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1. INTRODUCTION. Let f be a distribution on an open set 0 in R”"
and ¢(x) an infinitely differentiable function with support in
|¢] <1 and integral equal to 1. Let ¢, () = t-"¢(x/t) and consi-
der the function

m E(z,t) = (fa0,)(2) t>0 ,

i.e. the convolution of f and $us which is well defined for z at

distance larger than t from the complement 0' of (0. We are inte-

rested in the-extent to which %i% F(xz,t) determines f. If 0 coin-
->

cides with R" we-mdy replace tHe condition on the support of ¢ by
one less restrictive but sufficient to insure the existence of
F(z,t). For example,if f is the Fourier transform of a function ¢
and the integral of |g| over a sphere of radius r does not grow
faster than a fixed power of », we can take ¢ to be the Fourier

transform of e'lml

and F(x,t) becomes the Abel means of the Fourier
integral of g. Thus in this case our problem becomes that of uni-
queness of Abel summable Fourier integrals. We shall consider two
modes of approach of the point (x,t) to the hyperplane ¢ = 0, name-
ly, non-tangential and normal. Results on non-tangential limits

are relatively simple and require no conditions on f. Furthermore,
they have interesting applications to the theory of partial diffe-
rential equations. On the other hand, results on normal limits re-
quire some restrictions on f. The ones we present here are closely
related to the work of V. Shapiro (see [3]).

2. STATEMENT OF RESULTS.

We shall always assume that f and ¢ are real an we shall associate
with them the functions

F(x) = lim F(y,t) , Fa(x) = lim F(y,t) , t>0 , t > 0 , |z-y| <t

*¥ This research was part1§ supported by NSF GP - 23563



38

where the upper limit F is taken through all positive values of ¢
and the lower limit F, only through a fixed but otherwise arbitrary
sequence tending to zero. These are non-tangential limits. We al-
so consider the normal limits

fy(x) = lim F(x,t) , £(x) = lim F(z,t) , t>0 , t >0
where, again, f is taken through all positive values of ¢ and £y
through an arbitrary but fixed sequence tending to zero.

THEOREM 1. Suppose that ¢(x) =0 has support in |z|<1 and inte -
gral equal to 1. Suppose that h is locally integrable in 0 and v
18 a measure which is finite on compact subsets of 0 and such that

F(x)>h(z) almost everywhere in 0 and either Fyu(z)>-= orp
(2) IF,t)| - Fly,t) = ol(vas ) ()1, |a-y| <t

at t tends to zero through the sequence defining Fyx, for all x in

0. Then f-h coincides with a measure in 0.

Here, and throughout this paper, ''measure'" means a non-negative
measure, and to avoid tedious repetitions we shall always assume
that a measure in an open set is finite on its compact subsets.

THEOREM 2. If in the preceding theorem we have $(0) >0, hix) =0
almost everywhere and f(x) <0 everywhere in 0, then f = J.

THEOREM 3. The assertions of the preceding theorems remain valid
if condition (2) is replaced by the following: the set of points
where Fy(x) = -w i8 a countable union of sets E such that if X4
denotes the characteristie function of the set of points at dis-

tance less than t from E then
¢~ j X (z) de , n>a>0

remains bounded as t tends to zero, and for |xz-y|<+t and z€ E,
F(y,t)t® tends to zero uniformly as t tends to zero through the

sequence defining Fy. The number o may depend on the set E.

This result has interesting applications to the theory of linear
partial differential equations. They are extensions to general e-
quations or systems of familiar facts about analytic functions such
as the theorem of Besicovitch (see [2] , chapter-V, th. 5.3) or the
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theorem of Looman-Menchoff. Although the result stated below, when
specialized to the case of the Cauchy-Riemann equatibns, neither
implies nor is implied by the theorem of Looman-Menchoff, it is of
the same general character. For some recent results in the same
direction see also [4]. 1In order to state our results we must re-
call some generalized notions of differentiability introduced in
{11. If » is a locally integrable function in an open set 0 we
shall say that h belongs to T;(xo) , a=-n , if there exists a po-
lynomial P of degree less than or equal to a, P = 0 if «a <0 , such
that

t‘”"“nxt(x-xo)[h(x)—P(x-xo)]u1

where Xt(x) is the : :.ro.teristic function of the sphere of radius

t with center at tho origzin, remains bounded as ¢ » 0.If onthe other

hand this expression (.ads to zero as ¢t - 0 , we say that % be -
longs to t;(mo). If » belongs to t;(xo) for all x, in a set E

with the coefficients of the corresponding polynomials bounded in

E and the preceding expression tending to zero uniformly, we say
that 2 belongs to t;(E). When % belongs to té(xo) the coeffi -
cients of P are uniquely determined and one defines the generali-
zed derivatives of 4 of orders less than or equal to o at z, as

the corresponding derivatives of P at the origin. Thus if L is a
differential operator of order less than or equal to o, (Lh) (x,)
can be defined accordingly. These notions can be generalized in
the obvious way to the case of vector-valued functions.

THEOREM 4. Let L be a system of linear partial differential opera-
tors of order m with coefficients of terms of order k in Cm_k. Sup
pose the vector-valued function h belongs to t%(x) for almost all

z in an open set 0 and satisfies the equation L h = there. Sup-
pose that at the remaining points x either h belongs to Té(x) or
else x belongs to a countable union of sets E such that h€ g;_a(E),
0<a = aEsén, and, 1f xt(x) denotes the characterictic function of

the set of points at distance less than t from E,
t® J Xy (x) dx

i8 finite and remains bounded as t -~ 0 . Then h is a weak solution

of the system L h = g.

We may complete this statement with the observation that if L is e-

1liptic determined or overdetermined and has infinitely differentia
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ble coefficients then % coincides almost everywhere with an infini
tely differentiable function.

We pass now to the results on normal limits. They are contained
in the following

THEOREM 5. Let f be a distribution with compact support and ¢(x)
an infinitely differentiable function such that ¢(x) = n(|x|) where

n(t) is a non-decreasing function of t such that n(k)(t) =

0t k%) gs t » = Suppose that the Fourier transform f of f sa

tisfies the following condition

a) |f(2)] dz = o(r?) as 7+ =

|z <r

Let the function h be locally integrable in the open set 0 and sup-
pose that F(x) >h(x) almost everywhere and f(x) > -» everywhere in
0. Then f-h coincides with a measure in V.

