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1. INTRODUCTION. Let f be a distribution on an open set 0 in Rn 

and ~(~) an infinitely differentiable function with support in 
1~1<1 and integral equal to 1. Let ~t(~) = t-n.(~/t? andconsi­
der the function 

(1 ) t>O 

i.e. the convolution of f and ~t' which is well defined for ~ at 
distance larger than t from the complement 0' of O. We are inte­
rested in the-extent 'to which lim F(~,t) determines f. If 0 coin-

t .... o 

cides with Rn we, may replace tHe condition on the support of • by 
one less restrictive but sufficient to insure the existence of 
F(~,t). For example,if f is the Fourier transform of a function g 
and the integral of Igl over a sphere of radius 2' does not grow 
faster than a fixed power of 2', we can take ~ to be the Fourier 

transform of e-I~I and F(~,t) becomes the Abel means of the Fourier 
integral of g. Thus in this case our problem becomes that of uni­
queness of Abel summable Fourier integrals. We shall consider ~wo 
modes of approach of the point (~,t) to the hyperplane t ~ 0, name­
ly, non-tangential and normal. Results on non-tangential limits 
are relatively' simple and require no conditions on f. Furthermore', 
they have interesting applications to the theory of partial diffe­
rential equations. On the other hand, results on norm.al limits re­
quire some restrictions on f. The ones we present here are closely 
related to the work of V. Shapiro (see [3)). 

2. STATEMENT OF RESULTS. 

We shall always assume that f and • are real an we shall associate 
with them the functions 

F(~) = lim F(y,t) , F*{~) lim F(y,t) , t>O , t .... 0 , I~-YI <t 

* This research was partly supported by NSF GP - 23563 
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where the upper limit F is taken through aZZ positive values of t 

and the lower limit F* only through a fixed but otherwise arbitrary 

sequence tending to zero. These are non-tangential limits. We al­

so consider the normal limits 

f * (x) = lim F (x, t) , [(x) = lim F (x ,t) , t > 0 , t ->- 0 

where, again, f is taken through all positive values of t and f* 

through an arbitrary but fixed sequence tending to zero. 

THEOREM 1. Suppose that 4> (x) ;;. 0 has support in I x I";; 1 and inte -

graZ equaZ to 1. Suppose that h is ZocaZZy integrabZe in 0 and v 

is a measure which is finite on compact subsets of 0 and such that 

F(x) ;;'h(x) aZmost everywhere in 0 and either F*(x) >_00 or 

(2) I F (y , t) I - F (y , t) = 0 [( v * 4> t) (y)] , Ix-y I ..;; t 

as t tends to zero through the sequence defining F*, for aZZ x in 

O. Then f-h coincides with a measure in O. 

Here, and throughout this paper, "measure" means a non-negative 

measure, and to avoid tedious repetitions we shall always assume 

that a measure in an open set is finite on its compact subsets. 

THEOREM 2. If in the preceding theorem we have 4> (0) > 0, h (x) 0 

aZmost everywhere and [(x) ..;; 0 everywhere in 0, then f o. 

THEOREM 3. The assertions of the preceding theorems remain vaZid 

if condition (2) is repZaced by the foZZowing: the set of points 

where F*(x) ~ -00 is a countabZe union of sets E such that if x t 
denotes the characteristic function of the set of points at dis­

tance Zess than't from E then 

remains bounded as t tends to zero, and fol' I x-y I ..;; t and x E E, 

F(y,t)ta tends to zero uniformZy as t tends to zel'O thl'ough the 

sequence defining F*. The number a may depend on the set E. 

This result has interesting applications to the theory of linear 

partial differential equations. They are extensions to general e­

quations or systems of familiar facts about analytiC functions such 

as the theorem of Besicovit.:h (see [2] , chapter V, tho 5.3) or the 
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theorem of Looman-Mencho£f. Although the result stated below, when 

specialized to the case of the Cauchy-Riemann equations, neither 

implies nor is implied by the theorem of Looman-Menchoff, it is of 

the same general character. For some recent results in the same 

direction see also [4J. In order to state our results we must re­

call some generalized notions of differentiability introduced in 

[11. If h is a locally integrable f~nction in an open set 0 we 

shall say that h belongs to T! (x 0) , a;;' -n , if there exists a po­

lynomial P of degree less than or equal to a, P = 0 if a < 0 , such 
that 

where X t (x) is the· ::d", "'.'ristic function of the sphere of radius 

t with center at tlw nri",in, remains bound.ed as t .... O.Ifonthe other 

harid this expression 'cdds to zero as t .... 0 , we say that h be -

longs to t1(x O)' If h belongs to t1(X O) for all Xo in a set E 
.a a 

with the co~fficients of the corresponding polynomials bounded in 

E and the prec~ding expression tending to zero uniformly, we say 

that h belongs to t!(E). When h belongs to t!(x o) the coeffi -

cients of P are uniquely determined and one defines the generali­

zed derivatives of h of orders less than or equ~l to a at Xo as 

the corresponding derivatives of P at the origin. Thus if L is a 

differential operator of order less than or equal to a, (Lh)(x o) 
can be defined accordingly. These notions can be generalized,in 

the obvious way to the case of vector-valued functions. 

THEOREM 4., Let L be a system of linear partial differential opera­

tors of order m with coefficients of terms of order k in Cm- k . Su£ 

pose the vector-valued function h belongs to t~(x) for almost all 

x in an open set 0 and satisfies the equation L h = 0 there. Sup­

pose that at the remaining points x either h belongs to T!(x) or 

else x be longs t'o a coun tab le union of se ts E such that hE t 1 (E), 
m-a 

o<a = aE";;n, and, if xt(x) denotes the characteristic function of 

the set of points at distance less than t from E, 

is finite and remains bounded as t .... O. Then h is a weak soZution 

of the system L h = O. 

We may complete this statement with the observation that if L is e­

lliptic determined or overdetermined and has infinitely differentia 
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ble coefficients then h coincides almost everywhere with an infini 
tely differentiable function. 

