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§0. INTRODUCTION.

In this paper we present some results and open problems in the
theory of differentiation. Of the results, some are new and
others are known. The latter ones are presented here either be-
cause we felt we could offer new or more illuminating proofs of
them or because of their relationship with open.problems which
seem to be of interest.

The first section presents some aspects of the relationship be-
tween the Hardy-Littlewood maximal operator and the differentia-
tion properties of a basis. Here we also give a characterization
of the space L(1+1og+L) (R™) in terms of an integrability condi-
tion of the maximal function. The second section shows the inti-
mate connection of differentiation with various types of covering
lemmas. The third section deals with some special types of dif-
ferentiation baées. In the course of our discussion , when it
seems appropriate, we mention some open questions which appear to
be of interest either for the new methods one should try to apply
in order to answer them or for the possible roles solutions to
such problems would have in other areas. '

We have sacrificed generality in hopes of achieving clarity of ex
position. Most of the time our setting will be ®™ (or ﬁz) with
Lebesgue measure. If A C & is measurable, |A| will denote its
Lebesgue measure. In ®%, we will call a family of non-empty open
bounded sets, R, a differentiation basis if for each x € & there
is a sequence of sets {Rk} C R which contract to x, i.e. given
any neighborhood 0 of x, all sets Rk’ from some subindex ko on ,

* The second author was partially supported by NSF grant GP-9123.



are inside O.

Given a function f € L, (®™), we define the upper and lower de-

rivatives of I f with respect to R at the point x € |]" by

B(jf,x) = sup 11:':m sup (1/[R|) ijf

-+ oo
and

,g(jf,x) = inf lim inf (1/|R_|). ijf

k »> o

where the supremum and the infimum are taken over all the se-
quences {Rk} C R contracting to X.

We say that R differentiates I f whenever 5{ ff,x) = D( If,x)
for almost every x € /™. This common value is then called the de
rivative of j f (with respect to Lebesgue measure and) with re-
speet to R at x. The main problem of the theory of differentia-
tion is to find out for which classes of functions and for which
differentiation bases R, differentiation of I f holds. The the
ory, of course, begins with Lebesgue differentiation theorem
which states that if R is the system of all balls in ®" and

fe L10c (™), then R differentiates I f to f(x) at almost every

x € ®".

For a detailed account and extensive bibliography on the theory
of differentiation of integrals one can consult [1] and [6].

1. DIFFERENTIATION AND THE MAXIMAL OPERATOR.

* Let R be a differentiation basis in &" and f € Lioe (R™). For

x € ®™ we consider
ME(x) = sup (1/|R]) [ I£(y)[dy

where the supremum is taken over the R's such that x € R € R. The
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function Mf is called the Hardy-Littlewood maximal function of f
relative to R. The operator M: f » Mf is called the Hardy-Little
wood maximal operator with respect to R. Since {x : Mf(x) > i}
is open, Mf is a measurable function.

The maximal operator is very closely connected with the differen-
tiation properties of a basis, as the following theorem shows.
This theorem was first stated and proved in a slightly weaker form
and in terms of a so-called halo condition by Busemann and Feller
{21. It can also be found in this form in [6]. The technique of
the proof we present here of the second part belongs to Calderdn
(cf. [15] vol. IL, p. 165). This technique has been used and ex-
tended in a more general setting by Stein [12]. It is easy to
see that also some other criteria of [2] can be concisely stated

in terms of the maximal operator.

In order to state the next theorem, we need some terminology. We
.say that a differentiation basis R is homothecy invariant if RER
implies that any set homothetic to R is also in R. A sublinear
operator A defined on LP(®R™) (1 < p < «), with values in the set
of measurable functions M(8&") is said to be of weak type (p,q) »
whenever Af, for f € LP, satisfies, for any » > 0 ,

l(x @ |AE(X)] > a}] < (% IIfllp)q
where ¢ > 0 is independent of f and A. This is a condition
weaker than continuity of A from LP to LY. This last situation
is expressed by saying that A is of strong type (p,q).
1.1. THEOREM. Let R be a differentiation basis in & which is

homothecy invariant. Then the two following conditions are equi-=

valent:

(a) The maximal operator M with respect to R is of
weak type (1,1)

(b) R differentiates Jf for every f € Lioc (R™) and

D( If,x) = f(x) for almost every x € &"

Proof. (a) = (b). Since differentiation is obviously a local
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property we can shall assume f € Ll(ﬁ“) and, changing f, if neces
sary, on a set of measure zero, |f(x)| < « for every x. We then
have

m
1]

