T\| = a < 1$, then $\|(P - T)^n\| \leq a^n + 0$ and $(P - T)^n = P - S_n$, with $S_n \in K$. Thus $S_n \rightarrow P$ and $P \notin K$, a contradiction. Hence P_{β} does not belong to the closure of J_1 , that is, to J and therefore $m_{\beta} \notin J$. Hence $h(J) \leq \beta$, and so $h(J) = \beta$, proving that h(J) covers $[-1, \delta+1]$. Finally, assume J has a predecessor $K \subset J$. Then $h(K) = \alpha$ and $h(J) = \alpha + 1$ for some α . But also $h(m_{\alpha}) = \alpha + 1$, so that by uniqueness $h(J) = h(m_{\alpha})$ implies $J = m_{\alpha}$, as desired.

It is clear that the closed two-sided ideals of B(H) can be identified by their h(J), so that we may write J_{α} to denote the ideal J satisfying h(J) = α . According to the proof of 2.4, we have J_{α} = closure $\cup \{m_{\beta}; \beta < \alpha\}$. Then Lemma 2.1 can be reworded as fo<u>l</u> lows:

2.5. $T\in J_\alpha$ if and only if there is a sequence of commuting hermitian projections $\{P_n\}$ such that T = lim TP_n , and rank $P_n<\aleph_\alpha$ for all n.

We shall prove also the following generalization of Rellich criterion, due to E. Luft [16, Th. 5.2] :

2.6. $T \in J_{\alpha}$ if and only if for each $\varepsilon > 0$ there is a subspace $H_{\varepsilon} \subset H$ with codim $H_{\varepsilon} < \aleph_{\alpha}$ such that $\|T|_{H_{\varepsilon}} \| < \varepsilon$.

Proof. Assume this condition is satisfied, and let P_n be the orthogonal projection with nullspace H_{ε} for $\varepsilon = \frac{1}{n}$. Then rank $P_n <$ $< \aleph_{\alpha}$ and $\|T-TP_n\| = \|T(I-P_n)\| = \|T|_{H_{\varepsilon}} \| \le \varepsilon$, so that 2.5 applies and $T \in J_{\alpha}$. The converse follows again from 2.5 taking $H_{\varepsilon} = \ker P_n$ for $\frac{1}{n} \le \varepsilon$.

Now we consider the compactness condition used in [11] and [16] to define J_{α} :

2.7. $T \in J_{\alpha}$ if and only if for every $\varepsilon > 0$ there is a set $S \subset H$ with cardinal power strictly less than \aleph_{α} such that for every $x \in H$ with $\|x\| \le 1$, there is $s \in S$ with $\|Tx - s\| \le \varepsilon$ (in other words, S is an ε -net for $\{Tx ; \|x\| \le 1\}$).

Proof. Consider the case $\alpha > 1$. Let $T \in J_{\alpha}$ and $\{P_n\}$ as in 2.5. For given $\varepsilon > 0$, choose n large and set $S' = \{TP_nx'; \|x\| \le 1\}$. Now for $x \in H$ satisfying $||x|| \le 1$ if $s = TP_n x$ we have ||Tx-s|| = 1= $||Tx-TP_nx|| < \varepsilon$. Obviously the cardinal power of S is not larger than \aleph_1 rank $P_n < \aleph_\alpha$. If $\alpha = 1$, rank $P_n < \aleph_o$ and $S_1 = \{TP_n x; \|x\| \le 1\}$ is separable, so choose for S a countable set dense in S1. If $\alpha = 0$, we already observed that $J_{\alpha} \subset C(H)$, so that $\{Tx ; \|x\| \le 1\}$ is relatively compact, and therefore totally bounded. In all ca ses, then, the "only if" part of 2.7 is proved. Consider the "if" part: assume T satisfies the condition in 2.7, and let K be the closed subspace generated by S, P the orthogonal projection on K. For $\|x\| \le 1$ pick $s \in S$ with $\|Tx - s\| \le \varepsilon$. Then $\|PTx - Tx\| \le \varepsilon$ \leqslant $\|PTx - Ps\|$ + $\|PS - Tx\| \leqslant \|P\|$ $\|Tx - s\|$ + $\|s - Tx\| < 2\epsilon$, so PT tends to T. But the subspace K contains a dense subset of the same cardinal power as S (namely, the rational linear combinations of elements of S), and therefore rank P = dim K = card S < \aleph_{α} , so that P , and PT, belong to J_{α} . Thus T = lim $PT \in J_{\alpha}$, as desired.

