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1. INTRODUCTION. Suppose f is a function belonging to LP (-m,m),
1<p<=. Wewrite

(1.1) - £~ felk®

to indicate that the sum on the right is the Fourier series of f.
An important class of linear operators mapping a space LP(-n,m)
into a space LY(-m,n), 1 < q < =, is the class of multiplier trang
formatioTs. Each such transformation M is characterized by a se-
quence {M(k)} having the property that if f has the Fourier series
(1.1) then Mf has the Fourier series

(1.2) 17 M) £k)etk®
k==

Considerable work has been done on the problem of finding condi-
tions on the sequence {ﬁ(k)} which guarantee that M is a bounded
linear transformation from LP (-m,7) to L9(-w,n). Perhaps the
best known result of this type is a theorem of Marcinkiewicz [3]
which can be stated in the following way:

. K . .
THEOREM. If (M(K)} and (§2 ~L_IM(3*+1)-M(3) |} are bounded then
j=2

M is a bounded linear transformation from LP(-w,m) <nto itself for
1 <p <, More precisely, if £ € LP(-7,7) has the Fourier ser-
ies (1.1) then, under these conditions, (1.2) is.the Fourier ser-—
ies of a function Mf € LP(-7,m) and there exists a constant AP s

independent of £, such that
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b1 1 m l
P4s P = - P3p3P
( J I(Mf) (e)| de) ||Mf||p < AP"f"p Ap( J |f(6)| de)*.

-7 . -

The purpose of this paper is to establish an analogous result for
functions on G = SU(2), the special unitary group of 2 x 2 complex
matrices. In order to do this we will have to set up some nota-
tion and announce certain classical results. We refer the reader
to Vilenkin [5] and to Coifman and Weiss [1] for their proofs.

An elemént u € SU(2) is a 2 x 2 matrix having the form

N

where z, and z, are complex numbers satisfying |zl|2 + |z2]2 =
= 2,2, *+ 2,2, = 1.

In general, if a = ﬂai.ﬂ is an n x n matrix with complex entries,
its Hilbert-Schmidt norm Wall is defined by

2 _ P 2
all© = zi,j=1 |aij]
The operator norm of a will be denoted by lal. That is, lal is

the least constant A such that

n n n

2 2 2

Limn | Tgop2s5%51% < A205 I
for all n-tuples x = (xl,xz,...,xn) of complex numbers. We shall
have occasion to use both of these norms. For technical reasons,
however, we use the Hilbert-Schmidt norm to introduce a metric d
on G by letting d(u,v) = lu - vl . 1In particular, the function
whose values are p(u) = Wlu - ell, where e is the identity element
of G, will play an important role in our development.

A function f on G is called central if its values depend only on
the classes of conjugate elements of G. That is, f(v_luv) = f(u)
for all u,v € G. It is easy to see that the function p we have
just introduced is central since multiplying a column (row) on the
left (right) by a unitary matrix does not change the Euclidean
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norm of" the column (row). Thus, the Hilbert-Schmidt norms of
viey - e = v'l(u-e)viand u-e are the same. The fact that p is
central enables us to obtain a particularly simple expression of
p(u) in terms of the proper values of u. Since u is unitary and
its determinant is 1,the proper values of u must have the form
e"ir/2 and ei}/2 for 0 < » £ 2r . Moreover, we can find a unitary

matrix v such that v-luv is the diagonal matrix

0 e 2

. / -i% 5 i3 5
Consequently, since p(u) = p (v "uv) = p(8,) =V |1-e |[“+]1-e “|°,

we must have

(1.3) p(u) = /8§ sin %

We shall also use the fact that integration of a central function
with respect to Haar measure has a particulary simple expression
in terms of the parameter x. Suppose f € L1(G) is such that

A
f(u) = F(A), where e*17 are the proper values of u, then
1 (27 2 A
(1.4) I £(u)du = ~J F)sin? X arn
™ 2
G o
where du is the element of Haar measure on G = SU(2).