The conclusion remains valid if the condition that f(x)> -~ is re-
placed by the following weaker one. There exist a closed non-dense
subset C of 0, a measure v in 0 and a non-increasing function
A(t)>1 in (0,1) with A(t) » « as t > 0, such that, if x denote

the characteristic function of the sphere |x| <1 , then

lim t* (vax,)(z) >0
t+0
at every x of C, and if x is a point of 0-C such that f(x) = -«
then (
1 B
l t a(t) [|F(x,t)| - Efz,t)] dt <~ and
(3) 0

|F(x,¢t)| - Flx,t) = o[(v*¢t)(x)] as t » 0

“THEOREM 6. Let f and ¢ be as in the preceding theorem. Suppose

that the Fourier transform f of f satisfies the condition that

b) Fla)(1+)2]12)7" €19 , with vq<1 and 1<q<2 , or

Let h be a locally integrable function and v a measure in an open
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get 0. Suppose that F(m))h(a:) almost everywhere in 0 and either
f(z)> -w or

|F(z, )| - Flz,t) = ollved,)(x)]
as t + 0 for all x in 0. Then f-h coincides with a measure in 0.

THEOREM 7. Suppose that under the assumptions of either of the two
preceding theorems we have h(x) = 0 and f(x) €0 everywhere in 0 .
Then f = 0 in 0.

We note that condition a) in theorem 5 is closely related to the
condition on the coefficients in the theorem on uniqueness of Abel
summable Fourier series of Verblunsky-Shapiro (see [3]). We shall
see that, as in the case of Fourier series, it cannot be revnlaced
by the weaker condition O(rz). This will be shown in the last sec
tion where we also give an example illustrating the limits of pos-
sible improvements of theorem 6 by exhibiting an f such that

JZ(S) = O(IZI'(n—”/Z) as |z| » » and that F(z,t) ~ 0 as ¢t » 0 for
all z.

3. We start with some lemmas which will be used in the proof of
our results.

LEMMA 1. Let F, be defined by lettingt tend to zero through a se-
quence S. Suppose that Fyu (£) > - for all x in an open set 0. Let
C be closed and such that CNO is non-empty. Then there exists an
open subset 0, of 0 with CN 0, non-empty and such that F(y,t) =2-N>
> -» in the set |y-z|<t , x€CNO, , t€S.

Proof. Let F(x) = inf F(y,t) , |y-x|<t , t€S. Then E is upper
semicontinuous and everywhere finite in 0. Consider the sets
{(F(x)=>-k , x€CNO0} , k =*1,2,... . They are relatively closed
in CN0 and their union is CNO. Since CNO is of the second cate
gory in itself, one of these sets contains a non-empty relatively
open subset CNO, of CN0. This proves the lemma.

LEMMA 2. Suppose that f(x) > -» for all x in an open 8set 0. Let C
be closed and such that CNQO is non-empty. Then there exists an
open subset 0, of 0 with CNO0, non-empty and such that F(xz,t) =-N>
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> o for x in CNO,.

The proof of this is almost identical to that of the preceding
" lemma and is left to the reader.

LEMMA 3. Let f be a distribution in an open set 0 and ¢ =0 have
support in |x| < 1. Suppose that Flx,t) >-N>-w for x €0, t €S and
t <68, and let F(z) >0 almost everywhere in 0. Then f coincides

with a measure in 0.

Proof. Let ¢(x) = ¢(-2) and z(x) >0 be infinitely differentiable
and supported in 0. Then

[Pl oi) @ = | (e @c() ds = 71401

Since F(x,t) =>-N for x€0 and t €5, and since C*J’t and all its de-
rivatives converge uniformly as t » 0, if we let ¢ > 0 through s we
will have

£G) = lin FI(5,4,)1 >Lin [Fa,0)c(e) de>-N [ ) s

Thus the distribution F£+N is such that (f+N)(g) >0 for every ¢ =0
with support in 0 and therefore coincides with a measure y, in 0.
Let now g be the Radon-Nikodym derivative of y, with respect to Le
besgue measure and v its singular part. Then

J 0, (x-y) dvly) * J g(y)e,(e-y) dy = Flz,t) + N

Now, at almost all z, the derivative lim-v(S,)/|S , where S, is
0 >0 t t t

the sphere with center at 'xo and radius ¢, exists and is equal to
zero, and at such points the first integral above tends to zero as
x +z, and t > 0 with |z-z,|<t. On the other hand, at every Le-
besgue point z, of g the second integral above tends to g(x,) as
x > zy and t » 0 with |z-2o| < t. Thus we have

gle) = F(z) + N>N
almost everywhere in 0. This shows that yu, -Nd« is still non-nega-
tive whence it follows that f coincides with the measure

wo= o - Nde in 0.

LEMMA 4. Let f and ¢ be as in theorem 5. Suppose that F(x,t) =-N



43

for x in an open set 0 and t €S and let F(x) >0 almost everywhere

in 0. Then f coincides with a measure in 0.

Proof. The argument used in proving the preceding lemma applies
to the present case with only minor changes. We first observe
that on-account of the properties of ¢, if g is a distribution
with compact support then gady > 0 as ¢t > 0 in the complement of
the support of g. Then, as in the previous lemma, we show that
f*N = u; in 0. Given an open subset 0, of 0 and an infinitely dif
ferentiable function n which is equal to 1 in q and vanishes out-
side 0 we will have that

(nuy a0, ) (@) - Flz,2) » 0

as t » 0 for all x in 0,, and arguing with nu; as we did above
with y, it will follow that nu, - Ndx is non-negative in 0,. Since
0, is an arbitrary open set regularly contained in 0, the desired
result will follow.

LEMMA 5. Let f and ¢ be as in theorem 5. Suppose that f+N coinei
des with a measure in an open set 0 where F(x) >0 holds almost eve

rywhere. Then f itself coincides with a measure in 0.

This was shown in the second part of the proof of the preceding
Lemma.

Proof of theorem 1. At first we shall assume that # = 0 and v = 0,
i.e. that ?Ix);zo almost everywhere and Fy(x)> -« everywhere in 0.
Then according to lemma 1 every open subset of 0 contains a neigh-
borhood where F(x,t) is bounded below uniformly for ¢ €S and where
consequently according to lemma 3, f coincides with a measure. Now,
if f coincides with a measure in every set of a family of open
sets, it coincides with a measure in its union. Thus there exists
a maximal open subset 0, of 0 where f coincides with a measure.
Now, suppose that 0, is a proper subset of 0. Then according to
lemma 1 there exists an open set 02, OlCZOZC 0 , containing 01 pro
verly and a number N such that for yGOZ-Ol , lz-y| <t, t€S we
have F(x,t) = -N. Let now 03 be the set of points of 02 at distance
greater than ¢ from its complement. If ¢ is sufficiently small ,
then 03 contains points not in 01. Consider now F(x,t) with x 603
and t€S5, t<e. If x is at distance greater than t from the com-
plement of 0,, since ¢, is non-negative and has support in |z] < ¢
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and since f coincides with a measure in 0, we have
F(z,t) = (f49,) (2) >0

If the distance between x and the complement‘of 0, is less than
or equal to t, then there exists a y in 0,-0;, with |z-y| <<t and
we have F(x,t) #-N. Consequently F(x,t) is bounded below in 03
for t €5 and t <e¢ and according to lemma 3, Ff coincides with a
measure in 03. But 03 is not contained in 0,, and thus 0, is not
maximal, a contradiction. Hence 0, coincides with 0, and the the
orem is established in this special case.