We pass now to the results on normal limits. They are contained 
in the following 

THEOREM s. Le~ f be a distribution with aompaat support and ¢(x) 

an infiniteZy differen~iabZe funation suah that <I>(x) = n(lxl) where 

net) is a non-deareasing funation of t suah that n{k) (t) 

O(t- n - k - E ) as t ~~. Suppose that ~he Fourier transform f of f s~ 
tisfies the foZZowing aondition 

a) J If(z) I dz = a (r2) as r ~ ~ 
Izl<r 

Let the funation h be ZoaaZZy integrabZe in the open set 0 and sup­

pose that F(x) ;;'h{x) aZmost everywhere and iJx) > -00 everywhere in 

O. Then f-h aoinaides with a measure ~n u. 

The aonaZusion remains vaZid if the aondition that [(x) > -~ is re­

pZaaed by the foZZowing weaker one. There exist a aZosed non-dense 

subset C of 0, a measure v in 0 and a non-inareasing funation 

A{t»l in (0,1) with A(t) -;. ~ as t -;. O. suah t.ha~. if X denote 

the aharaateristia funation of the sphere Ixl ~1 , then 

at every x of C, and if x is a point of O-C suah that f(x) 

then 

(3) 

ft ).(t) [IF(x,t)1 - F{x,t)] dt<~ and 
o _ 

IF(x.!;)1 - F(x,t) = a [(v*<P t ) (x)] as t -;. 0 

-THEOREM 6. Let f and <P be as in the preaeding theorem. Suppose , 
that the Fourier transform f of f satisfies the aondition that 

r=q=l. 

Let h be a loaaZZy integrabZe funation and v a measure in an open 
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set O. Suppose that F(x) ;;'h(:x:) a'Z.most everYIAlhere in 0 and either 

!J:x:) > -00 or 

as t .... 0 for an :x: in O. Then f-h ooinoides IAlith a measure in O. 

THEOREM 7. Suppose that under the assumptions of either of the "two 

preceding theorems IAle have h(:x:) = 0 and tJ:x:) <0 eve1'yIAlhere in 0 

Then f = 0 in O. 

We note that condition a) in theorem 5 is closely related to the 
condition on the coefficients in the theorem on uniqueness of Abel 
.summable Fourier series of Verblunsky-Shapiro (see [3]). We shall 
see that, as in the case of Fourier series, it cannot be renlaced 
by the weaker condition 0(1'2.). This will be shown in the last se'=. 
tion where we also give an example illustrating the limits of pos­
sible improvements of theorem 6 by exhtbiting an f such that 

fez) = oClzl-(n-3)/2) as Izl +- 00 and that F(:x:,t) .... 0 as t ... 0 for 

all x. 

3. We start with some lemmas which will be used in the proof of 
our results. 

LEMMA 1. Let F", be defined by 'Z.etting t tend to zero through a se­

quence S. Suppose that F",(:x:) > -00 for al.l x in an open set O. Let 

C be cZosed and such that en 0 is non-empty. Then there exists an 

open subset 0 1 of 0 with cn 0 1 non-empty and such that F(y.t) ;>-N> 

> -'" in the set Iy-xl..;;t. xECno l • tES. 

Proof. Let £(x) = inf F(y,t) , Iy-xl";;t , tES. Then £ is upper 
semicontinuolls and everywhere finite in O. Consider t'he sets 
{£(x);>-k ,xECno} , I<. ='1,2, •... They are relatively closed 
in cnO and their union is cno. Since cno is of the second cat~ 
gory in itseJf, one of these sets contains a non-empty relatively 
open subset C no 1 of C no. This prove~ the lemma. 

LEMMA 2. Suppose that !Jx) > -'" for al.l x in an open set O. Let C 

be cZosed and such that C n 0 is non-empty. Then there exists an 

open subset 0 1 of 0 IAlith cnol non-empty and such that F(x.t);>-N> 
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> -co for x i~ C n O~. 

The proof of this is almost identical to that of the preceding 
lemma and is left to the reader. 

LEMMA 3. Let f .be a distribution in an open set 0 and", >0· have 

support in Ix I < 1. Suppose that F(x. t) >-N >-co for x EO. t ES and 

t < Il. and Let F (x) > 0 aLmost everywhere in O. Then f coincides 

with a measure in O. 

Proof. Let ",(x) = ~(-x) and z;(x»O be infinitely differentiable 
and supported in O. Then 

-Since F(x,t»-N for xEO and tES, and since 1;*"'t and all its de-
rivatives converge uniformly as t + 0, if we let t +0 through swe 
will have 

Thus the distribution f+N is such that (f+N) (r;;) > 0 for every 1; > 0 

with support in 0 and therefore coincides with a measure ~l in O. 
Let now g be the Radon-Nikodym derivative of ~l with respect to Le 
besgue measure and v i tss ingular part. Then 

Now, at almost all Xo the derivative U~·v(St)/IStl , where St is 

the sphere with center at Xo and radius t, exists and is equal to 
zero, and at such points the first integral above tends to zero as 

x + .x o and t + O.with Ix-x o I < t. On the other hand, at every Le­
besgue point Xo of g the second integral above tends to g(xo) as 
x + Xo and t + 0 with Ix-xo I < t. Thus we have 

g ex) = F ex) + N;;' N 

almost everywhere in O. This shows that ~l -Ndx is still non-nega­
tive whence it follows that f coincides with the measure 

~ = \l 1 - Ndx in O. 

LEMMA 4. Let f and", be as in theorem 5. Suppose that F(x.t) >-N 
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for x in an open set 0 and tES and let F(x);;;'O almost everywhere 

in 0. Then f coincides with a measure in 0. 

Proof. The argument used in proving the preceding lemma applies 

to the present case with only minor changes. We first observe 

that on ,account of the properties of ~, if g is a distribution 

with compact support then g*~t + 0 as t + 0 in the complement of 

the support of g. Then, as in the previous lemma, we show that 

f+N = ~j in 0. Given an open subset 01 of 0 and an infinitely dif 

ferentiable function n which is equal to 1 in ~and vanishes out­
side 0 we will have that 

( n ~ j *~ t) (x) - F (x , t) + 0 

as t + 0 for all x in OJ' and arguing with n~j as we did above 

with ~j it will follow that n~j - Ndx is non-negative in OJ. Since 

OJ is an arbitrary open set regularly contained in 0, the desi~ed 
result will follow. 

LEMMA S. Let f and ~ be as in theorem 5. Suppose that f+N coinci 

des with a measure in an open seJ ° where F (x) ;;;. 0 holds almost eve 

r'ywhere. Then f itself coincides with a measure in 0. 

This was shown in the second part of the proof of the preceding 

Lemma. 

Proof of theorem 1. At first we shall assume that h = 0 and v = 0, 

i.e. that F(x);;;'O almost everywhere and F*(x» -'" everywhere in 0. 