In order to discuss the analog of the Fourier series expansions
(1.1) for functions defined on G we have to introduce some of the
basic facts concerning the irreducible unitary representations of
SU(2). First, we recall that a unitary représentation of G is a
continuous map, u + T(u), of G into the class of unitary operators
on a Hilbert space H that satisfies the relation T(uv) = T(u)T(v)
for all u,v € G. A subspace M C H is said to be Zmvariant under
the action of T if T(u) maps M into 1tself for all u € G. If {0}
and H are the only invariant subspaces, then the representation T
is said to be Zrreducible. A basic result in the theory of repre
sentations of compact groups is
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(1.5) If the representation T, acting on the Hilbert space H, is
irreducible then H 18 finite dimensional.

If T is an irreducible representation acting on H, we can choose
an orthonormal basis of H, which must be finite by (1.5), and ex-
press T as a unitary matrix [ti'] with respect to this basis. We
let the symbol T represent the matrix [tij] as well. In fact ,
for the remainder of this paper we will assume that our irreduci-
ble representations are unitary matrix valued maps v + T(u) =

= {t;;(u)] and the fact that multiplication is preserved under
such mappings is expressed by the formula

d .
tijLuv) = zk-l tik(u)tkj(v)

for all u,v € G and 1 < i,j < d, where d is the dimension of the
space H on which T acts.

Two representations S and T acting on the Hilbert spaces H and K
are said to be equivalent when there exists an invertible linear
transformation L: H + K such that T(u)L = LS(u) for all u € G. A
system (%} , & belonging to some indexing set £, of irreducible
representations of G is said to be complete if, given any irredu-
cible representation T, there exists a unique index 2 such that T
and T* are equivalent.

Proposition (1.5), together with the following one, constitute a
formulation of the Peter-Weyl theorem in the special case when
G = SU(2):

(1.6) Let.c={z:z=%

half-integers. A complete system of irreducible matrix

, n=0,1,2,... } be the collection of

valued representations of SU(2) can be indexed by the set
L in such a way that, if {TR} , L €L, 28 the indexed

system then:

(i) ™ = [ti n]‘@s a (28+1) x (28+1) matrix, where
L]
-2 <m, n<};

(ii) the collection of functions V2i+1 ti , L8 an ortho-
»
normal basie of LZ(SU(Z)).
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Thus, if f € LZ(G) , G = 8SU(2) , we can define its (matrix valued)
-«
Fourier transform f by letting

£0) - J T (u Hdu
G
for £ € L. It follows from (1.6) (ii) that

.7 £~13" (2241t}
220

where the series on the right converges to f in the L%norm.Thiseﬁ
pansion is the desired analog of the Fourier series expansion (1.1).

If f,g € Ll(G) we define their convolution f * g by letting
-1
(£ ) = [ fwgnHa
. G

for all v e G. It follows readily from this definition that if
(f * g)° is the Fourier transform of f % g then

(1.8) (£ % g)"@) = £0@) g®)

for all ¢ € £¢. It is well known that, in the classical case, mul
tiplier transforms arise from convolution operators (generally ,
from convolution with a distribution). Motivated by the defini-
tions we have made(l), therefore, the multiplier transformations
M that we consider are those that transform a function with devel
opment (1.7) into one, Mf, whose development is

(1.9) 17 2D trME)E@)T)
20=0

As in the classical case, those multiplier transformations that
map LZ(G) boundedly into LZ(G) are the easiest to characterize:

(1) Since SU(2) is not commutative, the operation of convolution
we introduced is not commutative. The reader should observe,
therefore, that the multiplier theorem we are developing is,
really, a statement about "left" multipliers. We leave it
to the reader to formulate the related results that arise
because of this lack of commutativity.
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THEOREM (1.10). The multiplier transform M maps LZ(G) boundedly
into itself if and only if the operator norms M(R) are bounded in
dependently of % €L

We shall sketch a proof of this theorem. We first observe that if

2 aQ tQ

m,n m,n

77 (22+1) ]
0

20 = m,n=-%

is the development of a function f € LZ(G) (thus -, ui a =

= IG f(u)tg m(u)du , since Tn(u—l) is the conjugate transpose

matrix to T0), then) by (1.6) part (ii)