In the general case, given a large integer N and €> 0 we let g be
the distribution defined by g = f—hN + ev, where hN(ac) = h(x) if
h(x)<N and hN(ac) = N if h(x) > N. Then, as readily seen, we have
6(x)>0 almost everywhere in 0 and G,(x) > -» everywhere in 0.
Hence g coincides with a measure in 0 and for every testing func-
tion n, n$0 , we have

g) = f(n) - J hyn da + e J n dv>0
Lefting N+ +» and ¢ + 0, we find that
£0) - [ dz>0
whence the desired conclusion follows.

Proof of theorem 2. Since h(x)=0 almost everywhere in 0 , accor
ding to theorem 1 our distribution f coincides with a measure
in 0. Suppose that p # 0. Then there exists at least one point
xg such that, if S, denotes the sphere with center at x, and ra-
dius ¢, mt-n u(St)> 0 as t+ 0. Now, if ¢(x)>¢e for |x|<e ,
since ¢2 0 , we have F(xo,t)>t'n eu (Ste), and consequently
f(xy)> 0 , a contradiction. Hence we must have y = 0, and our as
sertion is established.

Proof of theorem 3. We start with the observation that if F, is
redefined by making t tend to zero through an arbitrary subsequen
ce of the one originally used to define F,, the hypotheses of the
theorem will still be satisfied and the conclusion will be proved
if we show that a proper choice of the subsequence will imply the
existence of a measure v satisfying (2). Let
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]F(m,t)[tam. < e, (t) >~ 0

where |z-y|<t , #€E and t tends to zero through the sequence de
fining F,. Let us select a subsequence ty of this such that

P 5,1,,/2 () <M, <= for all m. If X'Z(:c) denotes the characteris-

tic function of the set of points at distance less than 2¢ from

Em , let

-0 m .
t met(x) dacﬂNm , t<1 .,

Consider now the function

o
m m =11
X¢ (z) b M N

g(z) = [y poen/Z(t) 27"
2 m m

Then if z€E , |x-y|<t = t, we have
(gwt)(y)h;/z(tk) 27" t3m Mr;l Nr;ll J x’;k(z) ¢tk(y-z) dz =

-1 -1 1/2
=M N |Fyst )| e, /()
which shows that for x€UE , |x-y]| <t, we have

F(y ’tk) =0 [(9*¢tk) (y)]

as t, » 0. Since g is clearly an integrable function, its indefi
nite integral gives the desired measure v.

Proof of theorem 4. For simplicity we shall restrict ourselves
to the case of a single differential operator of the form

th = I, GFfagn)

Furthermore, and without loss of generality, we may assume that
the coefficients ag belong to Cm"s| in the closure of 0. Let
now Q be a polynomial and R = #-Q. Consider the distribution

f = Lh and let ¢ be as in theorem 1. Then

F(e,8) = (fad,) (2) = (Lhye,) (@) = (LQus,) (=) + (LR,s,) (#)

The first term in the last expression is dominated by a multiple
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of a bound for the coefficients of Q, and for the second we have
|aRee )@ = | [ ey RG) )P o, ay | <

< e t-n-mJ |R(y) |dy
|z-y | <2t

where ¢ is a constant. Thus if % belongs to t;_u(B) , a>0 , and

x,€E , by setting Q(x) = P(x-xz,) , we see that for |x-x,| <t

|E(x,t) | <ec + o(t™®)

as ¢ > 0 , and consequently F(z,t) ¢t » 0 as t > 0 with |z-z,| <t
uniformly for z,€E. If on the other hand hET;(xO) or t;l(xo) ,

we see that F(x,t) remains bounded or tends to zero as t -+ 0 with
|¢-2,| <t. Thus, according to theorem 3, f coincides with a measu
re in 0. Since the same conclusion holds for -f, it follows that
f = 0 in 0 and thus % is a weak solution of the system Lk = 0 in 0.

The proof of theorems 5 and 6 will require a few more lemmas.

LEMMA 6. If f is a distribution with compact support C, there
exists a g with compact support such that Ag-f is infinitely dif-
ferentiable and vanishes in a neighborhood of the support of f.

Proof. Let ¢(x) be an infinitely differentiable spherically sym-
metric function with support in |xz| <1 and integral equal to 1

Let I (z) be the fundamental solution of Laplace's equation and
h=1- (L4z). Then n = § - ¢ , where & denotes Dirac's delta
function, and since Z(x) is harmonic in |z| >0 and z(x) is spheri
cally symmetric and has support in |z| <1, the mean value property
of harmonic functions implies that h(x) = 0 for |z|>1. Consider
now the function g, = (fxz)al . Evidently, g, is infinitely dif-
ferentiable and g, = (fxz) has compact support. Now let g =

= (h&f) + vg, , where wEECZ and y = 1 in a neighborhood of C

Ago=b (haf) + 8 (vg ) = (Fas B) + 8 g + al0-v)g ] =

f-al(l-vlg,]
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Thus, Ag - f = A|(1—w)gll vanishes in the complement of the sup-
port of (1-¢y), i.e. in a neighborhood of C. Furthermore, since y
and g, are infinitely differentiable, the same holds for ag - f.

LEMMA 7. Let f and ¢ be as in theorem 5. Then (f*¢t)(x) > 0 as
t > .0, uniformly in the complement of any neighborhood of the sup
port of f.

Proof. According to our assumptions the derivatives of order k
of ¢(x) are of the order ]x|°n'k'e as |x| » ». Thus, as ¢t - 0 ,
¢, and all its derivatives tend uniformly to zero in |z|>6>0 .
This clearly implies the assertion of the lemma.

LEMMA 8. Let n(t) be as in theorem 5 and let y(x) = -n'(|z|)|x| L.
Then if g is a distribution with compact support t—z(g*wt)(x) >0
as t > 0, uniformly outside any neighborhood of the support of g.

