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1. INTRODUCTION. Suppose f is a function belonging to LP(-1I,1I) , 

1 ~ P ~ 00. We write 

(1 .1) lOO f(k)e ik6 

to indicate that the sum on the right is the Fourier series of f. 

An important class of linear operators mapping a space LP(-1I,1I) 

into a space LQ(-1I,1I), 1 ~ q ~ 00, is the class of muZtipZier tran~ 

formatio~s. Each such transformation M is characterized by a se

quence (M(k)} having the property that if f has the Fourier series 

(1.1) then Mf has the Fourier series 

(1 .2) lOO M(k)f(k)e ik6 • 
k=-co 

Considerable work has been done on the problem of 

tions on the sequence {M(k)} which guarantee that 

linear transformation from LP (-11 ,11) to LQ (-11 ,11). 

finding condi

M is a bounded 

Perhaps the 

best known result of this type is a theorem of Marcinkiewicz [3) 

which can be stated in the following way: 

A 2k 1 A A 

THEOREM. If {M(k)} and {l. -k_1IM(j+l)-M(nn are bounded then 

J=2 

M is a bounded Unear transformation from LP(-1I,1I) into itseZf fof' 

1 < P < 00. More preciseZy, if f E LP(-1I,1I) has the Fourier ser

ies (1.1) then, under these conditione, (1.2) is.the Fourier ser

ies of a function Mf E LP(-1I,1I) and there exists a constant Ap , 

independent of f, such that 

* Research supported in part by the U.S.Army research office 

(Durham) under contract No. DA-31-124-ARO(D)-58. 
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The purpose of this paper is to establish an analogous result for 
functions on G = SU(Z.) , the special unitary group of 2 x 2 complex 
matrices. In order to dp this we will have to set up some nota
tion and announce ·certain classical results. We refer the reader 
to Vilenkin (5) and to Coifman and Weiss (1) for. their proofs. 

An element u E SU(2) is a 2 x 2 matrix having the form 

where zl and .z2 are complex numbers satisfying IZll2 + IZ212 

= zl zl + zi z2 = 

In general, if a = [a .. ] is an n x n matrix with complex entries, 
1J 

its Hilbert-Sahmidt norm Warn is defined by 

10 a 01 2 
n 

Li,j=1IaijI2 

The operator norm of a will be denoted by U an. That is, n all is 
the least constant A such that 

for all n-tuples x = (x 1 ,x 2 ' ... ,xn) of complex numbers. We shall 
have occasion to use both of these norms. For technical reasons, 
however, we. use the Hilbert-Schmidt norm to introduce a metric d 
on G by letting d(u,v) = IOu - v HI. In particular, the function 
whose values are p (u) = !III u - e 01 , where e is the identity element 
of G, will play an important role in our development. 

A function f on G is called aentral if its values depend only on 
the classes of conjugate elements of G. That is, f(v-1uv) = feu) 
for all u,v E G. It is easy to see that the function p we have 
just introduced is central since multiplying a column (row) on the 
left (right) by a unitary matrix does not change the Euclidean 
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norm o~ the column (row). Thus, the Hilbert-Schmidt norms of 
v-Iuv - e = v-I (u-e)v and u-e are the same. The fact tha-t p is 
c_entral enables us to obtain a particularly simple expression of 
p(u) in terms of the proper values of u. Since u is unitary and 
its determinant is 1,the proper 

e- iA / 2 and e iA / 2 for 0 ~ A ~ 2~ 
matrix v such that v-Iuv is the 

Consequently, since p (u) 

we must have 

values of u must have the form 

Moreover, we can find a unitary 
diagonal matrix 

(1.3) p (u) fl sin t 

We shall also use the fact that integration of a central function 
with respect to Haar measure has a particulary simple expression 
in terms of the parameter A. Suppose f E Ll(G) is such that_ 

vA 
feu) - F(A), where e-l."2 are the proper values of u, then 

(1.4) 

where du is the element of Haar measure on G SU(2). 