\$3. UNIVERSAL REPRESENTATIONS.

We recall (see [10] or [17, Ch. IV,V]) that if A is a C*-algebra with identity e and involution $x \rightarrow x^*$, A can be faithfully represented as a closed *-subalgebra of B(H_A) for certain Hilbert space H_A. The description of H_A is as follows: Consider the set L = {p} of all linear functionals p: A \rightarrow C, where C denotes the complex numbers, that are positive, i.e., $p(x^*x) \ge 0$ for all $x \in A$, and satisfy p(e) = 1. Such p will be called "states" of A. It can be seen that they are automatically continuous and that L is a convex subset of the dual of A as a Banach space. For $p \in L$, $a, b \in A$, define $(a, b) = p(b^*a)$; (a, b) is semi-bilinear (that is, linear in a and conjugate linear in b), $(a, a) \ge 0$ and also $|(a,b)|^2 \le (a,a)(b,b)$ (Cauchy-Schwarz inequality). Factoring by the degeneracy set N = {a| (a,a) = 0} we obtain an inner product space A/N whose completion is a Hilbert space to be denoted by H_p. Corresponding to each $a \in A$ there is an operator $a_p \in B(H_p)$

defined by extending $a_x(x+N) = ax + N$ by continuity from A/N to H_ It is plain that $\|a\| \ll \|a\|$ and that $a \rightarrow a$ is a representation of pA in H_p , i.e., a homomorphism of C*-algebras: (ab)_p = $a_p b_p$, $(\lambda a)_{p}^{p} = \lambda a_{p}, (a^{*})_{p} = (a_{p})^{*}$ for $a, b \in A$ and λ complex. The extreme points of L will be called "pure states". When p ranges on the set of pure states we obtain a family $\{H_n^{}\}$ of Hilbert spaces and representations $a \rightarrow a_p \in B(H_p)$. However, different p_1 , p_2 may determine equivalent representations $a \rightarrow a_{p_1}$, $a \rightarrow a_{p_2}$ in the sense that for some invertible V: $H_{p_1} \rightarrow H_{p_2}$ we have $Va_{p_1}V^{-1} = a_{p_2}$, and this is of course an equivalence relation. By selecting one p in each equivalence class we find a determining subset C of pure states. Then H_A is defined as $H_A = \sum_{p \in C} \Theta H_p$ and the representation $u \cdot A \rightarrow B(H_A)$ defined by $u(a) = \sum_{p \in C} \Phi_{a_p}$ is called the universal representation of A. We aim to compute dim H_A when A = B(H)/J, for J a closed two-sided ideal of B(H). Observe that every two-sided ideal J of B(H) is a *-ideal in the sense that $T \in J$ implies $T^* \in J$ [5, Chap. 1, §1, N° 1] and therefore the quotients B(H)/J are C*algebras when J is also closed. In §2 we proved that the family ${}^{\pounds}$ of closed two-sided ideals of B(H) is order isomorphic to the initial interval [-1, δ +1], where

 \aleph_{δ} = dim H. In particular J_{δ} is the largest proper two-sided ideal of B(H).

3.1. THEOREM. 'Let H be a Hilbert space of dimension \aleph_{δ} and J a closed two sided ideal of B(H) different from the largest proper two sided ideal J_{δ} . Then the universal representation of A = = B(H)/J has dimension \aleph_{s+2} .

The method of proof is suggested by a counting argument used in [15] (and credited to I. Kaplansky) that shows that dim $H_A = 2^{2^{\aleph_0}}$ when A = B(H) and H is separable infinite dimensional.

We need some preliminaries.

Let X be a discrete topological space of cardinal power \aleph_{v} , and βX its Stone-Čech compactification. Then Card $\beta X = \aleph_{v+2}$ ([7, Ch. 3, Problem L, (c)], [21], [13]). Assume μ is an ordinal number and $\mu < v$. Denote by $X_{\mu} \subset \beta X$ the set $X_{\mu} = \bigcup \{\bar{S} ; S \subset X \text{ and Card } S \leq \aleph_{u}\}$, where \bar{S} denotes the closure of S in βX .

3.2. LEMMA. For every $\mu < \nu$, Card $(\beta X - X_{\mu}) = \aleph_{\nu+2}$ (where "-" denotes set theoretical difference).