4 2
i

| a
m,n

(1.11) J [£(u)|2du = I€12 = J°  (20+1) it
G 2 Taeo m,n=-2

If ui , are the coefficients of the multiplier matrix M(2) then

the L2 norm of a function having expansion (1.9) is

'] ') '3 2
I ¥m,5 %5,nl

7 (22+1) §
m

20=0 == j=—f

If the operator norms of the matrices ﬁ(ﬁ) are bounded, say
IM(g)I < A for all ¢ € £, then

' 2 2 g 2 2 8 g 2
. .o A ‘
Zm:—Q lzj:—ﬁ ¥, aJ'“l < Zj'=-.-—!ll 3""

Summing over n and %, we then obtain MMfﬂz < Azﬂfﬂg. Conversely,

if the last inequality is satisfied by all f € L?(G) it follows
that IM(2)I < A for all ¢ € L. We see this by applying M to func

tions whose development is, say,

ey 78 L
i=-2

Having set down this background material we can now turn to the

development of the multiplier theorem mentioned above.

We would also like to thank our friend and colleague I. I. Hirsh-

man Jr. for having read the manuscript carefully and having con -
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tributed several valuable suggestions.

2, MULTIPLIER TRANSFORMATIONS THAT PRESERVE Lp(G), 1<p<m=.

Our treatment of the multiplier theorem has certain features that
are similar to that of Hormander's version of the multiplier theo
rem The similar-
lies in the fact that the multiplier theorem is reduced to re
sults concerning certain Calderén-Zygmund siitigular integrals (see
[2)). These results have the following analog for SU(2): Suppose

M is defined on C”(G) by

associated with n-dimensional Euclidean spaces.
ity

1lim
e+0
€>0

(M£) (u) = n(v)£(u Hdv

Jp(v)>e

where m is locally ihtegrable on SU(Z) - {e} and satisfies

(2.1) Im(uv™!) - m(u)|du<C<a= ,

Jp(u)>29(v)

where C is independent of v. Then, if M is bounded as an operator

on L2 (i.e. there existg A < «» such
f € ¢”(G)), M is also bounded as an
that is, there exists a constant Ap

that IIMfII2 < Aﬂfﬂz for all

operator on LP(G), 1 < p < =;

such that IMfl < A _Ifl_ for
P P P

all £ € c*(G).

We state this result without proof since it is not substantially
different from that found in Hormander [2] (1), Our development
will make use of a result, obtained by de Guzmdn and the first
author of this paper, which permits us to replace condition (2.1)

21 —Z57
1)

If zj=xj+iyj ,» j=1,2, the correspondencd u =

...22 zl_

> (xl,yl,xz,yz) can be used to obtain a natural identifica-

tion of SU(2) with the surface of the unit sphere in Eucli-
dean 4-dimensional space. The operators described above, in
terms of this identification, are Calderdn-Zygmund type sin-
gular integrals associated with the surface of the unit
sphere in R*. Such operators have been studied by many au-
thors. 1In particular, the results we have just announced
can be obtained by applying the method of Hormander to the
singular integrals developed by Morley [4].



by a condition on the behaviour of M when applied to a specific
approximation to the identity. This result, in its full general-
ity , is contained in the preceeding article of this volume; at '
present, we limit ourselves to stating the special case associat-
ed with SU(2):

For 0 < Tt < 27 let Sr = {u€ei : pu)< /8 sin % }.- By virtue of
. . 2 A

(1.3), if the proper values of u are written in the form e*l7 for

A= Au € [0,27] , this is equivalent to Sr = {u€G¢G : Ay < r}. Let

X. be the characteristic function of Sr and 9. = Xg /|Sr|, where,
r

sr
in general, |E| denotes the Haar measure of E ¢ SU(2). 1If wr =

= ¢, - ¢£ and M is a linear operator which is defined on L”(G) ,

2 .
bounded on LZ(G), commutes with left translations and satisfies
(2.2) [ vt e,
SU(2)

where C < » is independent of r, then M is an operator of the Cal

derdn-Zygmund type described above. In particular, M is bounded

onl? , 1 <p<a= a,

Suppose, then, that we do have a multiplier operator of the type
described in (1.9). We shall suppose that the operator norms of
the matrices ﬁ(ﬂ) are bounded; thus, by (1.10) M maps LZ(G) bound
edly into itself. It is readily verified that M does commute with
left translations. Thus, if we can find suitable conditions which
imply (2.2) we would have a theorem concerning multiplier trans -
forms. Our task, therefore, is to study the effect, on the 12
norm, obtained by applying M to the function v and then multiply
ing the resulting function by 02,