In order to discuss the analog of th.e Fourier series expansions 
(1.1) for functions defined on G we have to introduce some of the 
basic facts concerning the irreducible unitary representations of 
SU(2). First, we recall that a unita~y repr~8entation of G is a 
continuous map, u + T(u), of G in~o the class of unitary operators 
on a Hilbert space H that satisfies the relation T(uv) = T(u)T(v) 
for all. u,v E G. A subspace M cHis said to be invariant under 
the action of T if T(u) maps M into Itself for all u E G. If {a} 

and H are the only invariant subspaces, then the representation T 
is said to be irreducible. A basic result in the theory of repr~ 
sentations of compact groups is 
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(l.S) If the ~ep~esentation T, aating on the HiZbe~t spaae H, is 

i~~eduaibZe then H is finite dimensionaZ. 

If T is an irreducible representation acting on H, we can choose 
an orthonormal basis of H, which must be finite by (1.5), and ex
press T as a unitary matrix [t .. ] with respect to this basis. We 

1J 
let the symbol T represent the matrix [tij ] as well. In fact , 
for the remainder of this paper we will assume that our irreduci
ble representations are unitary matrix valued maps v + T(u) = 

. I tij(u)) and the fact that multiplication is preserved under 
such ma,ppings is expressed by the formula 

for all u,v E G and 1 < i,j < d, where d is the dimension of the 
space H on whi~h T acts. 

Two representations Sand T acting on the Hilbert spaces Hand K 
are $aid to be equivaZent when there exists an invertible linear 
transformation L: H + K such that T(u)L = LS(u) for all u E G. A 
system {Ti } , i belonging to some indexing set t. of irreducible 
representations of G is said to be compZete if, given any irredu
cible representation T, there exists a unique index i such that T 
and Ti are equivalent. 

Proposition (1~5), together with the following one, constitute a 
formulation of the Peter-Weyl theorem in the special case when 
G • SU(2): 

(1.6) n Let l ~ {i : i = 2 ' n • 0,1,2, ..• } be the coZZection of 

haZf-intege~s. A aompZete system of irreduci1:iZe matrix 

vaZ.ued rep~88entations of SU(2) can be indexed by the set 

t in such a ~ay that, if {T~} , i E t, is the indexed 

system then: 

(i) 

(ii) 

Ti • [ti ].is a e2i+l) x (2i+l) matrix. ~here m,n . 

-i <; m , n <; i 

the coZZection of funations 12I+T t i is an o~thom,n 
no~maZ basis of L2(SU(2)). 
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Thus, if f E L2(G) , G = SU(2) , we can define its (matrix value~ .. 
Fourier t;roansform f by letting 

A I Q-1 f(Q) = G f(u)T (u )du 

forQ E.t. It follows from (1.6) (ii) that 

(1.7) f - f' (ZQ+1 )tdf(Q)TQ} , 
2£=0 

where the series on the right converges to f in the L 2- norm • This e! 
pansion is the desired analog of the Fourier series expansion (1.1). 

If f,g E L1(G) we define their convolution f * g by letting 

(f * g)(v) = IG f(u)g(vu- 1)du 

for all v E G. It follows readily from this definition that if 
(f * g)A is the Fourier transform of f * g then 

(1 .8) 

for all Q E.t. It is well known that, in the classical case, mul 
tiplier transforms arise from convolution operators (generally , 
from convolution with a distribution). Motivated by the defini
tions we have made(1), therefore, the multiplier transformations 
M that we consider are those that transform a function with devel 
opment (1.7) into one, Mf, whose development is 

(1. 9) f" (2h 1 ) t r (M (Q ) f (Q ) rll ) 
21l =0 

As in the classical case, those multiplier transformations that 
map L2(G) boundedly into L2(G) are the easiest to characterize: 

(1) Since SU(2) is not commutative, the operation of convolution 
we introduced is not commutative. The reader should observe, 
therefore, that the multiplier theorem we are developing is, 
really, a statement about "left" multipliers. We leave it 
to the reader to formulate the related results that arise 
because of this lack .of commutativity. 
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THEOREM (1.10). The mu~tip~iep tpansfopm M ma~s L2(G) boundedZy 

into itse~f if and onZy if the opepatop nopms M(2) ape bounded in 

dependentZy of 2 GO.£ . 