Proof. Again, according to our assumptions, y and its derivative:
of order k are of the orders |z| " ?7% and |x|-n—k-2-e respective-
ly as |z| » <. This implies that t'zwt(x) and all its derivatives
converge to zero uniformly in |x|> ¢ >0, whence the desired conclu
sion follows.

LEMMA 9. ©Let ¢ be as in theorem 5 and ¢y as in lemma 8. Let g be

a distribution with compact support, f = A g ,
F(x,t) = (f*¢t)(x) s G(x,t) = (g*wt)(m)
Then

t
Glx,t,) - G(x,t,) = J 2 gF(x,s8) ds
5y

Proof. One merely has to verify that
AT

which implies that

|&

£ 6@,t) = L (gwv,) = (@eid,) = tlgad o))

Q

t(A 9*¢t) = t(f*¢t) = tF(xst)
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LEMMA 10. Let g be a distribution with compact support. Suppose
that g coincides with a function ; in an open set (0. Let g be up

per semicontinuous in 0 and lim (§*¢t)(x) = g(x) 2 - for all x in
t+0
0, where § is the function in lemma 8 normalized so as to have in

tegral equal to 1. Then if f = Ag and f(x) >0 in 0, g is subhar-
monie in 0.

Proof. We must prove that if » € 0 and S is a sphere contained
in 0 with center at xz, then

gor<Is| ™[ 7 as

wheve |S| is the surface area of S and do is the area element. To
show this we let B be the closed ball with boundary S and g, = g
in B and g; = 0 in the complement B' of B. Let h be continuous
in B harmonic in the interior of B and vanish in B'. Suppose
that Elélzon S. Since El-h is upper semicontinuous in B, it ta-
kes a maximum M at a point x, in B. Suppose that x, is in the in
terior of B, at distance ¢>0 from B'. Since g = g = g, in the
interior of B, if ¢,< ¢t and ¢ is sufficiently small, according to

iemmas 8 and 9 and the fact that g(x1)> 0 we will have
@, w0,) @) - @av, V(=) = Glzy,8) - Glz),6,) + o(8?) =
1

t
- e j oF(z),0)ds + o(+2) > 2 £(z,) (87-£3) + o(s?)
t

and letting ¢, » 0 we obtain
— — 2 2
@rav) @) - Gl) 2T £(=))t + o(2))

On the other hand, since y is spherically symmetric and A is har-
monic in the interior of B, we have

(av ) (@)) - G2y) = [ G) - hG)Tv, (e, -p)dy =

[ () - k(=] v, (e -y)dy = o (%)
[xy-y|>e .

Finally, since y=0 and 31- #<M in B and vanishes in B', we have

@ W) <M [ v Geopddy = MM [y (eyddy < M re(e)).
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Combining these estimates we obtain

M>[(g,-2)wv,] (@) + 0 (%) 25 (e,) - H(z,) + T i@ + ot -
=M+ 2 £(2)t7 + o(t?)

that is
2 2
O>%£@Qt + o0(t)

which is impossible, since f(x;) > 0. Thus the maximum occurs on
S, and since g, <k on S, we have g,-h<0 in B. Thus

-1
glzy) =g,(x)) = |S] Js h(x)do.

Since this holds for any k with h>g on S, the desired conclusion
follows.

LEMMA 11. Let g be a distribution with compact support and ¢ the
function in lemma 8 normalized so as to have integral equal to 1.
Suppose that as t > 0, (g*wt)(x) + g(x) Z-= for all x in an open
set 0, where the function g(x) is upper semicontinuous and locally
integrable in 0. Let f = Ag and F(x) >0 almost everywhere and
f(x) > -w everywhere in 0 Then if g coincides with g in 0, f coin
cides with a measure in 0.

Proof. We use the well known fact that an upper semicontinuous
locally integrable function g is subharmonic in an open set 0 if
and only if Ag coincides with a measure there. Let 0, be the lar
gest open subset of 0 in which f coincides with a measure. Then,
since ¢=0, lemma 7 implies that f£(z) =0 in 0,. If 0, is a proper
subset of 0, then, according to lemma 2, there exists an open sub-
set 0, of 0, containing 0, as a proper subset, such that f£>-N<0
in 02-01. Let x(x) be the characteristic function of the set 0,

and let g, = g + N x (x) |x z, Then from lemma 8 and the fact
1 2n

that Ag, = f + N it follows that g, satisfies the conditions of
lemma 10 in 0, and therefore it coincides with a subharmonic func-
tion and Agy= f + N coincides with a measure in 0,. But then ,
since F(x) >0 almost .everywhere in 0, by lemma 5 we conclude that
f coincides with a measure in 0,. This contradicts the assumed
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maximality of 01. Thus 0, cannot be a proper subset of 0 and the
proof of the lemma is complete.

LEMMA 12. Let g be a distribution with compact support and let
f = Ag satisfy condition a) in' theorem 5. Let t(x) >0 be spheri-
cally symmetric, infinitely differentiable, with support ‘in lz] <1,
and such that [rdez = [ ¢ dz , where ¥ is as in lemma 8. Then

| (g4t,) (=) - (g*wt)(y)l + 0

as t » 0, uniformly in x and y, provided that -y | <t.

Proof. On account of the properties of ¢z and y we have the ine-

qualities
Pz) <e(+z]) 7l la)<e(+la])
where ¢ is a constant. Consequently, i |x-y| <t, then
| (gab,) (@) - (Gub )W) = zgg}az)[e‘2“11<”'g>- e 2B G (pa)ds ]| <
< 3tj lg (z) 1]z dz + ct_1J té(z)[]zi—l dz
|z |tel |z]&>1

On the other hand, since 7 and ¥ have bounded first order deriva-
tives and £(0) = %(0)

‘(g*ct)(x) - (g*wt)(x)l = | {g(g) H’Qﬂi(x.z)[z(tz) - M(ts)) dz| <

< ct[ ig(z)llzl dz + cb”l[‘ {§(z)]]ﬂ\'] da
‘alt<l Salel

and it will suffice to show that the two last integrals tend to
zero as t -~ 0. To see this let

{ lé(z)llzlzda = ”QCLMJ

| 2| <u

Then q) implies that ¢(u) - 0 as u - « and

5 t
tJ lg(z)]||z]| dz = ¢t J u de()u’ = e(t_l) + t ( e (n) du
|z|t<1 [¢] J
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which tends to zero as ¢t + 0. On the other hand

t_II |§(z)||z|_1 dz = t'lj _1u~3de(u)u2 <3t_1J _ldiE(u) du
|z |t>1 t t

and this also tends to zero as ¢ » 0 , and the lemma is establi-
shed. :

LEMMA 13. Under the conditions of the preceding lemma we also
have

](g*wt)(x) - (g*wt)(y)l >0
as t > 0 , uniformly in x and y, pravided that |z-y | <t.