(1) The reader should observe that the analog of condition (2.2)
for R® (the number 3 being the dimension of SU(2))is equiva-
lent to estimates of the L2-norm of the lst and 2nd order de
rivatives of the Fourier transform of M (applied to an appro
priate analog of wr). A similar situation arises in Horman-
der [2]. ) '
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We first suppose that er has the development

My, ~ I @+ RS I

=0 m,n=-f

Moreover, let us agree that, for the remainder of this paper, we
have chosen the particular complete systemvof irreducible repre-
sentations of SU(2) that is introduced in the third chapter of Vi
lenkin's book [5]. This will enable us to refer directly to this
source for many formulae and, in particular, for the calculations
of certain Clebsch-Gordan coefficients. These coefficients arise
when the tensor product of two irreducible representations are de
composed into irreducible parts. In particular, products of the
form ti:’n,ti’n can be expressed as linear combinations of the
functions tg’q with |e-2'| < k<2+' , -k < p,q < k. We shall
be interested in the precise values of the coefficients involved
in these linear combinations when %' =,% and (m',n') is either

(%, %)-or (-% f‘%). The reason for this is the following:

2 2) A £iy
Because of (1.3), [p(u)]“ = 8 sin - 4(1-cos 7) , where e are
A -1y i'52'
the proper values of u. But 2 cos F=e + e © = trace(u) =
1 1
= tzl Lt tf 1 Thus, the effect of multiplication by [p(u)]2
277 22 1
is easily derived from the formulae expressing t21 1 ti o S lin
T I
Rst 272
ear combinations of t . These can be found in §8 of chap-
mis,nis
2772
ter III of Vilenkin and, from there, we obtain
_ el
s 20 .8 2 1 2
(2.3) 4sin t = 2t - —— { /(®-m)(2-n) t +
T "m,n m,n 2041 m+%-,n+-12"-
= — 04l
+4/(@+m) (R+n) t + o/(Q+m+1) (2+n+1) t +
11 WLl
7R 7R
“% 1 3
+V@-me1) @-n+1) 7}, Q=0,-2-,1,—2—,...,—!Z<m,n<2
m-3,073
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; 2 N ooyl , e(1+48m)
Let us now define A (¢,8) _\/? R F

(1)
. Then, from (2.3) we have (formally)

for -2 <m<% and

N =

E.""z-,

o .
.2 X ? 2
4sin T o(2e+1) } t =
I22=o m,n=-2 B0 TR

(2.4)

T - [} [} [] [ [
Z (22+1) Z_ 20 0" ) 1vlﬁm(e,G)An(e,G)am+6,n+6 tn,n
20=0 m,n=- €y 0=—>

22

We see therefore, that the effect of multiplication by p2 is to
produce certain differences of the coefficients involved in the
series developement of My In view of (1.9), these coefficients
‘ii’n fnvolve both those of the multiplier transform and of the
function w?. We shall now examine this relationship carefully
and, by obtaining estimates on the differences of the coefficients
of Y. We will then be able to determine conditions on the coef-
ficients of the M(2)'s, and their differences, assuring us that
condition (2.2) is satisfied. This will then give us a multipli-
er theorem whose basic features are not unlike those the the clas
sical result of Marcinkiewicz.