We shall sketch a proof of this theorem. We first observe that if 

ro (22+1) l2 a 2 

22=0 m,n=-2 m,n 

is the div~Zopment 

= I f(u)t2 (u)du 

of a function f E L2 (G) (thus, a2 
m,n 

G n,m 
, since r (u- 1 ) is the conjugate transpose 

matrix to r), then~ by (1.6) part (ii) 

(1.11) 

If ~!,n are the coefficients of the multiplier matrix M(2) then 

the L2 norm of a function having expansion (1.9) is 

ro 
22=0 

(22 + 1) l 
m,n=-2 

1,2 2 
t. ~m,j 
j=-2 

If the operator norms of the matricesM(2) are bounded, say 

HM~)H < A for all 2 E.£, then 

1,2 2 
t. ~m,j 
j=-2 

Summing over nand 2, we then obtain UMfl1 ~ < A2UfH ~. Conversely, 

if the last inequality is satisfied by all f E L2(G) it follows 

that 8M (2) U < A for all 2 E .£. We see this by applying M to func 

tions whose development is, say, 

(22+1) l2 CI~,l t~,l 
j=-2 

Having set down this background material we can now turn to the 

development of the multiplier theorem mentioned above. 

We would also like to 'thank our friend and colleague I. I. Hirsh

man Jr. for having read the manuscript carefully and having con -
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tributed several valuable suggestions. 

2. MULTIPLIER TRANSFORMATIONS THAT PRESERVE LP(G), 1 < p <-. 

Our treatment of the multiplier theorem has certain features that 

are similar to that of Hormander's version of the multiplier theo 
rem associated with n-dimensional Euclidean spaces. The similar
ity lies in the fact that the multiplier theorem is reduced to re 

suIts concerning certain Calder6n-Zygmund singular integrals (se~ 

[2] ). These results have the following analog for SU(2): SUppOSt:1 
M is defined on C-(G) by 

(Mf) (u) lim 
s"'O 
e:>O 

J -1 m(v)f(uv )dv 
p (v»e: 

where m is locally integrable on SU(2) - {e} and satisfies 

(2.1) J im(uv-1) - m(u)i du ~ C <-
p(u»2p(v) 

where C is independent of v. Then, if M is bounded as an operator 

on L2 (i.e. there exists A < - such that UMfU 2 ~ AUfU 2 for all - . . fEe (G)), M is also bounded as an operator on LP(G), 1 < p <-; 
that is, there exists a constant A such that UMfU ~ A UfU for 

P P P P 
all f E C-(G). 

We state this result without proof since it is not substantially 

different from that found in Hormander [2] (1). Our development 

will make use of a result, obtained by de Guzman and the first 
author of this paper, which permits us to replace condition (2.1) 

(1) If zj=xj+iY j , j=1,2, the correspondenc~ U = "-_ Zz 12 - _ZZ 2
1

-_" +--+-

+--+- (x 1 ,y 1 ,x 2 ,Y 2) can be used to obtain a natural identifica
tion of SU(2) with the surface of the unit sphere in Eucli
dean 4-dimensional space. The operators described above, in 
terms of this identification, are Calderon-Zygmund type Sin
gular integrals associated with the surface of the unit 
sphere in R4. Such operators have been studied by many au
thors. In particular, the results we have just announced 
can be obtained by applying the method of H~rmander to the 
singular integrals developed by Morley [4]. . 
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by a condition on the behaviour of M when applied to a specific 
approximation to the identity. This result, in its full general
ity , is contained in the preceeding article of this volume; at 
present, we limit ourselves to stating the special case associat
ed with SU(2): 

= {UE G For 0 < r ~ 2~ let S 
r 

p (u) < 18 sin f }. By virtue of 
+.>. 