This is an immediate consequence of the preceding lemma which was
incidentally established in the course of its proof.

LEMMA 14. Let h(x) €IP(R") , p>1, n>2 , and let
glx) = J h(y)|x—y|‘n+“ dy , n>ap>2 ,

if the integral is absolutely convergent, g(z) = -« otherwise
Then if

ky(z) = J |ty |P -y | "2 dy <e

the funetion k(x) = g(x) - ¢ k,(x) is upper semicontinuous for
every e, €> 0.

. . - o
Proof. Since, as readily seen, |z|™"*

is integrable to the power
p/(p-1) in the complement of any neighborhood of the origin, the
contribution to the integrals in the lemma from |z| >N is continu-
ous in |x| <N. Thus it will suffice to prove the lemma under the
assumption that % has support in |z| <N. Let q = p/(p-1) and

r = [(n-a) - (n-2)/p|q. Then r<n and H6lder's inequality gives

1/q
J|h(y)[[x-y|-n+a dy < kl(x)l/p U lz-y |77 dy }

ly| <N

This shows that if kl(x) is finite then the integral defining g is
absolutely convergent. Let us denote now by I,(x,t) and Iz(x,t)
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the integral defining g extended over |x]| <t and |z| >t respecti-
vely, and define similarly Jl(x,t) and Jz(x,t) with the integral
expressing klcx). Then, from H8lder's inequality again, we obtain
1, @, t)<c J, (@,t) /P £17)/a
Let now z, be a point such that k, (z() <= . Then, if |z, -z|=t/2,
we have 2|z-y|> |vy-y| for |z-y| >t and, consequently the inte -
grands of I, (x,t) and J,(x,t) are dominated by a multiple of the
integrands of I, (x;,0) and J, (x;,0) respectively. But, since

k, (x,) is finite, the last two integrals are absolutely conver -
gent, and this implies that

Iz(w,t) - € Jz(x,t) > Iz(xoso) - € Jz(xo)o) - k(xo)

as z » z45. On the other hand we have
1, (,6) - € J,(,8) < e I (2, 0) P (0 Lo 5 (z,e) <

< sup [ e §1/P ((n°2)/a _ 4 ] = (c/ps)l/(p-l) s (n-r)/p
8

whence it follows that

Tim [I,(z,t) - ¢ J;(z,8)1< 0 .
t+0

Combining this with our previous result we obtain

lim k(zx) = lim [I,(x,t) - e J, (z,t)] + lim 1, (x,t) - ¢ J, (z,t)] <
< k(xo)

as x » x,. Suppose now that k, (xy) = «. Then since, as readily

seen, k, (x) is lower semicontinuous, we have lim k, (x) = = as z>xg,

and since

lg(=)| <e &, ()P

it follows that
lim k(x) = lim [g(z) - ¢ k;(®)] = -= = k(zy) » &%,

and the proof of the lemma is complete.
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Proof of theorem 5. We start observing that, without loss of ge-
nerality, we can make some additional simplifying assumptions. In
the firsg place, lemma 6 shows that with only a harmless altera -
tion of f we may assume that f = bg , where g has compact support.
Furthermore, by restricting our attention to subsets of 0 if nece
ssary, we may also assume that % is integrable and totally fini
te in 0. Evidently, it will suffice to prove our theorem in the
case when % is bounded above, and subtracting from % an appropria
te infinitely differentiable function with compact support we can
further reduce the proof to the case 4 <0.

In our proof we shall need some auxiliary functions and distribu-
tions we now introduce. We extend % and y to all of R” by set-
ting h(z) = 0 outside 0 and v = 0 on every set not intersecting 0.
We choose an arbitrary positive number e and applying lemma 6 we
let g, be a distribution with compact support such that

Ag, - (ev - k) is infinitely differentiable and has support at
distance not less than 1 from 0. We set g, = fy s f1 =F* F,
g9, =9 * g, and, as before, we let F(x,t) = (f*¢t)(x) , and defi-
ne similarly F, (x,t) and Fo(x,t).

We shall first prove some properties of the functions F and F,
Let us begin by showing that t?F(x,t) » 0 as ¢ » 0 , uniformly in
z. Let 6(s) be defined by

[ [F(2)] dz = 6(s)s2

‘lalss

Then condition gq) in our theorem implies that s(s) » 0 as g » =,
Since ¢ (x) is iﬁtegrable and has integrable derivatives of all or
ders, its Fourier transtorm 3 satisfies the inequality [&[z)l <
<e (1+Iz|)_3 with some constant ¢. Consequently

£\ F(x,t)] = 2 (fap, ) (x)] = &7 J |f(z)||4(tz)| da <

< et J (1+et) ds(s)s? = 30t J s(s)e? (1+st) "ds =

[0} ¢}

= 3e J 6(s/t)32(1+s)—“ ds
(o]

and the last integral evidently tends to zero as 1 » 0.

Next we shall show that Fl(x)>()almost everywhere and fl(x)> - w
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everywhere in 0. On account of the fact that f, - (ev - %) is an
infinitely differentiable function with support disjoint from 0,
we have

Fz(x,t) [(ev -h) 4o, ] (x) + [(.7"2 - vt h) g, l(x) =

[(ev - 1) 40,1 (2) + o(1)

as t » 0 for every = in 0. Now, if x is a Lebesgue point of % and
y >x and t ~ 0 with |j-x| <t we have lim (hso,) (y) = h(z) and con
sequently, since (v*¢t) (y) =20,

¢

F (=) = lim F (y,8) > 1im F(y,t) + lim F(y,0) > F(z) - h(z) > 0

On the other hand, since <0 , we have Fz(x,t) >5(v*¢t) (x) + o(1)
as t - 0 . This evidently implies that gl(x)2>£(x) everywhere in
0. Now, if x is a point of 0 not in C and such that f (z) = -~ ,
then from condition (3) in our theorem it follows that f,(z) >0.

If x is a point of C then lim tz(v*xt)(x) >0 and, as we saw above,
lim tZF(x,t) = 0. But sinzgoevidently ¢t(m);>c Xat(x) for some
;ggitive § and ¢, we have lim tze(x,t)> 0 , and consequently

iim Fl(x,t) = +o , that isf+£l(x) = +o» , Thus in all cases we
hzse f,(x) > -~ , as we wished to show.