By the nature of the definition of ¢r(and wr) in terms of the cen
tral function p, it foullows that ¢r (and ¢r) is also central. It
is well known (see §4 of chapter I of Vilenkin) that the charac-
ters

G = ZQ t

of the irreducible representations of G form a complete orthonor-

(1) The reader should observe that these coefficients will mul-

. L+e . .
tiply “m+6,n+6' These last expressions may have no meaning
when ¢ = - % and m (or n) equals £ or -%; when this is the

case, A:(e,é) = 0 and, thus, these terms will not appear in

the summation occuring in (2.4).
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mal system in the space of central fun¢tions. In particular,
- _ L . -1
o _(R) = ¢ (u)T (u ")du
r G r

is a scalar (2¢+1) x (22+1) matrix. That is, if Iy denotes the
(22+1) x (22+1) identity matrix and

-l JG%U‘) K (u)du

we have $iIQ = ;(Q). The development (1.7) becomes in this case
r

~ 3 (22+1)tr{e (R)TQ} = ] (22+1)$2x2
20 =0 r 22=0 T

Similarly, if we let

@ = | vt erha
and
e | @
we have

b~ T D) 4 = 7 (st
22=0 20=0

By making use of formula (1.4) and the fact that XQ has the values

9 sin(2+ ) A
x (u) =

sin

N> [Nof =

(see §7 of chapter III of [5]), we can calculate the coefficients
¢i and wﬁ explicitly. We first observe that

dy = I-sin r
2

n

1
—
o R

7]

=

=]
N
o>
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Thus,

~g 1 1 2 r

b = -—————————-J & (wydu = J sin % sin(22+1)-%dA
(Zl+1)|Sr| S, (R+1) r-sint ‘o

1 r
= J [cos &2 - cos@®@+1)Alaxr
(R+1)(r-sin 1) o

Hence,
sin 2r _ sin(®+1)r
~Q 1 ] ]
(2.5) o = 1, ee0,0,1,3,
2 +1 r - sinr

-~

Since ¢i - ¢i/2'=wi(2.5) will also give us an explicit formula

for the coefficients @i.

1
- 8, g0l 13 P
For any sequencelfa Y, =0,3,1,3,... we let Do = a - o and
2 4= el

Dqu = ZaQ - o z . a 2. We then have:
LEMMA (2.6). Each of the series

L] “2 _ ] '\2 o “2

I bel2eeen™, 7 ov |2, 1 Ip%v % 2een)?

20=0 20=0 20=0 L

is bounded by a constant times r; that is, each series is O(r)

We shall indicate, briefly, how these estimates can be obtained.
In each case it is convenient to split the sum into one involving
those terms for which 2r < 1 plus one involving those terms for
which 2r > 1. 1In order to estimate ir = ;’r - ;r/Z we can make
use of (2.5) and the power series expansion for the sine function
to obtain @i = 0(®2r2). Thus,

7o 22 = o0 5 o22r%) = rYotrd) = o(n)
L<1/x r 2<1/r
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For the rest of the estimates it suffices to examine the coeffi-
cients ¢£} For example, applying the mean value theorem to
sin rx/x we obtain 9, = 0(1) for ¢ > 1/r. Thus, wi = 0(1) and

Do 2t 2 =00 1 272 = o).
e>1/r L>1/r

We can conclude, therefore, that

D288 12 = o)

22=1

and this is the first estimate of lemma(2.6). Similarly, it can
be shown that, for

gr <1, Ds® = 0(r2e) and, thus, J |Ds%|2 = rlog 22} = o(r).
r 2<I/r T 2

)
<l/r

0(r?) which implies | (22+1)‘ID2$i|2 =
[

<1l/r

Moreover, Dz;i

]
=
E=
o
~~
>~
o
N
-
]

O(r). The mean value theorem can then be used

to obtain estimates for D;i and Dz;i , when 2r > 1 , that allow
us to complete the proof of the lemma. We leave the details to

the reader.

'l

Suppose we denote the coefficients of the matrix ﬁ(ﬂ) by .