Proof. Choose $S \subset X$ with Card $S \leq \aleph_{\mu}$. It is easy to see that \overline{S} is homeomorphic to βS (in fact, the injection i: $S \rightarrow \beta X$ extends to a mapping i': $\beta S \rightarrow \beta X$ and the image i'(βS) is compact and contains S as a dense subset), so that Card $\overline{S} = \aleph_{\mu+2}$. Thus Card $X_{\mu} \leq \aleph_{\mu+2}$. Card W, where W is the set of parts S of X with Card $S \leq \aleph_{\mu}$. Obviously Card $W \leq \aleph_{\nu}^{\aleph_{\mu}} \leq \aleph_{\nu+1}$, so that Card $X_{\mu} \leq \aleph_{\mu+2} \aleph_{\nu+1} = \aleph_{\nu+1}$, whence Card($\beta X - X_{\mu}$) = $\aleph_{\nu+2}$ as desired.

Proof of Theorem 3.1. Let $J = J_{\alpha}$ with $\alpha < \delta$. Then $h(J) = \alpha < \alpha+1 =$ = h(m_a) and therefore $J \subseteq m_{\alpha} \neq B(H)$. Hence, if B = B(H)/m_a, there is a natural homomorphism onto $A \rightarrow B$ (where A = B(H)/J). We shall show that there are $\aleph_{\delta+2}$ inequivalent pure states of B, a result that carries over to A by the homomorphism $A \rightarrow B$. This can be done as follows: let X be a discrete topological space with Card X = \aleph_s , and identify H with $\ell^2(X) = \{f: X \to C; \sum |f(x)|^2 < +\infty\}$. Clearly $\ell^{\infty}(X) = \{b: X \to C; Sup | b(x) | < +\infty\}$ can be identified to a subalgebra D of B(H): the operator corresponding to b being $f(x) \rightarrow$ \rightarrow b(x)f(x). D is then the algebra of diagonal operators, and from a theorem of Krein [3, Ch. VI] or [17, Ch. V , §23 , N° 3, III], every pure state of D can be extended to a pure state of B(H). Cle arly $l^{\infty}(X)$ can also be identified to $\mathcal{C}(\beta X)$, the Banach space of all complex valued continuous functions on the compact space βX , and each $x \in \beta X$ determines a positive functional p_x : $b \rightarrow \hat{b}(x)$, where $\hat{b} \in \mathcal{C}(\beta X)$ is the extension to βX of $b \in \mathfrak{l}^{\infty}(X)$. It can be seen that p_x is a pure state for every $x \in \beta X$ ([13], [24]) and in fact, these are all the pure states of $\iota^\infty(X)$. Denote again by $p_{_{\bf v}}$ a pure state of B(H) extending $p_x: \ell^{\infty}(X) = D \rightarrow C$. Assume now that $x \in \beta X \cdot X_{\alpha}$, and let $P \in D$ be the projection associated to the charac teristic function b_s of some subset $S \subset X$ with Card $S = \aleph_a$. It is clear from $x \notin \bar{S}$, that $\hat{b}_{S}(x) = 0$, or $p_{x}(P) = 0$, whence $p_{x}(P*P) =$ = $p_x(P)$ = 0 and therefore P_{p_x} = 0, which implies T_{p_x} = 0 for all $T \in m_{\alpha}$; this means that p_x induces a pure state of $\hat{B} = B(H)/m_{\alpha}$, thus a pure state of A = B(H)/J. This shows that there are $Card(\beta X - X_{\alpha}) = \aleph_{\delta+2}$ different pure states of A. Clearly the members in an equivalence class of representations are in one-to-one correspondence with invertible operators $V \in B(H)$, which means that each class contains at most Card B(H) representations. Now from the matrix representation of operators follows that Card $B(H) \leq$ $\leq \aleph_{\delta+1}$, and therefore if C = {p} contains a pure state in each equi valence class, we have Card $C.\aleph_{\delta+1} \ge Card(\beta X \cdot X_{\alpha}) = \aleph_{\delta+2}$, whence Card $C \ge \aleph_{\delta+2}$. Thus, since $H_A = \sum_{p \in C} \Theta H_p$, we have dim $H_A \ge Card C \ge C$ ≥ $\aleph_{\delta+2}$. We need now estimates for dim H_A and Card L (L = set of

all states). Clearly $L \subseteq C^{B(H)}$, so that Card $L \leq \aleph_1^{\delta+1} = \aleph_{\delta+2}^{\epsilon}$. Also, A/N, where N = {T ; p(T*T) = 0} is dense in H_p, so that dim H_p $\leq Card A/N \leq Card B(H) = \aleph_{\delta+1}^{\epsilon}$. Finally, dim H_A $\leq \sum_{p \in C} dim H_p \leq Card C.\aleph_{\delta+1} \leq Card L.\aleph_{\delta+1} \leq \aleph_{\delta+2} \aleph_{\delta+1} = \aleph_{\delta+2}^{\epsilon}$. We conclude that dim H_A = $\aleph_{\delta+2}^{\epsilon}$, as claimed.