Let us turn now to the distributions g. Let §{(x) be like the func
tion ¢ in our theorem, but having support in |x|<1. Let y and y
be related to ¢ and ¢ respectively as in lemma 8 and normalized so
as to have integrals equal to 1. Set G(x,t) = (gth)(x) and defi-

ne similarly G, and G,. We shall show that lim G, (x,t) = g, (x)
t>o
exists everywhere in 0, is upper semicontinuous and locally inte-

grable and coincides with the distribution g, in 0. Since
F,(x)>0 a.e. and £,(x) > -= everywhere in 0, it will follow by lem
ma 11 that f, coincides with a measure in 0. Since f,=f+ev-h in
0, and since e can be taken arbitrarily small, this in turn will
imply that f-% coincides with a measure in 0, which is the asser-
tion of the theoren.

We begin with some observations. By lemma 9 we have

t
e J ’ S(f*gs)(x) ds s ¢ >0

G(x,t ) - G(x,t )
2 1 ty
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Then, since $>0 , if x is a point in an open set in which f coin-
cides with a measure, and d is the distance from x to the comple-
ment of the set, G(x,t) is a non-decreasing function of ¢ for
0<t<d. A similar remark applies to G, and G, . Thus, since iy
coincides with ev - ‘A in a sufficiently large open set containing
0, G,(x,t) is a non-decreasing function of ¢ for 0<t<1 and all

z in 0. About the function G(x,t) we remark that, according to
lemma 12, it can be replaced by (g*wt)(i) with an error which is

a bounded function of x and tends uniformly to zero as t -» 0.

[ 4
To show the existence of g, we observe that G, =G+ G, . Since

G,(x,t) decreases as t >0, it has a limit, finite or infinite for
all = in 0.

On the other hand, if = is a point of 0 not in C, by lemmas 12
and 9 we have

1
G(=,%) = (ga0,) (=) + 0(1) = (gap,) (@) - ¢ |6 Fle,0) do + o(1) =
t
1 1
= (g*wl)(x) + e J s [|F(x,8)| - F(x,s)] ds - ¢ J s|F(x,8)|ds + o(1)
t t
where ¢ >0, and since by condition (3) in our theorem the first
integral in the last expression has a finite limit as t - 0, we

conclude that, as ¢ » 0, G(x,t) also has a limit, finite or infi-

nite. Combining this with our previous observation we conclude

that g, (x) exists fo: :.1 x not in C. Finally, if =z is a point
of C, since obvious.y .)=>e¢ th(x) for some positive & and e,
we have

(Fx9,) (@) =>e (u*xat)(x)>@lt_2 , 0<t<1 , ¢, >0

Consequently

G](x,t) = G(x,t) + G (x,t) = (g*¢t)(x) + G (xz,t) + o(1) =
2 2

z (gﬁ¢1)(x) + G (z,1) - ¢ Jlﬂ F(x,s)ds - ¢ jls (foﬂag)(x)d3+0(1)
2 Ty + 2" s

< (9*$])(x) + G7(x,1) - e [Iu—l[F(x,s)sz + cl]ds + o(1)
2 I

where, again, ¢ >0 . Since, as we saw, F(x,s)s? > 0 as s > 0, the

last cxpression tends to -« as ¢t - 0, and consequently gl(x) = -w,
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We proceed now to show that g, has the required properties and
coincides with g, in 0. At first we shall assume that the set C
is empty. Let 0, be the largest subset of ( with the property
that 51 is upper semicontinuous, locally integrable and coincides
with g, in 01, and suppose that 0, is a proper subset of 0. Con-
sider the function

Jlk(s) s [|F(z,8)| - Flz,8)] de

which evidently is lower semicontinuous in 0. Since C is empty,
on account of condition (3) in our theorem, this function is fini
te everywhere in 0. Thus, as in the proof of lemma 1, we conclu-
de that there exists an open set 0,, containing 0, as a proper
subset, such that the integral above is bounded, say by N, in

0, -0,.

Let now x be a point in 0, at distance not larger than s from

0, -0, , and let s <¢t<1, Then if y is a point of 0, - 0, and

|x-y| <& , by lemma 12 we have

[G(z,8) - (gxv ) (y)| <e(t)
(4)
[Gx,t) - (gxv,) (y)| <el(£)

where o(t) tends to zero as t - 0. On the other hand, by lemma 9,

t
(g29,)0) - Ggxv)G) = ¢ [ u FGu) du 5 >0
8

and since A(t) is a decreasing function of ¢,

t .
(g29,0 @) - st )0) <o [ ullFGa| - Fa| du <
s

- t -
<o (e} J A(w) u| [FQyyu)| - Flyou)| du < N (e}
s
and combining these inequalities we find that
Glz,s) < G(x,t) + 20(t) + e Na(e) b

and, since Gz(m,t) is a non-decreasing function of ¢, this, in
turn, implies that
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(5) G,(z,8) <G, (x,t) + 26(¢) + ¢ N A(8)™"

which holds for d<s<t<1 , d being the distance of x from 0,-0
Now for d > s, since 31 = g, is upper semicontinuous in 0, and
therefore f, = Ag, coincides with a measure in 0,, G,(z,s) is a
non-decreasing function of s, and thus (5) is seen to hold also

for 0<8<¢<1 and all z in 0,. Now letting s tend to zero we ob
tain

1°

(6) g,(@) <G (x,t) + 20(t) + ¢ Na(e) ™}

Suppose now that z - x, o, x € 0,. Then, since the righthand side

of the preceding inequality is a continuous function of z we find
that

lim g, (x) <G,(x_,t) + 26(¢t) + ¢ N A(t)~
z>r °

1

and since 6(t) > 0 and A(t) > » as ¢ > 0 , letting ¢t tend to zero
we obtain

lin g, () <g(z,)
:c-».’z:o

which is the desired upper semicontinuity of 51 in 02.

Let now ¢z (x) >0 be infinitely differentiable with compact support
contained in 0,. Since, as ¢t + 0 , ;*Et converges uniformly with
all its derivatives to ¢, we have

lim | G, (z,t) () dz = lim g (c48,) = g,(@)
t+o t+o

On the other hand, on account of (5), Gl(x,t) is bounded above
for 0<t<1 and z in any compact subset of 0,. Thus, since
lim G, (x,t) = El(x) , by Fatou's lemma we have

t»o

+0

and thus 31 is seen to be locally integrable in 0,. But then mul
tiplying (6) by z(x) , integrating and letting ¢t tend to zero, we
get the preceding inequality reversed. Thus we have equality and

9, ) z(x) d= = g, ()
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for all ¢. Thus §l~is upper semicontinuous, locally integrable
and coincides with g, in 0,, which contains 0, as a proper subset,
in contradiction with the assumed maximality of 0, . Hence 0, must
coincide with 0, and, as observed earlier, this proves the theorem
in the case when C is empty.