’
-2 <m, n<2® ; that is, ﬁ(ﬁ) =ﬂ(ui n)l. Then the coefficients

involved in the series (1.9), when f = v, , are those of the ma-

trix

M@) Vo) = v @) = Gl D]

n

Thus, the coefficients ai n involved in the expansion of M¢r are

(2.7 : =t
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By straight-forward computations we obtain

~0 9 ) Q+e L+e =
LEMMA (2.8). 20w o L A (e, AL (6,80, 0 lE s
€,859,73
_ ~Q Q _ L+e
; ‘br{zum,n 21 1 A (E’S)A (e, 6)um+6 n+6} *
E"S:’f:-i

+

~Q 2 2 L+e
(D"br) z1 1 ZEAm(e’s)An(e’d)um+6,n+6 *

2072072
1
L+
i 1
ST AL R (80,8 e
1 ’
=22

It follows from (2.4) and the remarks following (1.11) that

© [
1 2 4 _ 2 2
x JG|(M¢r)(u)| O N I N LN

=0 m,n=-

where ei 0 is the expression within the curly brackets in (2.4).

But is clear from this expression, (2.7) and (2.8) that

J |M¢r|2 phdu is majorized by a constant times

To2e+1) (|98 2MaZice) Z | D% | 2Made) 12 + (D28 | Ay 2y,
20=0 r r r

where we recall that, for any (20+1) x (22+1) matrix P = [pm n] ,
2 ’

2L <m,n<® , MPli= ( ) |p
e

m,n=-

n n|2)1/2 denotes its Hilbert-
’

Schmidt norm and A, A2 are the "difference" operators which, when
applied to the family of matrices ﬁ(Q), have the coefficients

LI M NI I P W CR I Llerdunts ave

€,8=7, 3
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and

24 _ 2 L L L+e
O L T L L G

€,0=5,~>

2 2

It now follows immediately from theorem (1.10) , (2.2) and lemma
(2.6) that we obtain the following multiplier theorem:

THEOREM 1. Suppose M is a multiplier transform with multiplier

matrices M(2) whose operator norms are bounded and, moreover ,
satisfy

1 - 3
ti)y WM@) M=0@?) , (ii) WaM@) B=0@@?) , (iii) Ma2M@)W=0@2)

then M Ze a bounded operator on LP(G) , 1 < p < = , 1

Let us now investigate the operators A and 4% in more detail. We
shall do this in order to obtain a better understanding of the

meaning of conditions (ii) and (iii). A simple calculation shows
that for -¢+1 < m,n<2-1

(1) At the beginning of this paper we stated the classical multi
plier theorem of Marcinkiewicz. There we imposed conditions
on certain sums of absolute values of differences of coeffi-
cients. The reader can easily check that by making appro-
priate changes in the statement of lemma (2.6) we could ob-
tain a result which, instead of conditions (i), (ii) and (iii)
(iii) , we would have

( I mace) W22 o0k 5 Wawce) W32 2o
Zk-152<2k 2k-152<2k
and ( I WMaZ) 132 2ok |

2k-152<2k
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Y _ m+n 1 _m+n i L
i@, = [0+ ek« @ ST N
1 1 _ L+e
r7 b [_f22+ 26K, (E"‘)] Mmts ,n+s
€,6=——2‘,§'
(2.9) j
1 1
AL+ A
2% m+n 2 + - 2
@@, o= [0 P ek + - JF el - W]"m,n’
- ) : o e bt
11 7 R ’ +5 n+s$ ’
€58=-7,%
1 1 1 1
u2+§ - uQ-i u2+7 - u’z-E
11 11 1 1.1
where ) ~ m+i,n+2 m-5,0-g 19 ~ m-5,0-3 m+5,n+—2-
AiMp,n ~ ’ Avg,a T
4 2 . ’ 2
e+t -3 R4y 2-%
L SN U LIRS T WL U |
20 _ @ _ Mmty Pt 20 0 27200 mt g
A+pm,n Ym,n 2 28 ¥pon Ym,n 2
. 2 L 13 2
and, finally, Rm,n(e,c‘;) (Am(e,é) - An(a,é)) .
When m = -2 or m = £ we have already observed that undefined terms
1
(1ike qu 2 ) appear with coefficients that are 0. We can,there
1 PP e
"'E’“+2

fore, interpret the above formulae in this case as well by making

the convention that such undefined terms are absent.