Then according to lemma 1 every open subset of ° contains a neigh­
borhood where F ex, t) is bounded below uniformly for t E S and where 

consequently according to lemma 3, f coincides with a measure. Now, 

if f coincides with a measure in every set of a family of open 

sets, it coincides with a measure in its union. Thus there exists 

a maximal open subset OJ of ° where f coincides with a measure. 

Now, suppose that OJ is a proper subset of 0. Then according to 

lemma 1 there exists an open set °2 , OJ CO 2 cO, containing OJ pr~ 

Derly and a number N such that for yE0 2 -O j , Ix-yl<;'t, tES we 

have F(x,t);:;'-N. Let now 03 be the set of points of 02 at distance 

greater than E from its complement. If E is sufficiently small, 

then 03 contains points not in OJ. Consider now F(x,t) with x E03 

and tES, t< E. If x is at distance greater than t from the com­

plement of OJ' since ~t is non-negative and has support in Ixl < t 



44 

and since f coincid~s with a measure in 01 we have 

If the. distance between q; and the complement of 01 is less than 
or equal to t. then there exists a y in 02-01 with /q;-y / <; t and 
we have F(q;.t»-N. Consequently F(q;.t) is bounded below in Os 

for t E Sand t < e and according to lemma 3. f coincides with a 
measure in Os' But Os is not contained in 01' and thus 01 is not 
maximal. a contradiction. Hence 01 coincides with 0, and the the 
orem is established in this special case. 

In the general case. given a large integer Nand e > 0 we let g be 
the distribution defined by g = f-hN + e\l. where hN(q;) = hero) if 

h (q;) <; Nand hN(q;) = N if h (q;) > N. Then. as readily seen, we have 
G(q;) > 0 almost everywhere in ° and G", (q;) > -III everywhere in 0. 

Hence g coincifles with a measure in ° and for every testing func­
tion n. n > 0 • we have 

g(n)· fen) - J hNn dq; + e J n d\l;;;'O 

Letting N + + ... and e + 0, we find that 

f (n) - J h n dq; > 0 

whence the desired conclusion follows. 

Proof of theorem 2. Since h (q;) > 0 almost everywhere 'in ° , acco!. 
ding to theorem lour distribution f coincides with a measure ~ 

in 0. Suppose that ~ ~ O. Then there exists at least one point 
q;o such that, if St denotes the sphere with center at q;o and ra­
dius t. lim t-n ~ (St) > 0 as t + O. Now, if 4> (q;) > e for /q;1 < e , 
since + > 0 , we have F (q;o ,t) ;;;. t -n e~ (StE)' and consequently 
!(q;o) > 0 • a contradiction. Hence we must have ~ = 0, and our a~ 
sertion is established. 

Proof of theorem 3. We start with the observation that if F", is 
redefined by making t tend to zero through an arbitrary subseque!!. 
ce of the one originally used to define F"" the hypotheses of the 
theorem will still be satisfied and the conclusion will be proved 
if we .how that a proper choice of the subsequence will imply the 
existence of a measure \I satisfying (2). Let 
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where ! x-y! ..;; t , x E Em and t tends to zero through the sequence de 
fining F*. Let us select a subsequence tk of this such that 

Lk E;/2C t k )";;Mm<oo for all m. If x~Cx) denotes the characteris­

tic function of the set of points at distance less than Zt from 

Em ' let 

Consider now the function 

-(X 
() \ 1/2(t ) Z-m m t m M-1N- 1 

g x = Lk,m. Em k Xtk(x) k 
m rn 

Then if xEEm ' !x-y!";;t = tk we have 

m 
X t (Z) ~ t (Y - z) dz 

k k 

which shows that for xEU Em ' !x-y!";;t k we have 

as tk + O. Since g is clearly an integrable function, its indefi 
nite integral gives the desired measure v. 

Proof of theorem 4. For simplicity we shall restrict ourselves 
to the case of a single differential operator of the form 

Furthermore, and without loss of generality, we may assume that 
the coefficients as belong to cm-I 131 in the closure of O. Let 
now Q be a polynomial and R = h-Q. Consider the distribution 
f = Lh and let <p be as in theorem 1. Then 

The first term in the last expression is dominated by a multiple 
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of a bound for the coefficients of Q, and for the ~cond we have 

~ c t-n-mJ IR(y) Idy 
Ix-y I <2t 

1 where c is a constant. Thus if h belongs to t m_a (E) , a > 0 , and 

Xo E E , by setting Q(x) = P(x-x o) , we see that for Ix-xo I ~t 

as t -+ 0, and consequently F(x,t) t Cl -+ 0 as t -" 0 with Ix-xol~t 

uniformly for Xo E E. 

we s'ee that F (x, t) remains bounded or tends to zero as t -+ 0 with 

I x -x 0 I ~ t. Thus, according to theorem 3, f coincides with a measu 

re in O. Since the same conclusion holds for -f, it follows that 

f = 0 in 0 and thus h is a weak solution of the system Lh = 0 in O. 

The proof of theorems 5 and 6 will require a few more lemmas. 

LEMMA 6. If f is a distribution with compact support C, there 

exists a g with compact support such that ~g-f is infiniteZy dif­

ferentiabZ~ and vanishes in a neighborhood of the support of f. 

Proof. Let ~ (x) be an infinitely differentiable spherically sym­

metric function with support in Ixl < 1 and integral equal to 1 

Let Z(x) be the fundamental solution of Laplace's equation and 

h = l - (l *~). Then h = 0 - I; , where 0 denotes Dirac I s delta 

function, and since l (x) is harmonic in Ix I > 0 and I; (x) is sphar!. 

cally symmetric and has support in I.x I < 1, the mean value property 

of harmonic functions implies that hex) = 0 for Ixl > 1. Consider 

now the function gl = (f*I;)*Z . Evidently, gl is infinitely dif­

ferentiable and gl = if*l;) has compact support. Now let g = 

(h *1) + ljIg 1 ' where ljI E C~ and ljI = 1 in a neighborhood of C 

~ g ~ (hd) + ~ (ljIg ) 
1 

f - ~[(1-ljI)g 1 • 
1 
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Thus, ~g - f = 81(1-~)gl I vanishes in the complement of the sup­
port of (1-~),. i.e. in a neighborhood of C. Furthermore, since 1/1 

and gl are infinitely differentiable, the same holds for dg - f. 

LEMMA 7. Let f and ~ be as in theorem 5. Then (f*~t)(x) ... 0 as 

t ... O. uniformly in the aomplement of any neighborhood of the sUR 

port of f. 