{x : D(j f,x) does not exist or D(I f,x) # f(x)} =

(x : |DCf£,x) - £0)] > 0} U {x :1DC[ £,%) - £x)] > 0}=AUB
We shall prove that for any a > 0

lal = 1ix - ]B([ £,x) = £(x)| > a}| = 0
Hence |A] = 0. Similarly |B| = 0 and so |E] = 0. (Questions of
measurability for the sets we are considering are pretty obvi-
ous in view of the character of the differentiation basis we con-
sider). Given ¢ > 0, we can take f = g+h , g € C(®R™),h € L} (&Y),
lIhII1 < ¢. Obviously D(Ig,x) = g(x) at every x, and so

|A ] = |{x = [D(J£,x)-£(x)| > a}| = [i{x : [D(Jh,x)-h(x)| > a}
< |{x : Mh(x) » %-}| +x th(x) > 53] < Z%;l .
Since ¢ can be taken arbitrarily small, |A| = 0. Hence (a)=(b)

is proved.

(b) = (a). As we show later (lemma 1.3), (a) is equivalent to
(a') The maximal operator M <Zs of weak type (1,1) on functions
which are in K, the set of finite linear combinations of charac-
teristic functions of bounded measurable pairwise disjoint sets

(i.e. for any such function f and for » > 0, we have

«C
[{x :Mf(x) > 2} <X— ||f||1)

It is therefore sufficient to prove (b) = (a'). Assume that (a')
* *
is not true. Then there is a sequence {f,} C K , fi = 0,
*
kanl = 1 , and numbers g = 0, such that

*

*
[E | = [1x : ME (XD > a ] > 25/a
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If we define, for H > 0

b

* *
M€, (x) = sup(1/[R]) JR £, (y)dy

where the supremum is taken for RE€R, x €R, and the diameter
§(R) of R is < H, then we can take HK sufficiently big so that

* *
[E | =[x : MHk £,0) > a3 ] > 250

*
If we now consider £f,(x) = £ x/u ), w, > 0, then kaﬂl = ui

’

*
and if we set Ek = u, E

kk ?
n * . *
then [Ek[ = uk,Ekl= j{“kx: MHk £f,x) > A=
®
= [{y : MHk £/ > ] = [y Mukafk(y) > A} =

\%

n,k - ok
ukz /Ak 2 Ilfklll/xk

*
Now E, is clearly bounded. Hence we can select uy small enough
so that E, is contained in the ball B(0,1/4) of center 0 and ra-
dius 1/4, and furthermore 6(Ek) + 0. We can also choose a posi-
tive integer T, SO that 2 >r [E | >1 . Then 17 r B = -
We shall now use the following lemma, which is a straight-forward
generalization of a result of Calderdn, and which can be seen in
[15]), vol. II, p. 165:

1.2. LEMMA. et {Ak} be a sequence of measurable sets contained
in B{0,1/4) soithaftzlAkl = ®. Then <t Zs possible to select q
sequence of points {Xk} of B(0,1)~so that every point of a set of

positive measure is in infinitely many of the sets Ak(xk)=xk+Ak.

To use this lemma we consider Ey repeated T, times. Then, since

rklEk] = « We can apply the lemma. We translate Ek to obtain

Ek(xl) , Ek(xz) yeeey Ek(xrk) and simultaneously the functions fk,

r
obtaining the functions fi , fﬁ ,...,fkk. We then set

- 7 ki i i .
f Zk=1 Zi=1 a, £, where @ = a, > 0 are to be chosen in a mo
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ment. We have Ifl <] o, T HET and since r, |E | < 2 and

k k
|Ek| > 2 ﬂfkﬂl/xk , we get Il < Z(zakxk/z ).

On the other hand, there is a set of positive measure E such that
every x € E belongs to infinitely many Ek(xi)'s, and so there is,
for such an x, a sequence {Rh} CR , XE Rh , contracting to X
such ‘that

A/IRD [5 €008y > (/IR D) [x Ay > 0,

k .
We can choose @, SO that Z(Zakhk/Z ) < » and ar e It is

enough to take a, = Zklz/xk. So we get f € L! and for x € E ,

ﬁ(ff,x) = » , which contradicts (b). So the theorem is proved.

We finally prove the lemma we have stated at the beginning of
this proof. It can be seen in [4] in a more general form.

1.3. LEMMA. The two following conditions are equivalent:

(a) M 48 of weak type (1,1).

(a') M is of weak type (1,1) on functions in K.