(1.3), if the proper values of u are written in the form e-~2 for 

A = Au E [O,2~], this is equivalent to Sr = {u E G : Au < r}. Let 

X be the characteristic function of S and ~r = Xs liS I, where, 
Sr r r r 

in general, lEI denotes the Haar measure of E C SU(2). If ~r 

= ~r - ~r and M is a linear operator which is defined on Loo(G) , 
2" 

bounded on L2(G), commutes with left translations and satisfies 

(2.2) f I(M~ ) (u) 12 [p (u)] 4du ~ Cr 
SU(2) r 

where C < 00 is independent of r, then M is an operator of the Ca! 

der6n-Zygmund type described above. In particular, M is bounded 

on LP , 1 < p < 00 (1) 

Suppose, then, that we do have a multiplier operator of the type 

described in (1.9). We shall suppose that the operator norms of 
the matrices M(n are bounded; thus, by (1.10) M maps L2(G) bound 
edly int.o itself. It is readily verified that M does commute wi th 

left translations. Thus, if we can find suitable conditions which 
imply (2.2) we would have a theorem concerning multiplier trans -

forms. Our task, therefore, is to study the effect, on the L2 

norm, obtained by applying M to the function ~r and then multiplr 
ing the resulting function by p2. 

(1) The reader should observe that the analog of condition (2.2) 
for R3 (the number 3 being the dimension of SU(2»is equiva
lent to estimates of the L2-norm of the 1st and 2nd order de 
rivatives of the Fourier transform of M (applied to an appr~ 
priate analog of ~). A si~ilar situation arises in H~rman-
de r [2]. r 
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We first suppose that MWr has the development 

Moreover, let us agree that, for the remainder of this paper, we 
have chosen the particular complete system of irreducible repre
sentations of SU(2) that is introduced in the third chapter of Vi 
lenkin's book [5]. This will enable us to. refer directly to this 
source for many formulae and, in particular, for the calculations 
of certain Clebsch-Gordan coefficients. These coefficients arise 
when the tensor product of two irreducible representations are d,! 
compos~d into irreducible parts. In particular, products of the 
form t2: ,t2 can be expre·ssed as linear combinations of the m,n m,n 
functions t~,q with 12-2' I 0;;; k 0;;; 2+2' , -k 0;;; p,q 0;;; k. We shall 
be interested in the precise values of the coefficients involved 
in these linear combinations when J!' = .t and (m' ,n') is either 

( t ' t lor (- t ' -t) . The reason for this is the following: 

Because of (1.3), [p (u)) 2 = .8 sin2t .. 4 (1-cos 
.A 

-1-

the proper values of u. But 2 cos t .. e 2 + 
I 1 

til I) , where e 2 
i1. 

e 2 ~ trace(u) .. 

are 

.. t21 1 + tI 1 
-2'-2 2'2 

Thus, the effect of multiplication by ~(u)]2 
1 

is eas ily deri ve"d from the formulae expressing ~21 1 t~,n as li~ 
±2"'±2" 

These can be found in §8 of chap-

ter III of Vilenkin and, from there, we obtain 

(2.3) 

+\1'(2 -m+1) (2 -n+1) 

_1_\ V(2 -m) (2 -n) 
22 + 1 

1 3 
2=0'2,1'2,···,-20;;;m,n0;;;2 
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Let us now define A2 (£ ,6) =..;1 + £ (1+46m t for -2 " m ,,£ and 
m 2 22 +1 

E .' 

1 1 (1) 

2'2 Then. from (2.3) we have (formally) 

A DO 2 2 2 
4sin2 '4 L (22+1) L a t 

22=0 m,n=-2 m,n m,n 

.. 2 {2 .~ 2 2 2+£ } 2 L (22 + 1) L 2a - t. 1 1 A (£,6) A (£, <5) a +cS +cS t . 
22'-.0 m,n=-2 m,n £,6=-'2'2 m n m,n m,n 

We see therefore, that the effect of multiplication by p2 is to 
produce cer~ain differences of the coeffi~ients involved in the 

series deve1ope~nt of M\. In view of (1.9), these coefficients 
~fnvolve both those of the multiplier transform and of the 

mIn 
function Wr . We shall now examine this relationship carefully 
and; by obtaining estimates on the diffel'"ences of the coefficients 

of !/Ir' we will t~en be able to determine conditions on the coef
ficients of ~he M (2) 's, and their differences, assuring us that 
condition (2.2) is satisfied. This will then give us a multipli
er theorem. whose basic features are not unlike those the the clas 
s~cal result of ·Marcinkiewicz. 