Proof. According to our assumptions the derivatives of order k 

of Hx) are of the orde.r Ixl-n-k-e as Ixl ... "". Thus, as t ... 0 , 
~t and all its derivatives tend unifo.rmly to zero in Ix I > ~ > 0 • 
This clearly implies the assertion of the lemma. 

LEMMA 8. Let n(.t) be as in theorem 5 and let 1/I(x) = -ni(lxl) Ixl-1. 
Then if g is a distribution with eompaat support t-2(g*~t)(x) ... 0 

as t ... O. uniformly outside any neighborhood of the support of g. 

Proof; Again, according to our assumptions, ~ and its derivative~ 
of order k are of the orders Ixl-n-2-e and Ixl-n~k_2-e respective­
ly as Ixl ...... This implies that t-2~t(x) and all its derivatives 
converge to zero uniformly in I x I > ~ > d, ·whence the des ired concl!! 
sion follows . 

. LEMMA 9. Let ~ be as in theorem 5 and ~ as in lemma 8. Let g be 

a distribution with aompaet support, f 8 g • 

F(x.t) 

Then 

Proof. One merely has to verify that 

which implies that 

tF (x ,t) 



48 

LEMMA 10. Let g be a distribution with compact support. Suppose 

that g coincides with a function g in an open set O. Let g be uR 

per semicontinuous in 0 and lim (g1cl/lt) (x) = g (x) ;;;, -a> for an x in 
t .... o 

0, where IjJ is the function in lemma 8 normalized so as to have i~ 

tegral equal to 1. Then if f = 6g and f(:x:) > 0 in 0, g is subhar­

monic in O. 

Proof. We must prove that if xoE 0 and S is a sphere contained 
in 0 with center at Xo then 

whe~e lSI is the surface area of S and do is the area element. To 
show this we let B be the closed ball with boundary Sand gl = g 
in Band gl = 0 in the complement B' of B. Let h be continuous 
in B harmonic in the interior of B and vanish in B'. Suppose 

that gl <;'h on S. Since gl-h is upper semicontinuous in B, it ta­
kes a maximum M at a point Xl in B. Suppose that Xl is in the in 
terior of B, at distance e: > 0 from B'. Since g = 'if = gl in the 
interior of B, if tl < t and t is sufficiently small, according to 
iemmas 8 and 9 and the fact that [(xl) > 0 we will have 

and letting tl .... 0 we obtain 

(g 1 * IjJ t) (X 1) - g (X 1) ;;;, ~ i (X 1 ) t 2 + 0 ( t 2) • 

On the other hand, since IjJ is "pherically symmetric and h is har­
monic in the interior of B, we have 

= J [hey) - h(x l )] IjJt(x l -y)dy = 0 (t 2 ) 

Ixl-yl>E 

Finally, since 1jJ;;;'0 and gl- h<;'M in B and vanishes in B', we have 

M-M J IjJ (:x: -y)dy = M +o(t 2 ). 
B' t 1 
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Combining these estimates we obtain 

" 2 2 M + 4' fCred t + oCt) 

that is 

which is impossible, since fCre 1 ) > O. Thus the maximum occurs on 
S, and since il <;h on S, we have il -h <;0 in B. Thus 

Since this holds for any h with h;;.{j on S, the desired conclusion 
fOllows. 

LEMMA 11. Let g be a dist1'ibu-tion bJith "ompaat support and 1/1 the 

fun"tion in Zemma 8 normalized so as to have integral equal to 1. 

Suppose that as t .... 0, (g*W t ) (re) ..: i(re) ;;'_00 for aZZ x in an open 

£let 0, bJhe1'e the fun"tio,n g(x) is upper semiaontinuous and loaaZly 

integ1'abZe in O. Let f '" b.g and F(x);;'O almost eve1'ybJhe1'e and 

fJre) > -00 eve1'ybJbe1'e in 0'. Then if g aoinaides bJith g in 0, f aoin 

aides bJith a measure in O. 

Proof. We use the well known fact that an upper semicontinuous 
locally integrable function g is subharmonic in an open set 0 if 

and only if ~ coincides with a measure there. Let 01 be the la£ 
gest open subset of 0 in which f coincides with a measure. Then, 
since.,.;;' 0, lemma 7 implies that !.Cre);;' 0 in 0 1 , If 0 1 is a proper­
subset of 0, then, according to lemma 2, there exists an open sub­
set O2 of 0, containing 0 1 as a proper subset, such that!. > -N < 0 
in O2 -0 1 , Let xCre) be the characteristic function of the set O2 

and let gl g + :n X Cre) Ire 12. Then from lemma 8 and the fact 

f + N it follows that gl satisfies the conditions of 
lemma 10 in O2 and therefore it coincides with a subharmonic func­
tion anc b.g 1 '" f + N coincides with a measure in O2 , But then, 
since F(x);;' 0 almost "everywhere in 0, by lemma 5 we conclude that 
f coincides with a m,easure in O2 , This contradicts the assumed 
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maximality of °1 , Thus 01 cannot be a proper subset of u and the 
proof of the lemma is complete. 

LEMMA 12, Let g be a distribution with compact support and ret 

f = tog satisfy condition a) in' theorem 5. Let z;{x) ;;;'0 be spheri-

cally symmetric, infinitely differentiable, with support in Ixl < 1, 

and such that f 1;; dx = f lj! dx , where lj! is as in lemma 8. Then 

as t ->- 0, uniformly in x and y, provided that ix-v I <,t. 

Proof. On account of the properties of ~ and lj! we have the ine­

quali ties 

where c is a constant. Conseque'ltly, ,~- ix-y! <'t, then 

r ~ ,- - [-2-1i(x.z) o-2'ITi(y.z)1~,(tz)d" I,;;: ! g Lz J e - '" ~ _-

On the other hand, since ~ and ~ have bounded flrst order deriva­

tives and 2(0) = ~(O) 

I (g*!;;t) (x) - (g*lj!t)Cx) I = I r g(?) e- 2rri (x.z) [((tz) - i1(tz)] dzl <, 
J 

and it will suffice to show that the two last integrals tend to 

zero as t ->- O. To see this let 

r Ig(?)llzl 
, I z I <u 

II :: E (u) 

Then a) implies that E(U) ->- 0 as u ~ ~ and 

- 1 
r t 

t J 
o 

_I 
u 

t - I 

dt- i ) + t r du) du 
J 0 



51 

which tends to zero as t + O. On the other hand 

and this also tends to zero as t + 0 , and the lemma is establi­

shed. 