Proof. We only have to prove (a') = (a). Let f € L! , £=20
We can take gy e K, gy >0, g f(Ll). For any x, x € R € R

we have
1/ R f y d)’ = 1lim 1/ R g y dy
( ll) J ( ) i ( | l) JR k()

We denote E = {x : Mf(x) > A} , Ek = {x : Mgk(x) > Ay . If x € E

then, for some RE€ R , x € R , we have
(1/|R]) [ f(y)dy > » and so , from some ko on
R
(/IR [ g (dy >
R

Hence E 1lim sup Ek and |E| < lim sup |Ek| , k » w. Thus

|E| < lim sup c“gkﬂl/x = C"f“l/x
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There is an interesting question related to theorem 1.1:

1.4. PROBLEM. Can one substitute weak type (1,1) in theorem 1.1
for weak type (p,p), 1 < p < », and simultaneously L! for LP »

One could think of applying the techniques of [3] or [12].

Also in relationship with theorem 1.1 and problem 1.4 one can for
mulate another interesting question. One knows that the space

L 10g+L(a2) of measurable functions f in &% such that

[1£] logt|f] < » where logta = log a if a > 1 , log*a = 0 if

0 < a <1, behaves in a special way in the theory of differentia
tion (cf. for example [7]).

1.5. PROBLEM. Is there any simple relationship between some
property similar to the one in 1.1, 1.4, for the maximal operator
and the fact that R differentiates jf for £ €L 10g+L?

The following theorem, which is an extension of a result of Stein
[13] gives a characterization of the space

L(1+1og¥L) (@) = (f € M(&Y) : [1£](+10g™[£]) < =)

in terms of an integrability condition on the classical Hardy-Lit
tlewood maximal function.

1.6. DEFINITION. For x € & we consider the system of open
balls centered at x, B(x,r), r > 0. Define, for f € Lloc(ﬁ“)

Mf (x) = sup (1/]B(x,1)]) J [£(y)|dy

r>0 B( 3

Mf is then called the (classical) Hardy-Littlewood maximal func -

tion. It is easy to observe that Mf is measurable.

1.7. THEOREM. et g € L(R"). Then the following two conditions

are equivalent:
(a) J Mg (x)dx < =
Mg(x)>1

(b) g€ L log'L
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Proof. We can assume, without loss of generality, g = 0. Define,
for A > 0, w(Mg,x) = |{x : Mg(x) > A1|. We shall use the follow-
ing inequalities (cf. [13]).

C2 .
) gO0dx < wlMg,n) < 2 g (x)dx

+]
M gyseqn g (x)>%

where c;, Cy, €3:> 0 are independent of g,\». Assume first that
(a) holds. We can write

J Mg (x)dx = ["Aw(Mg,A)]T + Jm w Mg ,2)da
Mg (x)>1 1

By the above inequalities w(Mg,1) < = and rw(Mg,2) > 0 as X > =,

Hence
- > J' o (Mg, )dr > ¢ j 1 J g (x)dxdr =
1 1 g (x)>cqh
(1/ey)e(x) 4
=cC J g (x) J = dxdx
1 1 A

g(x)>cq

Since g € L, we see that g € L 1og+L also and (b) is proved. In

a similar fashion, if (b) is true,

J Mg (x)dx = w(Mg,1) + J w(Mg,r)dr
Mg (x)>1 1

and we have o Mg,1) < = , J w (Mg, )dx <
1

2g(x) 4

N g (x)dxda f 3 dxdx =

Jg(x)>5 g (x) J

C
2 J2g(x)>1 1

=c, J g(x) log"(2g(x))dx < = , which proves (a)

Stein's theorem results now as a corollary of 1.7.

1.8. COROLLARY. Let f € Li(ﬁn) , £ > 0. Then, if M s defined
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as tn 1.6, we have that f € L 1og+L Zf and only if»jA Mf (x)dX < o,

where A denotes the support of f.

Proof. We have IA Mf (x)dx = J Mf (x)dx where

ANB' ANB'
B = {x : Mf(x) > 1} and B' is the complement of B.

Mf (x) dx +j

If f €L 1og+L, the first integral is bounded by the theorem. The
second is obviously bounded, since A is compact.

Assume now JA

Mf{x)dx < =. Then, as Stein shows, Mf € Lloc(an)

Furthermore, if f € Lo(ﬁn), then B is bounded. So JB Mf (x)dx < w

and by the theorem f € L 1og+L. Q.E.D.