Let us pass now to the case when C is non-empty. We shall show ‘
that g, is upper semicontinuous, locally integrable and coincides>
with g, in 0, and then the desired conclusion will follow as befo
re. Let 0, be again the largest open subset of ¢ on which g1 has
these properties. Since, as we know now, 0, must contain 0 - C

we have 0 - OIC C. Consider the function inf tz(v*xt)(m) »
t

0<t< 1. Because t" is the characteristic function of the clo-

X
sed sphere |x|<¢, thiz function is upper semicontinuous and, ac-
cording to our hypotheses, positive at every point of C. Conse-
quently, as in the proof of lemma 1, it follows that there exists
and open subset 0, of 0, containing 0, as a proper subset, such

that inf tz(v*xt)ﬂt)>(5> 0 for all x in 02 -0, Set now
t

1
w@) = [ G, @) ar
o

Evidently, this is an integrable function. If d(x) denotes the

distance between x and the set 02- 0l , 2d(x)<s<1 and y is a

point in 02 - 01 such that |x-y|<§% d(x), then as readily seen

(v*xs)(x) > c(v*xS/A)(y) >c 8”2

where the ¢ are positive constants. Thus, for dz)<1/2 , we
have

1

wix) = ¢ [ s7? ds > ed(x)—l
2d (x)

which shows that y(x) = +< in 0, - 0, , which therefore has Lebes
gue measure zero, and that d(ac)_1 is integrable in a neighborhood
of 02 - 01 . Let now d(x)<s<t<7T. Then since, as we saw at the
beginning of the proof, t2 F(x,t) is bounded, by lemma 9 we have

| (g#¢,) () '(g*¢s)(xj|=c|J uF(x,u)du| <c J w ldu=c log d(z) !

t 1
8 d(z)
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and this, combined with (4) and the fact that Gz(x,t).is a non-de
creasing function of ¢ gives

¢2) G (x,8) <G (x,8) + 20(¢) + ¢ log d(x)”

which is analogous to (5), and which for the same reasons as in
the case of (5), holds also for 0<s<¢<1 and d(:c) <1. Letting
8 tend to zero we obtain

(8) 5@) <G, (z,8) + 20(#) + o log d(z)"

This shows that g, (x) + - as d(z) > 0 , and since g(x) = -«
for x €C, it follows that 51 is upper semicontinuous in 0,. To
prove that 51 is locally integrable and coincides with g, in 0,
we argue with (7) and (8) as we did in the preceding case with
(5) and (6), keeping in mind that log d(x)_l is integrable in a
neighborhood of 0, - 0,. This will contradict the assumed maxima
lity of 01, showing that 01 must coincide with (0, as we wished to
show.

Proof of theorem 6. As in the case of the preceding theorem, we
may assume that f = Ag, where g has compact support, that #(z) <0
and is defined and integrable in all of R”?, and that v is defined
on all Borel subsets of R” and is totally finite.

We shall assume first that n> 2 and ¢>1. Let
~ A 1- ~ -
1(z) = g(z)!z]z( 8) = _4y2 f(z)|z] 28

where s is such that » <sg <q'l and (n-28q)/(n-2) <q. Since g has
compact support, ; and 1 are continuous and bounded near the ori-
gin. Since f(z)(1+|z|2)'r is in 19 and s =7, f(z)|z] 2% and 1(z)
are integrable to the g-th power in |z| <1. Thus 2(z) is in 19
and its inverse Fourier transform Z(z) is in P, p = ¢q/(q-1).

Let now o = 2(1-s) and ¢ a constant such that the Fourier trans -
form of ¢ |ac|'"+0t coincides with |z| ®. Let g(x) be defined by

76 = o [ 1)leny] T gy

if the integral is absolutely convergent, or g(x) = -» otherwise.
Since (n-28q)/(n-2) <q and sq <1 one verifies readily that

n>pa>2 and p(n-a) >n, so that |x| nte g integrable to the g-th
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| power in |x]| > 1 and the integral above is absolutely convergent for
almost all ¢ and g(x) is locally integrable. Furthermore, our
distribution g coincides with the function g. In fact, if E(x)
is an infinitely differentiable function with compact support, we
have

J g (z) E(x) de = ¢ J 1(x) J E(y)|x-y|—n+a dy dz

Since the Fourier transform of |z| % is e|z| **®

» the inner inte
gral above is the Fourier transform of c(z)lz[-a, ¢z here being
the inverse Fourier transform of E. On the other hand the convo-
lution z(x) EY |x|-n+a evidently belongs to 9 and therefore, by

Plancherel's theorem, we have
JE(m) t(x) dz = ¢ J 1(x) J ) |z-y | Y dy de =
- ji(z) t(z)|z| %dz = J g(2) t(2) dz

which shows that the Fourier transform of g coincides with g, that
is, g coincides with g¢.

Let now ¢ be an arbitrary positive number and ¢ (x) an infinitely
differentiable function with compact support which equals 1 in 0.
Let g, (x) = -« be defined by

7,() = 76) - e @) [ e |2 Pley] Ry -
(9) )
te E(x)J ny) eyl M dy - e t(a) J elz-y| "% dv(y)

where -c|x]_n+2, e>0 is the fundamental solution of Laplace's e-
quation. Evidently 51 is locally integrable and the distribution

f = bg, coincides with
Ag*+e|tlP -+ ev=F+e|l]P - n+ ey

in 0. As we shall see, £, has the property that Fl(x);=0 almost
everywhere and f, (x) > -» everywhere in 0, and g, satisfies the con
ditions of lemma 11. Thus it will follow that f, coincides with a
measure in 0, and since this will hold regardless of the value of
e we will conclude that f-% also coincides with a measure in 0,and
our theorem will be established.
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On account of lemma 7 we have

Fi(®,t) 2 F(a,t) - (hyeo,)(x) + e(vad ) (x) + o(1)

uniformly in any compact subset of 0. From this it follows that
£, 2f. Now if at the point x we have f(z) = -» , then, according
to our hypotheses, F(x,t) = o[ (vy ¢ )(x)] and consequently

lim F(x,z) + s(v*¢ ) (z) =0, and 51nce71<0 it follows that
t+o
f,(x) =20, and thus we have f,(x) > -~ in all cases. On the other

hand, if = is a Lebesgue point of the function % and ¢ + 0 and
y ~ x with |y-z| <t, we have (h,¢ )(y) + h(x) and therefore
F (x);>F(x) - h(x). Thus we have F (x) =20 almost everywhere in 0.