LEMMA 13. Undep the aonditions of the ppeaeding lemma we also 

have 

as t + 0 , unifopmly in x and y, ppovided that Ix-y I <,t. 

This is an immediate consequence of the preceding lemma which was 

incidentally established in the course of its proof. 

LEMMA 14. Let h(x)ELP(Rn ), p>1, n>2, and let 

g(x) = J h(y) Ix-y I-n + tx dy , n > txp > 2 

if the integpal is absolutely aonvepgent, g(x) = -00 othepwise 

Then if 

the funation k(x) = g(x) - E kj(x) is uppep semiaontinuous fop 

evepy E, E > o. 

Ppoof. Since, as readily seen, Ixl-n+ tx is integrable to the power 

p/(p-1) in the complement of any neighborhood of the origin, the 

contribution to the integrals in the lemma from Ixl ~N is continu­

ous in Ix I < N. Thus it will suffice to prove the lemma under the 

assumption that h has support in Ixl <N. Let q = p/(p-1) and 

p = I (n-tx) - (n-2)/plq. Then p<n and Holder's inequality gives 

Jlh(y)llx-yl- n+ tx dy <,kj(x)l/p [J Ix-yl-P dY ] l/q 
I y I <N 

This shows that if k j (x) is finite then the integral defining g is 

absolutely convergent. Let us denote now by I] (x,t) and 12 (x,t) 
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the integral defining g extended over Ixl < t and Ixl:>t respecti~ 
vely, and de.fine similarly J 1 (x,t) and J 2 (x,t) with the integral 
expressing kl (x). Then, from Holder's inequality again, we obtain 

Let now Xo be a point such that kl (x o) < 00. Then, if IXo~xl·tIZ, 
we have 2Ix-yl:> Ixo-yl for Ix-yl ~t and, consequently the inte -
grands of 12 (x,t) and J 2 (x,t) are dominated by a multiple of the 
int.egrands of 12 (x O '0) and J 2 (xo'0) respectively. But, since 
kl (x o ) is finite, the last two integrals are absolutely conver -
gent, and this implies that 

as x ~ xO' On the other hand we have 

< s~p [ a slip t(n-~}/q - E S ] _ (alpE)l/(p-l) t(n-~)/p 

whence it follows that 

lim [I 1 (x. t ) - E J 1 (x. t) ] < 0 
t .... o 

Combining this with our previous result we obtain 

lim k (x) = lim [I2 (x , t ) - e: J 2 (x , t ) ] + lim [II (x, t) - e: J 1 (x, t)] < 

as x .... xo' Suppose now that kl (x o) ~ 00. Then since, as readily 
seen, kl (x) is lower semicontinuous, we have lim kl (x) = 00 as x .... x o • 

and since 

it follows that 

lim k(x) = lim [g(x) - e: kdx )] x~xo 

and the proof of the lemma is complete. 
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Proof of theorem 5. We start observing that, without loss of ge­

nerality,·we can make some additional simplifyi'ng assumptions. In 

the first place, lemma 6 shows that with only a harmless altera -

tion of f we may assume that f = 6g , where g has compact support. 

Furthermore, by restricting our attention to subsets of 0 if nece 

ssary, we may also assume that h is integrable and v totally fini 

te in O. Evidently, it will suffice to prove our theorem in the 

case when h is bounded above, and subtracting from h an appropri~ 

te infinitely differentiable function with compact support we can 

further reduce the proof to the case h';;; O. 

In our proof we shall need some auxiliary functions and distribu­

tions we now introduce. We extend h and v to all of Rn by set­

ting h(z) = 0 outside 0 and v = 0 on every set not intersecting O. 
We choose an arbitrary positive number c and applying lemma 6 we 

let g2 be a distribution with compact support such that 

6g 2 - (cv - h) is infinitely differentiable and has support at 

distance not less than 1 from O. We set 6g 2 = f2 ' fl = f + f2 ' 

gl = g + g2 and, as before, we let F(z,t} = U*<Pt)(z) , and defi­

ne similarly FI(z,t) and F2 (z,t). 

We shall first prove some properties of the functions F and F] 

Let us begin by showing that t 2 F(z,t) ~ 0 as t • 0 , uniformly in 

z. Let 6(8) be defined by 

f lfez) I dz 
, I z I .. 8 

Then condition a) in our theorem implies that <I(s) ,0 as U' ~'. 

Since .(x) is integrable and has lntegrable derivatives of all o~ 

ders, its Fourier transform;; satisfies the inequality I;(z) I .;;; 
.;;; a (1+lzl)-3 with some constant c. Consequently 

Ijrz) 11~(tz) I dz .;;; 

.;;; ct' I'D (1+8t)-3 do (8)s2 = 3ct 3 J"'<5 (8)s2 (1+8t)-"ds 

o 0 

f '" 2 - 4 
3c <5 (8/t)8 (1+8) ds 

o 

and the last integral evidently tends to zero as t > O. 

Next we shall show that FI (x) ~o almost everywhere and £1 (z) > -~, 
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everywhere in O. On account of the fact that f2 - (EV - h) is an 

infinitely differentiable function with support disjoint from 0, 
we have 

F (x,t) 
2 

as t + 0 for every x in O. Now, if x is a Lebesgue point of hand 

y ,.. x and t + 0 with Ill-x I ';;'t we have lim (h*$t) (y) = hex) and can 

sequently, since (v*$t) (y) ;;;'0, 

F (x) = lim F (y,t);;;. lim F(y,t) + lim F (y,t);;;' F(x) - h(x);;;' 0 
I I 2 

On the other hand, since h';;'O , we have F 2 (x,t) ;;;',;(v*$t) (x) + 0(1) 

as t .... o. This evidently implies that .fl (x) ;;;'.f(x) everywhere in 
O~ Now, if x is a point of 0 not in C and such that .f (x) = -00 , 

then from condition (3) in our theorem it follows that .fl(x) ;;;'0. 

If x is a point of C then lim t 2 (v*x t ) (x) > 0 and, as we saw above, 
t+o 

lim t 2F(x,t) = O. But since evidently $t(x);;;'o Xot(x) for some 
t+o 
positive 0 and 0, we have lim t 2 F 2 (x,t) > 0 , and consequently 

t+o 
lim F (x,t) = +00 , that is, f (x) = +00 Thus in all cases we 
t+o I -1 

have .fl (x) > -00 , as we wished to show. 