Another simple corcllary of the theorem is the following:

1.9. COROLLARY. et f € Ll(ﬁn) and M defined as in 1.6. Then ,

for every A C &, measurable, |[A| < » , one has
[ MEG)Ax < ] (]A] + JA|f(x);(1+1og+|f(x)|)dx)
and also
J ME (x)dx > c:.[]f(x)|(1+log+|f(x)|)dx

Proof. The first inequality is well known and results very easi-
ly from the theorem:

J Mf (x)dx ME (x)dx + J ME(x)dx <
A

JA (Mf (x)>1} A (ME(x)<l}

VA

e (J1£G0 1 (+Log* £ (x) ax + |A])

As for the second, we have, recalling (*) in the proof of theorem
1.7. (note that c3 can be taken > 1)

J Mf (x)dx = J Mf (x)dx = w(Mf,1) + J w(Mf,A)dr =
Mf (x)>1 1
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> [£00) |dx + ¢ J 1 J |£(x) |dxda =

c, J
|f(x)|<c3 |f(x)|>c by

If(X)I) dox.

|£(x)]dx + c | £(x) [log (=

1 J
1 |f(x)|>c3 1 If(x)l>c

Since we also have J Mf (x)dx = j]f(x)'dx one easily obtains
J ME (x)dx > c) Jlf(x)|(1+1og+|f(x)|)dx . Q.E.D.

If Q is the unit cube this corollary implies that Mf € Ll(Q) if a
and only if f € L(1+log'L)(Q).

§2. DIFFERENTIATION AND COVERING LEMMAS.

The connection of covering properties of some differentiation
bases with their differentiation properties is well known. The
classical Vitali lemma has been the standard tool to prove the Le
besgue differentiation theorem. A way to state and use it for
this purpose is as follows:

2.1. THEOREM. (Vitali lemma). Consider, for every x € & the
set of closed cubic intervals centered at x. Call it R(x). Let
E be a set in " and assume that for every x € E there is given a
sequence (Rk(x)} C R(x) contracting to X as k > . Then one can
select from all these given sets a sequence {Qk} of disgjoint

closed cubic intervals such that |E - le = 0.

A way to prove the Lebesgue differentiation theorem of I f,
f € Lioc, with respect to closed cubic intervals centered at the

corresponding points jis now the following:

Assume £ € L!. Take g € Co, heLl, “h“1 <e , f = g+h. Then,

assuming |£(x)| < = everywhere, if o > 0 , we have:

ltx = ID(E,0-£00] > o3| =[x = [D(fh,x)-h(x) | > a}]

< s Dm0l > S0+ Jix s a5 = JAl + B
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We clearly have |B| < 3 Ihi;. As for the set A, it is a measura-
X

ble set and for every € A we have a sequence {Rk} C R(x) con -

tracting to x such that (1/|Rk|)| JR h(y)dy| > % . Hence, apply.
k

ing Vitali lemma, we get {Qk} , |A—Qk| =0, Qk pairwise disjoint.
Thus:
- 2 2 2
Al = ]an ©o)| <Tlol <2 IJQkh(y)dyI <Zlhomly<i
Since ¢ is arbitrarily small, we get |{x : IB( £,x)-£(x)]| > a}=0

and so B(If,x) = f(x) for almost every x € . In the same way
Q(If,x) = f(x) a.e. thus D(If,x) = f(x) a.e.

This type of proof clearly shows the role played by the covering
lemmas in differentiation. Theorem 2.2 emphasizes this role in a
slightly more general setting.

For the remainder of this section we shall be considering only
functions defined on the closed unit cube Q of ®". Our differen-
tiation bases will similarly be subsets of Q, with the relative
topology. Since differentiation properties are local this does
not lead to any lack of generality. We consider Orlicz spaces
with Q as their fundamental set. For a detailed account of the
theory of these spaces we refer to [8].

We denote the norm of the Orlicz space L, associated to the N-fun
tion ¢ by | H@. The Orlicz space dual of L, will be denoted by
Lw. The space Lw is said to satisfy the Aj,-condition if there is
a k > 0 such that the N-function y satisfies y(2t) < ky(t) for
large values of t.

2.2. THEOREM. Let Ly be an Orlicz space whose dual Lw satisfies
the Ag-condition. Let R be a differentiation basis in Q with the
following property:

(a) If A is a measurable subset of Q and for every X € A there
18 given a sequence {Rk(x)} CR, Rk(x) +~ X (Z.e. contractin
to x), then, given ¢ > 0 , one can select a sequence {Qk}v

among these given sets so that, 7f S = UQk

(1) JA -S| <«
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(2) |S -A| <
(3) “Xxk - XS“Q < €

where Xy is8 the characteristic function of Qk and Xg that of
S.

Then:

(b) R differentiates If for every f € L¢ and the value of the de

rivative is f(x) almost everywhere in Q.