3.3. REMARK. This proof does not actually depend on the continuum hypothesis when $J = \{0\}$. Thus: "if dim H = d, the dimension of the universal representation of B(H) is equal to 2^{2^d} ". can be obtained without assuming that $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$.

REFERENCES

- [1] Earl BERKSON and Horacio PORTA, Representations of B(X), J.
 Funct. Anal. 3 (1969), pp. 1-34.
- J.W. CALKIN. Two-sided ideals and congruences in the ring of bounded operators in Hilbert Space, Annals Math. 47 (1941), pp. 839-873 (abstract in Bull. A.M.S., 46 (1940), p. 400 under the title A quotient ring over the ring of bounded ope rators in Hilbert space, I).
- [3] Mahlon M. DAY, Normed Linear spaces, Springer-Verlag, Berlin (1962).
- [4] Jacques DIXMIER, Applications dans les annéaux d'opérateurs, Compos. Math. 10 (1952), pp. 1-55.
- [5] -----, Les Algebres d'opérateurs dans l'espace hil bertien, Gauthier-Villars, Paris (1957).
- [6] Nelson DUNFORD and Jacob T. SCHWARTZ, Linear operators, I, II, Interscience, New York (1958) and (1963).
- [7] Ryszard Engelking, Outline of General Topology, North-Holland-Polish Sci. Publ. (1968).
- [8] Zdeněk FROLIK, Generalizations of Compact and Lindelöf spaces, (in russian), Czech. Math. J., 9 (1959), pp. 172-217 (Eng. Sum.)
- [9] Istvan S. GAL, On the theory of (m,n)-compact topological spaces, Pacif. J. Math. 8 (1958), pp. 721-734.
- [10] Israel M. GELFAND and Mark A. NAIMARK, On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sbornik, 12 (1943), 197-213.
- [11] Bernhard GRAMSCH, Eine Idealstruktur Banachsher Operatoralgebren, J. Reine u. Angew. Math., 225 (1967), pp. 97-115.
- [12] ------, Abgeschlossene Ideals in Operatoralgebren topologischer Vektorraume, J. Reine u. Angew. Math. 226 (1966), pp. 88-102.
- [13] Felix HAUSDORFF, Über zwei Sätze von G. Fichtenholtz und L. Kantorovitch, Studia Math. 6 (1936), pp. 18-19.

- John R. ISBELL, Remarks on spaces of large cardinal number, Czech. Math. J., 14 (1964), pp. 383-385.
- [15] Richaro KADISON and Isadore M. SINGER, Extensions of Pure States, Amer. J. Math. 81 (1959), pp. 383-400.
- [16] Erhard LUF two-sided closed ideals of the algebra of bounded concar operators of a Hilbert space, Tech. Rep., Univ. British Columbia (May 1967).
- [17] Mark A. NAIMARK, Normed Rings, P. Nordhoff N.V., Gromingen (1964).
- [18] Horacio PORTA and Jacob T. SCHWARTZ, Representations of the algebra of all operators in Hilbert Space, and related Analytic Function Algebras, Comm. Pure Appl. Math. 20 (1967), pp. 457-492.
- [19] Horacio PORTA, Idéaux bilatères de transformations linéaires continues, Comptes Rendus Acad. Sci. Paris, 264 (1967), pp. 95-96.
- [20] -----, A note on homomorphisms of Operator Algebras, Coll. Math. 20 (1969), pp. 117-119.
- [21] Bedřich POSPÍŠIL, On bicompact spaces, Publ. Fac. Sci. Univ. Masaryk, N° 270 (1939), pp. 1-16.
- [22] _____, Remark on bicompact spaces, Ann. Math. 38 (1937), pp. 845-846.
- [23] M.K. SINGAL and Shashi Prabha ARYA, On m-paracompact spaces, Math. Ann. 181 (1969), pp. 119-133.
- [24] Marshall STONE, Applications of the theory of Boolean rings to general topology, Trans. A.M.S. 41 (1937), pp. 375-481.
- [25] F.B. WRIGHT, A reduction for algebras of finite type, Ann. Math. 60 (1954), pp. 560-570.

Urb**ana** Illino**is**

Recibido en julio de 1970.