By the nature of the definition of $r(and Wr ) in terms of the ce~ 
tral function p, it f~llows that $r (and Wr ) is also central. It 
is well known (see §4 of chapter I of Vilenkin) that the charac
ters 

2 x (u) 

of the irreducible representations of G form a complete orthonor-

(1) The reader should observe tha~ these coefficients will mul-

. 1 2+£ 
t1P y am+ 6 ,n+6' These last expressions maY have no meaning 

1 
when £ - - 2 and m (or n) equals 2 or -2; when this is the 

2 case, Am(£,6) z 0 and, thus, these terms will not appear in 

the summation occ~rin~ in (2.4). 
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mal system in the space of central fun~tions. In particular, 

~ r (11 ) 

is a scalar (211+1) x (211+1) matrix. That is, if III denotes the 

(211+1) x (211+1) identity matrix and 

A 

~ (11 ) . The development (1.7) becomes in this case 

Similarly, if we let 

and 

we have 

1jJ -r 

A 

'I'r (11 ) 

~ (211+1)tr{'(II) Til} 
211=0 

By making use of formula (1.4) and the fact that l has the values 

11 
x (u) 

sin(lI+ t) A 

• A 
Sl.n "2 

(see §7 of chapter III of [5]), we can calculate the coefficients 

;~ and ~~ explicitly. We f'irst observe that 

Jr 

o 
sin2 ~ dA 

2 
r-sin r 

2 
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Thus, 

----- Is l (u)du 
(ll!+1)ISr l r 

Z 
fSin ~ sin(Z2+1) IdA 

o (ll! +1) r-sin r 

------- Jr [cos £A - cos(£+1)AJ dA . 
(ll!+1) (r-sin r) 0 

Hence, 

(2.5) 
Z2 +1 

sin £ r 
£ 

sin (£ +1) r 
£ +1 

r - sin r 
1 3 

£ =0 '2' 1 '2" .. 

A£ A£ Aj2 
Since <Pr - <p r / 2 =1jJr(2.5) will also give us an explicit formula 

f h ff " A£ 
or t e coe lClents 1jJ . 

. r 

j2 1 3 we let D~£ For any sequence {et } ,£ =0 '2" 1 'Z,.. . ~ 
1 1 

2£ £ £+'2 £-'2 
D et = Zet - et - et We then have: 

LEMMA (2.6). Each of the series 

is bounded by a constant times r; that is, each series is OCr) . 

We shall indicate, briefly, how these estimates can be obtained. 
In each case it is convenient to split the sum into one involving 

those terms for which Qr ..;; 1 plus one involving those terms for 
A£ A£ A£ 

which £ r > 1. In order to estimate ljJr = "'r - <Pr/2 we can make 
use of (2.5) and the power series expansion for the sine function 

AQ 
to obtain ljJ = O(£2r2). Thus, 

r 

OCr) . 



157 

For the rest of the estimates it suffices to examine the coeffi-
. 'Q 

clents <P r • 

sin rx/x we 
For example, applying the mean value theorem to 

AQ AQ 
obtain <Pi = 0(1) for Q > 1/r. Thus, $r = 0(1) and 

OCr) . 

We can conclude, therefore, that 

and this is the first estimate of lemma(2.6). Similarly, it can 
be shown that, for 

OCr). 

r 40{ L Q2} OCr). The mean value theorem can then be used 
Q ~l/r 

to obtain estimates for D:Q
r and D2: Q when Q r > 1 that allow 

'I' 'l'r ' , 

us to complete the proof of the lemma. We leave the details to 

the reader. 