2.3. REMARK. Note that conditions (1) and (2) mean that the sym
metric difference of A and S can be made arbitrarily small in
measure and (3) that the overlapping function can be made arbi
trarily small in norm.

Proof of theorem 2.2. Let f € L¢‘ Since Lw satisfies the A,-con
dition, the set of continuous functions on Q is dense in Lw and
so we can take, givene > 0, g€ ¢C , h €L, , “h“¢ <e, f=g+h.

We can assume |f(x)| < «» for almost every x. We have then

l[(x € Q : ID(f£,x)-£(x)| > a > 0}]| < [{x€Q : [D(fh,x)]> $}|+

+ |[{x €Q : |h(x)]|

A\

For |B| we have

|09

Q

2 2
Bl =[5 ax <2 [ Ineolax < 2 aml wigl, < 22 ixgl

by the generalized Holder inequality.

As for |A| we can proceed as we did after theorem 2.1 for the Le-

besgue differentiation theorem, using now property (a) to get:

AL < [A-s] + ISl < e+ TIg ) <e+ 27 [, Inonlay <
k

[+

<e+ 2 [ Mg oNInmldy <
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o

<o 2 1 xm;misy + 2 [ x o mo ey <

N
™
+

2 2
g 1D xghytnty, « 2yl il <

2
S e + 7? (e + "XQNQ)

Since e is arbitrarily small, we get |A| = 0. 1In the same way we
can proceed with Q(If,x). Thus (b) is proved.

There are some known results about the possible equivalence of
covering properties and differentiation properties, i.e. of the
equivalence of a property of the type (a) and a property of the
type (b) in theorem 2.2. This is the main result of the Possel
‘equivalence theorem [10], which can be stated in the following
way:

2.4. THEOREM. (de Possel). Let R be a differentiation basis in
Q. Then the two following statements are equivalent:

(a) Given any measurable subset A of Q and for every X € A a se-
‘quence {Rk(x)} CR, Rk(x) + X (Z.e. contracting to X), then
for every e > 0 , one can select a sequence {Qk} among the

given sets Rk(x)'s, such that, <f S = UQk
(1) JA - 5] < ¢
(2) |s - A|] < ¢
(3) "Zxk - XS“I < €

where Xi is the characteristic function of Qk and Xg that of
S.

(b) R differentiates jf for every f € L” and the value of the de

rivative is f(x) almost everywhere in Q.

Proof. We first show that differentiation of [f , f € L” to f
a.e. is equivalent to differentiation of ff to f a.e., for f cha;
acteristic function of a measurable set. Assume then that R has
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this last property (density property). Let f € L. We shall
show that if A = {x : ﬁ(lf,x) >v>u> f(x)} , then |A | =0.
uv uv .

Gonsider Ers = (x : v < f(x) <s}. Since R is a basis with the

density property the set N ={x €E : D(IX ,X) < 1} is a
rs rs - Ers

null set. Take x € E - N . Then, if R, > x , R € R , we
rs rs k k

have, if Ifl = C , and E; denotes the complement of Er
A S S

-C|E" E < < n E' NR
Cl rs n Rk| * r| rs n Rk| JRk £&)dy SIErs Rk| * Cl rs k|

Dividing by |Rk|and letting k > » we get that
r < g(jf,x) < 5(Jf,x) <s

at almost every x € E . Hence, if s-r < v-u , we clearly get
rs

[A_NnE_| =0andso |[A | =0. Thus |[{x: D(f£,x) > £(x)}] = 0.
uv uv

rs
In a similar way |{x : Q(Jf,x) < f(x)}] =0 . This proves that
d(If,x) = f(x) at almost every X.

We now prove that (a) implies that R has the density property
Suppose there exists M C Q , measurable set, and o such that
0 <o <1, so that

Al = |[{x e M : Q(IfM,x) <o <1} >0
For every x € A there is then Rk > X, {Rk} C R, such that

IR, nA| < afR_|
k k

We apply the property (a) of R and select {Tk} C R so that
|Tk nA| < aITk| and for € > 0 ,

|A—uTk|<e , ZlTk|<|A|+ €

Then we have

Al + e > IIT | > (/0] [T, n Al > (/o) lwT) 0 Al -



= (/a)[A] - |A -UT | >

Thus o = (|A] -

which is impossible, since o < 1.

fies the density property.

We now prove (b) = (a) or, what

267

(1/a)|A[ - (e/a)

e)/(|]A| + €) for ¢ arbitrarily close to zero

Thus |A| = 0. Hence R satis-

is equivalent, that the fact that

R is a basis with the density property implies (a).

Let A be a measurable subset of

every x € A we are given R, » x

k

Q, [A| > 0.
, R_€R.