terest,

ences in these extreme cases in the following way when m

Q:

however, to note that we can also rewrite these differ -

It is of in-
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. 2% _%
M@)o = - u ) +
R 11 11
tpnty g
g-1 2+%
M Fy (“2__1. LtEo oL )+
2 73 2°073
n-2 Q R +e
+ 1 st - ¢ Ro,n(e58)) Y0 46,046 7
€,
(2.9 |
@h@e)). = 2t - u“% - 7 ) +
m,.n m,n 2%,11% Q—%,n-%—
" 0z P4y
Ay
+ 20+1 (u —_1_ _l' HQ—_]__ _l st
2°%73 2°072
' 26e(®-n 1 .2 L+e
+ 626 % - 7 Ry na(e,8)) o+6,n+8  °

Al
where Z denotes the summation over all €,8 = %,-% except the

€,6

case g = -% and § = % . Similar formulae are valid for m = -®

(and n = 2,-2).

Part (i) of the following lemma follows immediately from the ine-
quality (a2+b2)(a-b)2 < (az-bz)2 applied to the non-negative num-
bers a = Ai(a,&) and b =‘A§{e,6). Part (ii) is an obvious iden-

tity.

(m-n)?2

2(22+1)(2-¢;“—l)

LEWMA (2.10). (i) Rﬁ L(e,8) <
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@ -n)?

r 2 <m,n<?2.
(2+1)2@ -7

(11) 2% -

We can now obtain the following more detailed version of theorem I

THEOREM II. Suppose ﬁ(ﬁ) =[(ui D1 2 <mm<?%, 2=0,17,1

3
,7,...

i8 a sequence of matrices having bounded operator norms and satisfy

ing the conditions

4
2 |m-n| [}
2 -1
(a) , — Ia,al T 0CTD
==t (@ men))?
1 1
4= L-=
2 2 2 -3, .__11
(b) Z |2“m,n—um+6,n+6-um— ,n—s‘ =0 7),8= 2°7

|m-é], |n-6]<2-3

then the multiplier operator.defined by the sequence ﬁ(ﬂ) is a

bounded operator on LPG), 1 <p < =.

4
. g |m-n|
. 2 R T
Since 1 (22) Zlum,nl2 < ] — lum,n‘ , condi -
m,n=-0 m,n=-% (22-|m+n|)2

m#n

tion (a) assures us that the contribution to the Hilbert-Schmidt
norm of ﬁ(Q) by the terms off the main diagonal is less than or
equal to a constant (independent of 2) times YR . Since the oper
ator norms of the sequence {ﬁ(ﬁ)} are bounded,each of the 2%+1
diagonal elements of ﬁ(ﬂ) has absolute value not exceeding a bound
for these norms. Thus, the diagonal elements also contribute, at
most, a constant, independent of 2, times Y% to the Hilbert -
Schimdt norm of ﬁ(ﬂ). Therefore, it suffices to show that condi-
tions (ii) and (iii) of theorem I are satisfied. In order to this
we first show that (b) implies

1
2 g4t
2 -1
(2.11) I Do - SR LR O
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For § = % we first establish the identity

bl
We~18
N

3
(2.12) - - n =2 +
+5 1 m+j ,n+j

This equality is a consequence of the fact that the series on the

right is absolutely convergent (condition (b) assures us that this

series is termwise majorized by a constant times ) j_3/2) and
2j>1

2+5+1/2 L+ tends to 0 as joo

the fact that a, = Mmbj+1/2,n+5+1/2 ~ Pu+i,n+j

(from (2.12) applied to a, and condition (c) we see that {aj} is

a Cauchy sequence; thus, 1lim a. exists. The fact that this limit
‘j—boo

is 0 is a consequence of the fact that the aj’s are differences of

L+j

_ 1
m+j,n+j)' When § = we have an analogous

the bounded sequence u >
2*% 2
identity for u 1 L~ in which there is an obvious change
m-i a-1 m,n
2°7 2
in some of the signs preceeding the indices j and 1/2. We now
can obtain (2.11) by taking the Hilbert-Schmidt norms of the ma-

trices involved in (2.12).

