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1. INTRODUCTION. The purpose of this paper is to extend Gron­
wall's inequality (see [1]) to the case where the function de­
pends on n variables. There are some results in that direction. 
See, for example, [2], [3], [4] , [5]. [3] is a refinement of 
the results in [2], following the same line of reasoning. [4], [5] 

deal with the case n = 2, and we are only aware of the final re­
sults. Our method of proof was suggested by [6], and has the ad­
vantage over [3] in that it provides a much easier computation of 
the bounds involved, while rendering estimates of the same order 
of magnitude. 

Our interest in the problem arose from fruitful conversations 
with Prof. J.B. Diaz, which we gratefully acknowledge. 

2. NOTATION. Given n non-negative numbers (a.) (i = 1,2, ... ,n), 
1. 

let 0 i (a 1 ,a2 , ... ,an) (i = 1,2, ... ,n) be the elementary symmetric 

function of order i, i.e. 0 1 = I:=l a i o~ = I i : j =la i a1 ... 
i;!j 

a = nt; lao • 
n 1.= 1. 

3. PRELIMINARY RESULTS. 

LEMMA 3.1. Let f(x) be a non negative continuous real-valued 

function defined in [O,A]. Furthermore. let the continuously dil 

ferentiable functions a(x). b(x) be defined in [O,A]. satisfying: 

a(x) ~ 0 , a(O) > 0 , b(x) > 0 , (a(x)/b(x))' ~ 0 and let hex) be 

continuous and nonn2gativs in [O,A]. Then. if: 

o ~ f(x) ~ a(x) + b(x) JX f(s)h(s)ds • we have: 
o 
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f(x) .;;;; a(O) (b(O))-lb(x) exp( r b(s)h(s)ds) 
o 

REMARK 3.1. We note that a(x) = a> 0 , b(x) = b> 0 , hex) = 1, 

satisfy the requirements of the Lemma. They provide, precisely , 
Gronwall's known result. 

REMARK 3.2. Although in [7] there are estimates for the case 

b(x) = 1 , giving more information about the way in which a(x) af 
fects the bound, it is our result that will be useful in proving 

our Theorem. 

Proof of the lemma. Let g(x) = a(x) + b(x) JX f(s)h(s)ds. Hence: 
o 

g' (x) f_ b' (x) + b(x)h(x) ] g(x) + (a(x)/b(x)) 'b(x) 
b(x) 

.;;;; [ b' (x) 

b (x) 
+ b (x) h (x) ] g (x) 

Integration from 0 to x (we observe that g(O) 

the final result. 

a(O) > 0) yields 

LEMMA 3.2. With the notations previously introduced, 

Proof.. Let fi(r) be the first member of the equality. An appli­
n 

cation of dynamic programming techniques (see ~]) gives: 

+ fi l(r-x )] 
n- n 

i O,l, ... ,n. 

Furthermore, the substitution x. = r Yj (1 .;;;; j .;;;; n) yields 
J 

fi(r) = rifi (1) . The case n = 2 is obvious. The rest of the 
n n 

Proof follows by induction. 
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4 .. J'HEOREM. Let f(x 1 ,x2""'xn ) be continuous in TTt=l [O,ail , 

where 

f(x 1 , ... ,s. , ... ,s. , ... ,x }ds .... ds .. 
J1 J h n J 1 J h 

Clearly, there are (~) such possible arrangements. 

with 

REMARK 4.1. The case n 

wall inequality. 
1 provides precisely the original Gron-

Proof of the theorem. The trick consists in transforming the mul 

tidimensional problem into a one-dimensional one, and use Lemma 

3.1. For that purpose, we define: 

Clearly, ~(r) > n, and it does not decrease with increasing r . 

Furthermore: t l""'xn) ';;;~(x1+ ... +xn)' 

Take a typical element Ii' i.e. an integral of order i. Then 

~(X1+"'+S. + ... +s. + ... +X )ds .... ds. 
J1 Ji n J 1 Ji 

By replacing (i-1) Sj'S at a time by the corresponding xj's we 

certainly don't diminish the value of the integral. Moreover, we 

thus reduce it to a one-dimensional one, multiplied by products of 

i-1 elements of the set (x. , ... ,X. ). Hence, I. will be majorized 
J1 Ji ~ 
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by i integrals of order one, of the form 

X. 

1 J J h J= ...... x .... x. x. . .. x. .p(x1+ ... +x. +s. +x. . •. +x )ds 
1 J 1 J h- 1 J h+1 J i 0 J h- 1 J h J h+1 n jh 

Therefore, for this particular Ii' we have the upper bound 

1 
I ..;; I 

L!=1 X j 

(J. 1 (x. , ... ,x. ) J h 
1.- J 1 J i 

o 

cj>(t)dt 

.p(t)dt 

In this form we obtain a uniform upper bound for all integrals of 

the same order. Hence: 

o ..;; .p(r) ..;; A + B L~=1 

";;A + B L~=1 {~)t (i~1) {~)i-1 r .p(t)dt 
o 

where we used Lemma 3.2. 

Finally, Lemma 3.1 yields the assertion of the Theorem. 
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