Suppose that for

Given € > 0 take

’

a = [Al/(JA] + €) <1, and a relatively open subset G of Q ,

G DA, such that |G-A| < .
ones of R which are in G.

up = sup {[R]

0
basis with the density property.
[Ry| > (3/4)u, and |A N R | >
We proceed now in a similar way

> since

b

It is clear that Ha

uAl sup {|R]

and take R, € R* such that IR, |

Consicer now A, = A -
2 o
sequence {Ai} is finite we stop

finite.

[A] = |A n (U RI| > |u(Ai

Hence JIR;| < |A] + e, i.e. [ (Ix;

characteristic function of Ri'

and so mp, > 0. Let A
1

Hence My 0 and ]Awl 0.

for every i, we have ]URi

ul R.Na,
(o] 1 1

A —lJRi. Then qu <
This proves (1) of (a).

- A| < e , which proves (2).

Call R* the sets among the given
Define

R E€R* , |[ANR| > o|R|}

otherwise |A| = 0 , for R is a
Let Ro € R* be such that
a|R |.
o
with Al’ i.e. we consider

Consider now A, = A-R
1 o

R ER* , JA] NR| > ofR[}

> (3/4)pA1 and |Al n R1| > aIRI!.

), Ao A and so on. If the

b

this process. Assume {Ai} is in-

The sets Ri N A, are disjoint and so

N Ri)| = Z[Ai n Ri| > aZ|Ri|

x,) <e , if x; denotes the

Since J|R.| < =« , we have |R.| ~+0
1 1

u for every i

Ay

Since Ri CG

As for (3),



if S =URi , then because of (1),

J (Ix; = xg) = J (Ixs = xy)

and this is < ¢ as proved before. This completes the proof of
the theorem.

The following theorem, which belongs to Hayes and Pauc, shows
another case in which a covering property is equivalent to a dif-
ferentiation property. Here we present a simplified statement
and proof of the theorem, in terms of the differentiation bases
we consider. For the result in all its generality we refer to
[5] or [6].

2.5. DEFINITION. For brevity we will say that a differentiation
basis R in Q is an SP pasis for some p, 1 < p <= if it satisfies

property (a) of theorem 2.4 with I |

1 replaced by | ﬂp, i.e. the

LP-norm.

2.6. THEOREM. (Hayes, Pauc). Let R be a differentiation basis

in Q. Then the two following statements are equivalent:

(1) R is an SP basis for all p, 1 < p < =

(2) R differentiates f f, f €L, for all g, 1 <.q < =
and the value of the derivative g f almost every -

where

Proof. The proof relies on the following lemma, which will be

proved later. In order to state this lemma, we introduce first

some terminology. For a finite sequence A = {Mk}1 3 of meas-
seees

urable sets we will write o(A) =UM, , w(A,x) = Xxk(X) - xs(x)

where Xy is the characteristic function of Mk and S = o(A).

2.7. LEMMA. Let 1 <z <p <z + 1 < o Assume that R is an S%
basis but not an SP basis. Then there exists a measurable set A,
a subcollection R* of R, which contains, for every x € A, a se-

quence contracting to X, and there exist numbers e, o > 0, such

that for every finite subcollection of R*¥, G = {Rk}1 N ? for



269

which we have

(i) |A - 6(G)]| < ¢
(i1) VIRl - |Al < e

(iii) Hm(G,-)“z < e
(such G exists, since R is an S% basis) we also have

(iv) |U{Rk € G : JRk[w(G,x)]p-ldx > ulel}l > e

(The set between bars in (iv) will be denoted t(G,a)). With this
lemma we proceed as follows. Suppose that R is a differentiation
basis which differentiates j f to f at almost every x € Q for all
felLP (1 <p < ). Then, by theorem 2.4, R is an S1 basis. As-
sume R is not an S basis for some ¢ > 1. Then we may take p,z,
1 <z <p<z+1 such that R is an S% basis but not an SP basis

We now apply lemma 2.7.

Let A, R*, ¢, o the elements which appear in the lemma. For

_ . _ h %
h =1,2,... we consider Fh = {Rk}k=l,2,...,Nh C R* such that

A - o(F )| < ¢

lo(F,) - Al < e

J[w(Fh,x)]zdx < min (e/2P%2,e?)

and finally max {s(RY}) : k = 1,2,...,N;} » 0 as h > =. It is pos

sible to choose them in this way since R is an S? basis. Now, be
cause of the lemma, we have lr(Fh,u)I 2 e. We try now to cons -
2 1

> such that differentiation

truct a function £ € LY, q = - T
p-
of I f to f at almost every point does not hold, reaching so a

b

contradiction.