Suppose we denote the coefficients of the matrix M(Q) by 
Q 

ll m,n' 
, . ,Q 

-Q';;;m ,n.;;;Q ; that is, M(£) =[(\1 )D.. Then the coefficients 
m,n 

involved in the series (l.9), when f = 1Ji r ' are those of the ma-

trix 

Thus, the coefficients Q 
(l 

m,n 

(2.7) 
Q 

(l 
m,n 

involved in the expansion of M$r are 
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By straight-forward computations we obtain 

LEMMA (2.8). 

\' 2 II 2+<: 
l A (£,o)A (£,o)~ +' +,} 
11m n m u,n u 

£,0=2'-2 

+ 

It follows from (2.4) and the remarks following (1.11) that 

116 IG 1 (Mlji) (u) 12 [p (u)]4du L (2£+1) 
2ll =0 

where ~ll is the expression within the curly brackets in (2.4). 
m,n 

But is clear from this expression, (2.7) and (2.8) that 

I IMlji 12 p 4du is majorized by a constant times 
G r 

where we recall that, for any (2£+1) x (22+1) matrix P = [Pm nD , , 
II 

-ll .;;m,n.;;£ ,1IIP1Ii= (L Ip 12)1/2 denotes its Hilbert-
m,n=-R. m,n 

Schmidt norm and r:" r:,2 are the "difference" operators which, when 

applied to the family of matrices M(£), have the coefficients 

2 
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and 

2 II 
\Im,n 

It now follows immedJately from theorem (1.10) , (2.2) and lemma 
(2.6) that we obtain the following multiplier theorem: 

THEOREM I. Suppose M is a multiplier transform with multiplier 

matrioes M(ll) whose operator norms are bounded and. moreover. 

satisfy 

1 

ti) 11M ell ) m= o (1l2) , (ii) IIIlIM(ll) 111= 0(£"2) , (iii) 
3 

IIllI 2M (ll) III = 0 (£2) 

then M is a bounded operatbr on LP(G) , 1 c pc •. (1) 

Let Us now investigate the operators II and lI 2 in more detail. We 
shall do this in order to obtain a better understanding of the 
lIeaning of conditions (ii) and (iii). A simple calculation shows 
that for -ll+l<m,n<ll-l 

(1) At the beginning of this paper we ~tated the classical multi 
plier theorem of Marcinkiewicz. There we imposed conditions 
on certain sums of absolute values of differences of coeffi
cients. The reader can easily check that by making appro
priate changes in the statement of Lemma (2.6) we could ob
tain a result which, instead of conditions (i), (ii) and (iiU 
(iii) , we would have 

Ihi(ll) 112)1/2 = 0(2k),( L IIllIM(ll) 1112)1/2 = 0(1; 

2k- 1cllc2k 

and ( L IDlI 2M(ll) 1112) 1/2 = 0(2-k ) 

2k- 1cllc2k 
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1 
+ 2" I 

e: 6=-'!''!' , 2' 2 

(2.9) 

(iM(2) ) 
m,n 

1 2-.!. 2+2' 
+ 2 

1.1 _ 1 1 1.1 1 1 
22 2 mf2,n+t m-2',n-2' 2 2 2 

A+l.I m,n -l.I m,n- ,A_l.I m,n-l.Im,n-
2 

2 222 and, finally, R (e:,6) = (Am(e:,6) - An (e:,6)) . m,n 

2 

2+.!. 1 
2 + 

2-2' 
1.1 1 1 1.1 1 1 

m-2',n-2' m+t,n+t 

2 

When m = -2 or m = 2 we have already observed that undefined terms 
2-.!. 