Let us turn now to the distributions g. Let ~{x) be like the func 

tion $ in our theorem, but having support in Ixl < 1. Let 0/ and ~ 

be related to $ and ~ respectively as in lemma 8 and normalized so 

as to have integrals equal to 1. Set G(x,t) = (g*~t)(x) and defi­

ne similarly G1 and G2 • We shall show that lim GI(x,t) = il(x) 
t+o 

exists everywhere in 0, is upper semicontinuous and locally inte-

~rable and coincides with the distribution gl in O. Since 

Fl(x);;;'O a.e. and .fl(x) > -00 everywhere in 0, it will follow by Ie!!! 

rna 11 that fl coincides with a measure in O. Since fl=f+sv-h in 
0; and since s can be taken arbitrarily small, this in turn will 

imply that f-h coincides with a measure in 0, which is the asser­

tion of the theorem. 

We begin with some observations. By lemma 9 we have 

G (x, t ) 
2 

G (x ,t ) 
1 

o J t 2 S (f * ~ ) (x) ds , e > 0 
tIS 
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Then, since ~;;;.O , if x is a point in an open set in which f coin­

cides with a measure, and d is the distance from x,to the comple­

ment of the set, G(x,t) is a non-decreasing function of t for 

O<t<:.d. A similar remark applies to G1 and Gz . Thus', since f2 

coincides with EV -h ina sufficiently large open set containing 

0, Gz(x,t) is a non-decreasing function of t for 0<t<:.1 and all 

x in O. About the function G(x,t) we remark that, according to 

lemma 12, it can be replaced by (g*W t ) (x) with an error which is 
a bounded function of x and tends uniformly to zero as t ~ o. 

, 
To show the existence of gl we observe that G 1 = G + G2 • Since 

G2 (x,t) decreases as t~O, it has a limit, finite or infinite for 

all x in O. 

On the other hand, if x is a point of 0 not in C, by lemmas 12 

and 9 we have 

G (x, t) - a Jl s F(x,s) ds + 0(1) 
t 

where c> 0, and since by condition (3) in our theorem the first 

integral in the last expression has a finite limit as t ~ 0, we 

conclude t~at, as t • 0, G(x,t) also has a limit, finite or infi­

nite. Combining this with our previous observation we conclude 

that gl (x) exists fo. ,,1 x not in C. Finally, if x is a point 

of C, since obvious:) .,');;;'a Xot(x) for sonie positive 15 and a, 

we have 

(f ,* ~t) (x) ;;;. c (c *x <I t) (x) ;;;. a It - 2 0<t<:.1 

Consequently 

G (x, t) 
I 

G (x ,t) + G (x, t) 
2 

fir I --
(g'~WI) (;x:) + G (x,1) - e t" r(x,s)ds - C J U Cf '" <p )(x)ds+o (1) 

2 t .? S 

<:. (g*~Jl)(x) + G2(x,1) - c J>,-l[F(X,S)SZ + allds + 0(1) 

where, again, C'> O. Since, as we saw, F(x,,'t)s2 -. ° as s • 0, the 

la~t expre5sion tends to -~ as t ~ 0, and consequently gl (x) = 
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We proceed now to show that gl has the required properties and 
coincides with iTl in 0. At first we shall assume that the set C 
is empty. Let 01 be the largest subset of ° with the property 
that g 1 is upper semicontinuous, lo::a:'.:.y integrable and coincides 
with iTl in.0 1, and suppose that 01 is a proper subset of O. Con­
sider the function 

f).(s) s llF(x,s) 1 - F(x,s)l ds 
o 

which evidently is lower semicontinuous in O. Since C is empty, 
on account of condition (3) in our theorem, this function is fini 
te everywhere in 0. Thus, as in the proof of lemma 1, we conclu­
de that there exists an open set O2 , containing 01 as a proper 
subset, such that the integral above is bounded, say by N, in 

1\ - °1 , 

Let now x be a point in 0 1 at distance not larger than s from 

02 - °1 , and let s<t<1. Then if y is a point of 02 - 01 and 
Ix-y I <s , by lemma 12 we have 

(4) 

where aCt) tends to zero as t + O. On the other hand, by lemma 9, 

ftu = a F(y,u) du 
8 

a> 0 

and since let) is a decreasing function of t, 

(g*\)IsHy) - (g*\)It)(y) < a ruIIF(y,ull - F(y,u)1 du < 
B 

and combining these inequalities we find that 

G (x ,B) < G (x , t ) + 2 e (t) + a N l (t ) - 1 

and, since G2 (x,t) is a non-decreasing function of t, this, in 
turn, implies that 
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which holds for a";s<t";l , a being the distance of x from O2-0 1, 

Now for a> s, since gl = gl is upper semicontinuous in 0 1 and 
therefore 11 = ~gl coincides with a measure in 0 1 , G 1 (x,s) is a 
non-decreasing function of s, and thus (5) is seen to hold also 
for 0 <s < t"; 1 and all x in O2 , Now letting s tend to zero we ob 
tain 

Suppose now that x -+ Xo ' xoE O2 , Then, since the righthand side 
of the pr.eceding inequality is a continuous function of x we find 
that 

lim 
x-+x 

o 

and since a(t) -+ 0 and A(t) -+ ~ as t -+ 0 , letting t tend to zero 
we obtain 

lim gl(x)"; gl(X o) 
x-+x 

o 

which is the desired upper semicontinuity of gl in O2 , 

Let now z;(x);;;'O be infinitely differentiable with compact support 

contained in O2 , Since, as t -+ 0 , z;*~t converges uniformly with 
all its derivatives to 1;, we have 

lim \ G1 (x,t) Z;(x) dx = lim gl (I;*~t) = gl (1;) 
t-+o t-+o 

On the other hand, on account of (5), G1 (x,t) is bounded above 
for 0 < tor;;;; 1 and x in any compact subset of O2 , Thus, since 

lim G1 (x,t) = gl (x) , by Fatou's lemma we have 
t+o 

j g 1 (x) I; (x) ax ;;;. lim \ G 1 (x, t) dx) dx 
t-+o 

and thus gl is seen to be locally integrable in O2 , But then mu! 
tiplying (6) by z;(x) , integrating and letting t tend to zero, we 
get the preceding inequality reversed, Thus we have equality and 
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for all 1;. Thus gl ·is upper semicontinuous, locally integrable 

and coincides with gl in °2 , which contains 01 as a proper subset, 

in contradiction with the assumed maximality of °1 , Hence 01 must 
coincide with 0, and, as observed earlier, this proves the theorem 

in the case when C is empty. 