Let 0, = {x : w(F ,x) > 0} . We get |0h| < J w(F, ,x)dx <
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< J[m(Fh,x)]zdx <-—L_.Call D =U0_ . We have |D| < Let

2h+2 h

N ™
.

Q = 1(F,0) - D. Then |Qh| =

N[0

If C = 1lim sup Qh , then

1}

[C] = => 0. Define now f(x) Z[m(Fh,x)]p'1 . We have

£
2
VEI < PH(F 1P = X(J[w(Fh,x)]zdx)l/q < e2/ay1/ht2yl/ac e,

Hence f € L9. If x € C then x € D = UOh and so f(x) = 0. On the
other hand, if x € C then x € Qh C T(Fh,a) for infinitely many

h's, and so there is a sequence {Tk} cCRrR, Tk + x , such that

JT f > u|Tk|. Hence B(If,x) = 0o > 0 for every x € C, which is a
k

contradiction. This proves that (2) implies (1). The implica -
tion (1) = (2) is obtained as in theorem 2.2.

Proof of lemma 2.7. Assume that the lemma is not true. So R is
an S% basis, not an SP basis, and for every A measurable, for eve
ry R* C R such that every x € A has a sequence of sets in R* con-
tracting to x, and for every e,o > 0, there exists a finite col-

lection {Rk}k_1 N C R* satisfying (i) (ii) (iii) and not (iv).

We shall prove that R has to be then an SP basis, reaching a con-

tradiction.

Let O be a given measurable set, R* C R such that every x € O has
a sequence of sets of R* contracting to x, and n > 0 , a > 0. We
can assume that all sets of R* are contained in some open (rela -
tively to Q) neighborhood of O , U , such that |U - O] < n. Se-

lect G = {Rk}k_1 _— such that (i) (ii) (iii) hold, with € re

placed by n, and also we have |[T(G,a)| < n. Denote by p(G) the
collection of sets in G which do not constitute T(G,a), i.e.

0(G) = (REG : {R[w(e,x)]P“ldx < alR|}
We then have
m |0 - a(p(G))] < |O - o(G)| *+ |t(G,a)]| < 2n
(2)  |o(e(6)) - O] < |U - O] <n

Finally, if o(G) = {T } denotes the characteristic

h'h=1,...,M *> *n
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function of Th and Xg that of S = UTh , we have

3 1y - xl® < 10 - xglP ) < Iy e, <

< ol|Tyl <ol R | < a(]0] +n)

Now (1) (2) (3) show that R is an SP basis. This concludes the
proof of the lemma.

Theorems 2.4 and 2.6 suggest the following questions

2.8. PROBLEM. State simple general conditions on the equivalence

of covering properties and differentiation properties of a basis R.

The interest of such a problem is obvious when one considers the
usefulness in many fields of analysis of certain covering lemmas
and the difficulty of the methods of obtaining them. In the way
suggested in 2.8 one can think of obtaining first differentiation
properties and deducing from them covering theorems. For example,
one knows that the system of all intervals in R® satisfies (2) of
theorem 2.6 [14]. So one has for this system a covering theorem,
expressed by (1) of 2.6. In this context the following problem ,
which is a particular case of 2.8, seems to be especially interest
ing.

2.9. PROBLEM. One knows that the system of all intervals in R"
differentiates If to f at almost every point for all

f el (10g+L)n—1[7]. Can one obtain from this fact a better cover
ing lemma than the one of the Possel given in 2.4, and also better
than theorem 2.67?

§3. SPECIAL DIFFERENTIATION BASES.

In R? we fix 2 different directions dl’ dz""’dz' Consider the
system B of all open convex polygons such that each of their sides
is parallel to one of the % fixed directions. When 2 = 2 one
knows that B differentiates j f to f at almost every point for all
f € L log+L, but not for f € Ll [7]1. Busemann and Feller [2] have
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shown that B is a density basis for arbitrary ¢, i.e. has the den
sity property. We will show that B, for arbitrary g, differenti-
ates f f to f at almost every point for all f € L log+L. The the
orem depends on a geometrical lemma which is very simple in R?
The theorem admits an extension to R® , which is proved by the
same type of geometrical arguments, although lemma 3.1 is only
valid in R®, for n > 2, with altered wording. For simplicity and
brevity we will present the theorem only for n = 2,

3.1. LEMMA. [Let B € B. Among all parallelograms containing B
there is a closed one P(B) of minimal area such that:

(a) |P(B)| < 2|B]

(b) The sides of P(B) are parallel to two of the % given

directions defining the system B.