By examining the expression for Azﬁ(ﬁ) in (2.9) we see, therefore,
that each of the first two differences, involving AE
us matrices which, by virtue of (b), have Hilbert-Schmidt norms
that are 0(2_3/2). Because of (2.11) the same is true for the

i and AE . Lemma (2.10) and condition (a) show
that this also holds for the last term involving the coefficients
R%’n. Hence, (iii) of theorem I is satisfied (care should‘be
taken to account for the extreme cases arising when m or n are *f

by making use of (2.9') and (2.10), part (ii)).

and A% , give

terms involving A

For the same reasons, the first two summands occuring in the ex-
pression for Aﬁ(Q) in (2.9) have Hilbert-Schmidt norms that are
0(2~1/2y. The fact that WM(2)N = 0®!/2), condition (a) and lem-
ma (2.10) assure us that the same is true for the rémaining terms.
Thus, (ii) of theorem I is satisfied; this proves theorem II.
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An immediate corollary of this theorem is the following result
for "diagonal" multipliers:

COROLLARY I. Suppose the matrices'ﬁ(ﬂ) are diagonal; that is,

U_Q 0 « 0
2
o 0 U_Q_'_l... 0
M(2) =
i 0 o . ug

Then the multiplier operator they define ie bounded on PG ,
1 <p < » , provided there exists a constant C > 0 such that

1
' e 3 72 -2 .
luml < Cand |2uy - upps - upsl < CE7 for all m,2 (with

1 1
[m-8| <2-5 and & = 7,77 -

If we restrict ourselves still further to those "diagonal' mul-
tiplier operators of the u’ZI,2 (that is, ui = uQ for -2 <m<?%)

we obtain the special case (for SU(2)) of theorem 3 in the preceed
ing paper of Coifman and de Guzmén:

2 L 2 2 -2 .
If w = 0(1) and 2u” - u - u = 0(R™°) then the multiplier

e

operator induced by the matrices ﬁ(ﬂ) = uQIQ is bounded on LP(G),

t<p <o .

In view of the fact that the surface J of the unit sphere in
three dimensional Euclidean space can be realized as the homoge-
neous space SU(2)/SO0(2), we can use theorem LI to obtain a mul-
tiplier theorem for functions defined on J . We recall that a
basis for the spherical harmonics of degree 2 (2 an integer) can

be identified with the functions th o , -2 <m <2 (see Vilenkin
51, pages 167-8). In fact, using Vilenkin's notation, a function
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in LZ(ZZ) can be represented by an expansion of the type

o L
Q
f(¢,0) = : Y ,0
(¢,0) QEO kz-Q ak k,Q (¢,06)

Let M@) = (f ) be a sequence of (2+1) x (2+1) matrices,
2 =0,1,2,...

In terms of these matrices we define (formally) the multiplier op
erator

O Y
(2.13) (M£) (¢ ,0) =NQZO mE_g(kZ_g Mok 2 Va0 (6,0)

We then have the following result as a consequence of theorem II:

COROLLARY TI. The operator M is a bounded transformation of
LP(ZZ) into itself, 1 < p < = , provided: (a) the operator norms

of M(2) are 0O(1) ,

A _
[ [m-n| °
2 -
(b) I ——— lu, 17 =003 and
m,n=-f (22 -|m+n|) ’

(c) |2 L e-1 :1:1

2 _ . 0-3 .
Im-é]zln—6|<Q—1 “mon " nes 048 Mnmg |0 T O@TT) For 6=-1,1.

If the matrices ﬁ(ﬂ) are diagonal we obtain the simpler operator

© 2
(2.14) ME)(0,0) = T 1wy dl Yy (4,0

0 m=-

In this case the last result becomes:

COROLLARY III. M maps LP(ZZ) into itself for 1 < p < = provided
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L+1

there exists C > 0 such that |“il < C and IZui—uk+6—ui:§| < ce?

for |k-8] <%-1, 82 =0,1,2,... and 8 = -1,1.

By restricting our attention to other special classes of functions
on SU(2) we obtain other corollaries that gives us multiplier theo
rems for expansions in terms of Jacobi polynomials with integral
indices. These results, together with '"weak-type'" theorems will
appear elsewhere. At this point we simply assert that there ex-
ists a weak type (1.1) result associated with each of the theorems

“and corollaries we obtained.
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