Let us pass now to the case when C is non-empty. We shall show 
that gl is upper semicontinuous, locally integrable and coincides 

with gl in 0, and then the desired conclusion will follow as bef£ 
re. Let 01 be again the largest open subset ofO on which gl has 

these properties. Since, as we know now, 01 must contain ° - C 

we have ° -ole C. Consider the function inf t 2 (V*Xt) ex), 
t 

0< -t E;; 1. Because t n x t is the characteristic function of the clo-

sed sphere I x I E;; t, this function is upper semicontinuous and, ac­
cording to our hypotheses, positive at every point of C. Conse­

quently, as in the proof of lemma 1, it follows that there exists 

and open subset 02 of 0, containing 01 as a proper subset, such 

that inf t 2 (v*Xt)(x);;'o> 0 for all x in 02 - °1 , Set now 
t 

1 

(J.) (x) = J (V * x t) (x) d t 
o 

Evidently, this is an integrable function. If d(x) denotes the 

distance between x and the set 02- 01 ' 2d(x)E;;sE;;1 and y is a 
5 point in 02 - °1 such that I x -y I E;; '4 d (x), then as readily seen 

-2 
S 

where the a are positive constants. Thus, for d(x)E;;1/2 ,we 

have 

which shows that w (x) = +00 in 02 - 01 

gue measure zero, and that d(x)-l is 

of ° 2 - ° l' Let now d (x) E;; s < t E;; 1" • 
beginning of the proof, t 2 F(x,t) is 

, which therefore has Lebe~ 
integrable in a neighborhood 
Then since, as we saw at the 

bounded, by lemma 9 we have 

t 1 

I (g*<t> ) (x) - (g*<t> )(x)l=aIJ uF(x,u)dulE;;o J u-1du =a log d(x)~1 
t s s d (x) 
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and this, combined with (4) and the fatt that G2 (x,t) is a non-de 
creasing function of t gives 

(7) G 1 (x ,s) ..;; G 1 (x , t ) + 29 (t) 
- 1 

+ a log d(x) 

which is analogous to (5), and which for the same reasons as in 
the case of (5), holds also for O<s<t";;l and d(x)";;1. Letting 
8 tend to zero we obtain 

(8) ~(x) ..;; G1 (x ,t) + 29 (1;)+ a log d(x) -1 • 

This shows that gl(x) -+ _00 as d(x) -+ 0 , and since gl{x) 
for x E C, it follows that gl is upper semicontinuous in O2 • To 

prove that il is locally integrable and coincides with gl in O2 

we argue with (7) and (8) as we did in the preceding case with 
(5) and (6), keeping in mind that log d(x)-1 is integrable in a 
neighborhood of O2 - 0 1 " This will contradict the assumed maxima 

lity of 0 1 , showing that 0 1 must coincide wIth 0, as we wished to 
show. 

Proof of theorem 6. As in the case of the preceding theorem, we 
may assume that f = /:;g, where 9 has compact support, that h (x) ..;; 0 

and is defined and integrable in all of Rn , and that v is defined 
on all Borel subsets of Rn and is totally finite. 

We shall assume first that n> 2 and q> 1. Let 

A A 2 (1 s) A 2s 
l(z) = g(z)lzl - = -4rr2 f(z)lzl-

-1 where s is such that r";;s<q and (n-2sq)/(n-2)<q. Since 9 has 
A A 

compact support, 9 and l are continuous and bounded near the ori-
A 2 _ A -2 A 

gin. Since f(z)(l+lzl ) r is in Lq and s~r, f(z)lzl sand l(z) 

are integrable to the q-th power in Izl < 1. Thus Z(z) is in Lq 

and its inverse Fourier transform lex) is in LP, P = ql(q-1). 

Let now cr = 2(1-s) and a a constant such that the Fourier trans -
form of c Ixl-n+cr coincides with Izl -cr. Let g(x) be defined by 

l (y) Ix-y I-n +cr dy 

if the int~gral is absolutely convergent, or g(x) = -00 otherwise. 
Since (n-2sq)}(n-2) < q and sq < lone verifies readily that 
n>pa> 2 and pen-a) >n, so that Ixl- n+a is integrable to the q-th 
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power in Ixl > 1 and the integral above is absolutely convergent for 

almost all rand g(x) is locally integrable. Furthermore, our 
distribution g coincides with the function g. In fact, if 1; (x) 

is an infinitely differentiable function with compact support, we 
have 

J g(x) ~(x) dx = a J zex) J ~(y) Ix-y rn+a dy dx 

Since the Fourier transform of lal-a is alxl-n +a , the inner inte 

gral above is the Fourier transform of 1;(a) la I-a, 1; here being 

the inverse Fourier transform of 1;. On the other hand the convo­
lution ~(x) * Ixl- n +a evidently belongs to Lq and therefore, by 

Plancherel's theorem, we have 

J g(x) ~(x) dx = a J lex) J ~(y) Ix_yl-n+ a dy dx 

J A a 
= l (a) 1;(a) I a I - da J ~ (a) z;(a) da 

which shows that the Fourier transform of g coincides with g, that 
is, g coincides with g. 

Let now E be an arbitrary positive number and 1;(1£) an infinitely 

differentiable function with compact support which equals 1 in O. 
Let gl (x) ~ -00 be defined by 

gl (x) = g(x) - a z;(x) E I ley) I Ix-y I dy + J p -n+2 

(9) 

where -a I x l- n+ 2 , a> 0 is the fundamental solution 0 f Laplace's e­

quation. Evidently gl is locally integrable and the distribution 

f = ~gl coincides with 

in 0. As we shall see, fl has the property that Fl (x) ~O almost 

everywhere and il (x) > _00 everywhere in 0, and gl satisfies the co~ 
ditions of lemma 11. Thus it will foJlow that fl coincides with a 

measure in 0, ann since this will hold regardless of the value of 
E we will conclude that f-h also coincides with a measure in O,and 

our theorem will be established. 
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On account of lemma 7 we have 

uniformly in any compact subset of O. From this it follows that 

11 ~f· Now if at the point x we have 1(x) : _00 , then, according 
to our hypotheses, F(x,t) = 0 [(v* \) (x)] and consequently 

lim F(x,t) + e:(v*<P t ) (x) ~u, and since h';;;O, it fo11ows that 
t-+o 
il (x) ~ 0, and thus we have 11 (x) > -00 in a11 cases. On the other 
hand, if x is a Lebesgue point of the function hand t -+ 0 and 

y -+ x with Iy-xl ';;;t, we have (h*<Pt)(y) -+ hex) and therefore 
PI (x) ~P(x) - h (x). Thus we have PI lx) ~O almost everywhere in O. 