(like 1.1 i 1) appear with coefficients that are O. We can,ther~ 
2+t,n+2' 

fore, interpret the above formulae in this case as well by making 

the convention that such undefined terms are absent. It is of in~ 

terest, however, to note that we can also rewrite these differ -

ences in these extreme cases in the following way when m = 2: 



(2.9') 

where 

case £ 

(and n 

A 

(t.M(~ )) m,n 

(2M(~ )) 
m,n 

161 

1 
+ 2~ +1 1 + 

n-Z 

+ 
, n - ~ E (02~+1 - £ £,0 

.. 1 
+ 2~ + 1 

+ \" (20£ (~-n) 
L 2£ + 1 £,0 

) + 

) + 

E' denotes the summation over all £,0 = 2'-2 except the £,0 
1 1 -2 and 6 = 2 Similar formulae are valid for m = -~ 

Q , -Q ) • 

Part (i) of the following lemma follows immediately from the ine
quality (a2+b 2 ) (a-b)2 ~ la2_b 2)2 applied to the non-negative num-

~ ~ bers a = Am(£,o) andb = An·(£,6). Part (ii) is an obvious iden-
tity. 

LEMMA (2.10). (i) 
(m-n) 2 

R~ (£,6) ~ --------m,n Im.,...j 
2(2~+1)(Q-~) 

2 



(ii) 2-n 
2riT 
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-2 <: m ,n <: I! • 

We can now obtain the following more detailed version of theorem I 

THEOREM II. 
2 

SupposeM(I!) = l(J.1m,n)1, -I! ~ m,n <: I! 1 3 
2 =0 '2' 1 '2' ... 

is a sequenae of mat~iaes having bounded ope~ato~ no~ms and satisf~ 

ing the aonditions 

I! 
Ca) ~ 

m,n=-2 (21! -lm+nl)2 

-3 1 1 
0(2 ) ,6=-2'2 ' 

then the mu"Ltip"Lie~ ope~ato~ defined by the sequenae M(I!) is a 

bounded ope~ato~ on LP(G), 1 < p < ~. 

I! 
Since ~ 

m,n=-I! 
m"n 

I / I 2 , condi -
2 m,n 

(22-lm+nl) 

tion (a) assures us that the contribution to the Hilbert-Schmidt 
A 

norm of M(2) by the terms off the main diagonal is less than or 
equal to a constant (indepen~ent of I!) times If". Since the ope!. 
ator norms of the sequence {M(£)} are bounded,each of the 22+1 

A 

diagonal elements of M(2) has absolute value not exceeding a bound 
for these norms. Thus, the diagonal elements also contribute, at 
most, a constant, independent of 2, times If to the Hilbert
Schi~dt norm of M(I!). Therefore, it suffices to show that condi
tions (ii) and (iii) of theorem I are satisfied. In order to this 
we first s"how that (b) implies 

(Z. 11 J 
I! I! 
~ n lJ.1m,n m,n--'" 

1 
2+z 2 

J.1m+ 6 ,n+6 1 
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For 8 1 2 we first establish the identity 

(2.12) 2 L 
2j =1 

£ +j 
/:, 2 II 

+ m+j,n+j 

This equality is a consequence of the fact that the series on the 

right is absolutely convergent (condition (b) assures us that this 

series is termwise majorized by a constant times L j-3/2) and 
2j ~1 

£+j+1/2 
the fact that a j = llm+j+1/2,n+j+1/2 

£ +. 
II +~ +. tends to 0 as j+oo 

m J,n J 

(from (2.12) applied to a. and condition (c) we see that {a.} is 
J J 

a Cauchy sequence; thus, lim a. exists. 
J 

The fact that this limit 
j+oo 

is 0 is a consequence of the fact that the a.' s are differences of 
J 

the bounded sequence 

£+.!. 

£ +j 1 
II ) When 8 = --2 we have an analogous m+j ,n+j . 

2' 
identity for II 1 1 

m-2:,p-2: 
£ 

- llm,n in which there is an obvious change 

in some of the signs preceeding the indices j and 1/2. We now 

can obtain (2.11) by taking the Hilbert-Schmidt norms of the ma

trices involved in (2.12). 