Let us turn now to the function 51. Evidently, since % <0, the
last two terms on the right of (9) are upper semicontinuous func-
tions of x, and according to lemma 14 the sum of the two first is
upper semicontinuous in 0. Thus 51 is upper semicontinuous in 0,
and there remains only to show thatg has the property that
(gl*w ) (x) »> (x) ast > 0 for all x in ¢. To see this let
0>8>-n and con51der the convolution P |xl Evidently

sup by ox |x[ is finite everywhere but at the origin. Further -

more, as readily verified, it is homogeneous of degree B and sphe
rically symmetric. Thus we have

| ® <sup v, l2|® = ¢ |x|®

Thus if v is a signed measure and the convolution u * |x]B is abs
solutely convergent at the point z then by the dominated conver-
gence theorem we have

im [(n Szl® l(=) = 11m s (el w12 =
>0

ORI ICN!

We use this observation to calculate the limit of (El*wt). For
this purpose we convolve the righthand side of (9) with V.. Accord
ing to Lemma 8, in calculating the limit of the resulting expres-
sion at points of 0 we may drop the function ¢(z) and we obtain a
sum of terms of the form 11*|m|6. Thus if at a point x all inte
grals of the righthand side of (9), including the one defining

g(x), are absolutely convergent we have lim (g wby ) (z) = gl(xJ
t>o )
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If on the other hand one of the integrals is divergent, then

'El(x) = -« _ and the desired result follows from the upper semicon
tinuity of 51. This concludes the proof of the theorem in the
case n>2 , qg>1

In the case n<2 or ¢ = r = 1 the distribution g, f =Ag , coinci
des with a continuous function. In fact, if g >1 we have

A . 1/q ' 14
o geeias<|[  1Fe s ] [ a2 Pas) P
lz|>1 |z ]>1 |z]|>1

and since 2(1-r)p = 2(1-r)q/(q-1) = (2q-2rq)/(q-1) > 2 the last in-
tegral above is convergent. But, because ; is continuous, this im
plies that it is integrable and that g coincides with a continuous
function. If on the other hand g = » = 1

[ le@ias =] Afe)laldn <
2|51 la]>1

and, again, g coincides with a continuous function, and the rest
of the proof consists in applying lemma 11 to the function

El(x) = gx) + t(x) J e ¢(x-y) dv - t(x) J h(y) ¢(x-y) dy

where ¢(x) is the fundamental solution of Laplace's equation. The
. argument is identical with the one used above and need not be re-
peated here.

Proof theorem 7. Theorems 5 and 6 having been established, theo-
rem 7 can be proved by using lemma 7 and the argument used in the
proof of theorem 2. The details are left to the reader.

In this last section we shall give two examples of distributions

f for which (f*¢t) tends everywhere to zero with t. The first is
the analogue of the series In sin nxz which is known to be every-
where Abel summable to zero. In this case } barely violates condi
tion a) of theorem 5 but is unbounded. In the second example,
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which is more complicated, f(z) is of the order |z|-(n'3)/2 as-’
lz] + = » and thus is bounded for n = 3 and tends to zero as

2] > » if n >4, We remind the reader that if ¢(sz) = e 1l , then
(f*¢t) is the Abel means of the Fou?}er integral of f. Thus the
Fourier integrals of the functions f are Abel summable to zero
everywhere.

Let # = (u,2) , u€R , z€R" ! | and w(x) be infinitely differen-

tiable and have compact support. Let f be the distribution defi-
ned by

f(z) = J( = 2)(0,7) w(¥) d&
Then f has support in u = 0 and, setting z = (v,z) , we have
F(2) = 2niv o(3)
whence it follows that

J If(z)] dz < 27 Jr |v] dv J |;(5)| dz < ¢ »?
|z |<n -

Now, since f has support in u = 0, we have
(f*¢t)(U,;) >0 , u#0 , t=>0

and if » = 0, on account of the spherical symmetry of 9, we have

L}
o
&

1}
<

"
o

3 —_ =
50 ¢t(u'v’x_y)

and, consequently (f*¢t)(0,§) = 0. Thus (f*¢t) + 0 everywhere as
t > 0.

In our second example we shall assume that n>2. Let S be the
sphere |z| = 1 and let f be defined by

£o) = JS (c+ 2-1)7" 2 ¢ do

where do stands for the element of area of S and g% denotes normal

outer differentiation. To calculate f we merely replace ¢ by
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3 271(2-3) 3 the preceding integral. Setting |x| = r, 2| = o,

(x.3) = rp cos 8 we have do = ¢ (sin s)"'2 ds and our integral be
somes

-1 " 2wip cos 8 s n-2
e f(z) = e (sin g) ds +
]

™ .
+ 4ri(n-1)""o J e2TiP cos 8.0 o (sin 8)" 2ds
[}

and replacing cos s by ¢t and integrating these integrals by parts

(n-3)/2)

we see that f(z) = O(|z|" as |z] » =

Let now ¢(x) = n(|x|), where n(t)(k) = O(t'"'k'e) as t + = and let

us calculate lim (f*¢t)(x) as t - 0. Since the support of f is S,
by lemma 7, this limit is zero if = ¢ S. If z €S we have

A1 Gaed @ = [ T nlayl/0) » 2o 5 ¢ Ty 170 doy

Since, as readily seen, if |x| = 1 then
J -1
5o |-yl = lz-y| " [1 - (@.y)]

and' thus we have

2 e ncla-yl/e) = £ I ey l/8) ey 70T - =) ]

Setting |x-y| =e =2 sin 6/2 we obtain
1 - (x.y) =1 - cos 6 = 82/2
do = e(sin 8)""2de = o 6" 2(1-82/4) "3 /245 = o 8% 9(s)ds
and substituting in (11) we get

2 2
(f*¢t)(x)=J t_nn(s/t)sn-zé(s)ds+(n-1)_lj t_n_ln'(s/t)sn_1¢(s)ds
o o

Since t "n(s/t) and t'"_ln'(s/t) tend to zero as t + 0, uniformly
in =1, replacing the upper limit of integration by 1 and inte -
grating by parts the second integral we obtain
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1
(Pat) @ = =D [ 7 aare) 01 (o) do + (1)
(o}

But, evidently, [¢'(s)|<ec s in 0<s<1 and consequently the last
integral is dominated by

1 1/t
e j t nsnn(s/t) ds < e t j 8" n(s) ds <o °
0 o

as t - 0 , and we find that (f*¢t)(x) + 0 everywhere as ¢ + 0.
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