Let us turn now to the function gl' Evidently, since h ';;;0, the 

last two terms on the right of (9) are upper semicontinuous func­
tions of x, and according to lemma 14 the sum of the two first is 

upper semicontinuous in O. Thus gl is upper semicontinuous in 0, 
and there remains only to show thatg 1 has the property that 

cgl*1/it) (x) -+ gl (x) as t -+ 0 for a11 x in u. To see this let 
0> fl> -n arid consider the convolution 1/i t * Ix IS. Evidently 

sup 1/i t * Ixl S is finite everywhere but at the origin. Further 
t 

more, as readily verified, it is homogeneous of degree S and sph~ 
rically symmetric. Thus we have 

Thus if ~ is a signed measure and the convolution ~ * Ixl S is abs 
solutely convergent at the point Xo then by the dominated conver­

gence theorem we have 

lim [(~ *lxl i3 ) 
t-+o 

= (~ * I x I 6) (x ) o 

We use this observation to calculate the limit of (g *1/it)' For 
1 ' 

this purpose we convolve the righthand side of (9) with 1/it' Accord 
ing to Lemma 8, in calculating the limit of the resulting expres­
sion at points of 0 we may drop the function ~(x) and we obtain a 

sum of terms of the form ~ * Ix IS. Thus if at a point x a11 in'tE. 
grals of the righthand side of (9), including the one defining 

g(x), are absolutely convergent we have lim (g *1/it) (x) = g (x) 
t-+o 1 1 
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If on the other hand one of the integrals is divergent, then 
'gl(X) = _00 , and the desired result follows from the upper semicon 

tinuity of gl' This concludes the proof of the theorem in the 
case n > 2 , q > 1 

In the case nO;;; 2 or q = l' = 1 the distribution g, f = t:. g , co inc,!. 

des with a continuous function. In fact, if q > 1 we have 

and since 2(1-r)p = 2(1-r)ql(q-1) = (2q-2rq)/(q-1) > 2 the last in­

tegral above is convergent. But, because g is continuous, this i~ 

plies that it is integrable and that g coincides with a continuous 
function. If on the other hand q = l' = 1 

J ~ J ~ 2 Ig (z) I dz = If(z) liz 1-
Izl>1 Izl>1 . 

dz < 00 

and, again, g coincides with a continuous function, and the rest 
of the proof consists in applying lemma 11 to the function 

gl(X) = g(x) + t;(x) J E: 4>(x-y) dv - t;(x) J hey) 4>(x-y) dy 

where 4>(x) is the fundamental solution of Laplace's equation. The 

argument is identical with the one used above and need not be re­
peated here. 

Proof theorem 7. Theorems 5 and 6 having been established, theo­

rem 7 can be proved by using lemma 7 and the argument used in the 
proof of theorem 2. The details are left to the reader. 

4, 

In this last section we shall give two examples of distributions 

f for which (f*~t) tends everywhere to zero with t. The first is 

the analogue of the series En sin nx which !s known to he every­
where Abel summable to zero. In this case f barely violates cond,!. 

tion a) of theorem 5 but is unbounded. In the second example, 
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which is more complicated, fez) is of the order Izl- (n-3)/2 as 

Izl -+ 00 , and thus is bounded for n = 3 and tends to zero as 

Izl -+ 00 if n ~4. We remind the reader that if ;(z) = e- Izl , then 
A 

(f*CPt) is the Abel means of the Fourier integral of f. Thus the 

Fourier integrals of the functions f are Abel summable to zero 

everywhere. 

Let x = (u,x) , u ER , xERn-1 , and w(x) be infinitely differen­

tiable and have compact support. Let f be the distribution defi­

ned by 

f(~) = I ( au ~) (O,x) w(x) dx 

Then f has support in u o and, setting z = (v,a) , we have 

A 

fez) 2rriv w(a) 

whence it follows that 

Now, since f has support in u 0, we have 

u " 0 t -+ 0 

and if u 0, on account of the spherical symmetry of CPt we have 

and, consequently (f*CPt)(O,x) 
t -+ O. 

o u = v o 

In our second exampl"e we shall assume that n ~ 2. Let S be the 

sphere Ixl = 1 and let f be defined by 

f(~) = Is [~+ 2(n-1)-1 av ~l do 

where do stands for the elem'ent of are,a of Sand ddV denotes normal 

outer differentiation. To calculate f we merely replace ~ by 
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,2I1'i(lI:.a) in the preceding integral. Setting Ixl = r, lal = p, 

(e.a) .. rpcos s we have do = (J (sin s)n-2 ds and our integral b!!. 

:omes 

rr e 21Tip cos s (sin s)n-2 ds + 

° 
-1 J1T + hi (n-1) P 

0, 

'and replacing cos s by t and integrating these integrals by parts 

we see that fez) O(lzl-(n-3)/2) as Izl ~ 00 

Let now ~(x) = n(lxl), where n(t)(k) = O(t- n- k - E ) as t ~ 00 and let 

us calculate lim (f"'~t) (x) as t ~ O. Since the support of f is 5, 

by lemma 7, this limit is zero if x f. S. If xES we have 

Since, as readily seen, if Ixl = 1 then 

a 1 
a; Ix-yl = Ix-yl- [1 - (x.y)l 

attd'thus we have 

a -n 'I 1/ -n -1 I I 1 a;t n(x-y t) =t n'(x-y It) Ix-yl- [1 - (x.y)l. 

Setting Ix-y I = s = 2 sin a/2 we obtain 

1 - (x .y) = 1 - cos a = s2/2 

(J sn-2 ~(s)ds 

and substituting in (11) we get 

2 2 

J -n n-2 -If -n-l n-l (f",4>t) (x)=, t n(slt)s <Ii(s)ds+(n-l) t n'(slt)s <Ii (s)ds 
o 0 

-n, -n-l 
Since t n(s/t) and t n' (sit) tend to zero as t ~ 0, uniformly 

in s;> 1, replacing the upper limit of integration by 1 and inte -

grating by parts the second integral we obtain 
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(f*cf>t)(X) = _(n_1)-1 r t- n s n - 1n(slt) <I1'(s) ds + 0(1) 
o 

But, evidently, 1<11' (s) I .;;; a s in 0';;; s.;;; 1 and consequently the last 
integral is dominated by 

as t + 0 , and we find that (f*cf>t) (x) + 0 everywhere as t + O. 
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