By examining the expression for /:,2M(£.) in (2.9) we see, therefore, 

that each of the first two differences, involving /:,~ and /:,~ , give 

us matrices which, by virtue of (b), have Hilbert-Schmidt norms 
that are 0(£-3/2). Because of (2.11) the same is true for the 

terms involving /:,~ and /:'~. Lemma (2.10) and condition (a) show 
that this also holds for the last term involving the coefficients 

~,n' Hence, (iii) of theorem I is satisfied (care should be 
taken to account for the extreme cases arising when m or n are ±£ 

by making use of (2.9') and (2.10), part (ii)). 

For the same reasons, the first two summands occuring in the ex

pression for /:'M(£) in (2.9) have Hilbert-Schmidt norms that are 
0~-1/2). The fact that mM~)m = 0~1/2), condition (a) and lem

ma (2.10) assure us that the same is true for the remaining terms. 

Thus, (ii) of theorem I is satisfied; this proves theorem II. 
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An immediate corollary of this theorem is the following result 

for "diagonal" multipliers: 

A 

COROLLARY 1. Suppose the rrratrices M(2) are diagonal; that is. 

2 
0 0 

I 
II -2 

2 
0 0 II -2+1' .. 

M(2 ) ........ _ ........ 
0 0 

2 ..... 112 -

T~en the multiplier operator they define is bounded on LP(G) , 

1 < P < ... provided there e:x:ists a constant C > 0 such th'at 

1 

-2 I ~ C!/-2 for alL m.!/ (with 
llm_o 

If we restrict ourselves still further to those "diagonal" mul

tiplier operators of the /12 (that is, ll~ = 112 for -!/ ~ m ~ 2) 

we obtain the special case (for SU(2)) of theorem 3 in the preceed 

ing paper of Coifman and de Guzman: 

2.J. 2_1 
If / - 0(1) and 2112 - II 2 - II 2 = 0(!/-2) then the muLtiplier' 

operator induced by the matrices M(!/) = 112I!/ is bounded on LP(G), 

1 < p < .... 

In view of the fact that the surface L of the unit sphere in 
2 

three dimensional Euclidean space can be realized as the homoge-

neous space SU(2)/SO(2), we can use theorem II to obtain a mul

tiplier theorem for functions defined on L' We recall that a 
2 

basis for the spherical harmonics of degree !/(!/ an integer) can 

be identified with the functions t;,o , -2 ~ m ~ 2 (see Vilenkin 

(S), pages 167-8). In fact, using Vilenkin's notation, a function 
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in L2 (r ) can be represented by an expansion of the type 
2 

f(.p ,0) 
'" .I! l! r r ~ Yk ,l! (.p ,e) 

l! =0 k--l! 

Let M(l!) = (jl~ n) be a sequence of (211+1) x (211+1) matrices, , 
l! = 0,1,2, ... 

In terms of these matrices we define (formally) the multiplier oE 
erator 

(2.13) (Mf) (.p ,e) 

We then have the following result as a consequence' of theorem II: 

COROLLARY II. The operator M is a bounded transformation of 

LP cr ) into itse~f. 1 < P < co • provided: (a) the operator norms 
2 

A 

of M(l!) are 0(1) , 

l! 
(b) L and 

m,n=-l! 

(c) '\ I 2 l! l! -1 l! -1 I 2 L jl -jl -jl , 
Im-ol ,In-ol~Il-1 m,n m+o,n+o m-o,n-6 

If the matrices M(l!) are diagonal we obtain the simpler operator 

(2.14 ) 

In this case the last result becomes: 

COROLLARY III. M maps LP(r ) into itseLf for 1 < P < co provided 
2 
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2 ! 2 2+1 2-1 2 there e:x:ists C > 0 such that !Il k ! < C and 2Il k -llkHl-ll k_1l1 < C2-

for !k-Il! <2-1.2 = 0.1.2 •••• and t5 = -1.1. 

By restricting our attention to other special classes of functions 

on SU(2) we obtain other corollaries that gives us multiplier the9,. 

rems for expansions in terms of Jacobi polynomials with integral 

indices. These re.sul ts. together with "weak- type" theorems will 

appear elsewhere. At this point we simply assert that there ex

ists a weak type (1.1) result associated with each of the theorems 

and corollaries we oliltained. 
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