Proof. Let K be any bounded convex body in RZ. An easy continui
ty argument shows that, among all parallelograms containing it ,
there is at least one of minimal area. Let P(X) be any of them
We show that |P(K)| < 2|K|. To do so, it will be enough to prod-
uce a parallelogram S D K such that |S| < 2|K|. For this, take
any direction d in R2 and consider the two supporting straight
lines t, tz_of K parallel to i. Take now the segment AB joining
any A € tlr\K and any B € t, NK. Draw the two supporting lines
S;» S, of K parallel to AB. Then it is obvious, from the convexi
ty of K, that the parallelogram S formed by ty 5ty ,s

2 » S, is
such that |S| < 2|K|. So |P(B)| < 2|B| is proved.

1

Take now any closed parallelogram U of minimal area circum -
scribing B and assume it does not satisfy (b). Then it clearly
has two opposite éides each with just one point in common with B.
It is then an easy matter to show that those two sides can be si-
multaneously rotated around these points so to obtJ?n a new paral
lelogram Ul circumscribing B and such that [U1| < |U|. Since U
is of minimal are |U1| = |U|. Rotating further we arrive at a
parallelogram with two of their sides parallel to one of the &
given directions. In the same way we proceed with the other two
sides, obtaining a parallelogram P(B) satisfying (b). This proves
the lemma.
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3.2. THEOREM. The differentiation basis B differentiates j f at
almost every point and the value of the derivative is f, for all
f €L log+L.

Proof. The theorem is a trivial corollary of the lemma and of

the theorem for ¢ = 2, being the number of directions in B. It
is enough to observe that for any B, x € B € B, we have

(1/1B]) jBlf(y)‘ldy < @/ p®)) jP(B)If(y)ldy

where P(B) is as in lemma 3.1. Now the possible directions of
the sides of P(B) are a fixed number 0(%2). Hence all the usual
3stimates from which differentiability, in the case ¢ = 2, is de-
luced (cf. [7] or [16]) are here valid. Hence differentiability
2lso holds here.

The following statement is rather trivial, but it will be present
ed here because of its connections with some interesting ques-
tions.

3.3. .THEOREM. ILet d = (di)ieN be a denumerable set of direc -
tions in R2. To each point x € R” assign d(x) € d, one of the
directions of d, and qssume that, for each i € N, {x : d(x)=di}
s measurable. Consider now for each x the set R(x) of all open
rectangles containing x and having one side parallel to d(x).
Then there is differentiation of j f to f at almost every point
with respect to this system of sets for all £ € L log+L (RZ).

On the other hand one knows the following:

3.4. THEOREM. LILet R be the system of all open rectangles in R2.
Then R does not satisfy the density property, i.e., R does not
differentiate jf to f at almost every point for f characteristic

function of a measurable set.

For the proof of this theorem we refer to 91, remark of Zygmund
at the end, or [2].

These two theorems lead in a natural way to some'problems, which
are still open.
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3.5. PROBLEM. (Coifman, Guzmdn). Consider in R a continuous
field of directions, i.e. for every X € R? there is assigned a di
rection d(x), determined by d(x) € RZ, |[d(x)|= 1, sp that d(x)
varies continuously. For every X we consider R(Xx), the set of
all rectangles centered at X with one side parallel to d(x). Is
there differentiation of ff with respect to this system of sets
for some class of functions f£?

When d = {d(x) : x € R2} is denumerable and for each a € d the
set {x : d(x) = a} is.measurable,.we have theorem 3.3.

When d(x) is constant, we have differentiability of J f for all
fel 1og+L(R2) and we have also some inequalities for the maximal
operator and the related operators used in similar situations (cf.
[161). One can construct a counterexample to see that the maximal
operator in the general case of 3.5 does not satisfy inequalities
of the same type.

The following question, also related to 3.3 and 3.4 is due to Zyg
mung :

3.6. PROBLEM. (Zygmund). It is known that, once we have fixzed
a rectangular coordinate system in Rz, one can find a function

f e L' such that the system of intervals does not differentiate
Jf to £ [Saks]. Suppose now that g € LI(RZ) i8 given. Can a
pair of rectangular directions be found such that Ig g differen-
tiable to g at almost every X € R2 with respect to the system of
rectangles with those directions? If the answer is affirmative,

how is the collection of all such directions?

The interest of such a question is clear, since in many problems,
given g € Ll, one is free to choose an appropriate coordinate

system.

The following problem, stated here in very particular terms, seems
to be of interest in some questions of harmonic analysis.

3.7. PROBLEM. (Coifman, Guzmin). Let £ € LP(R®), 1 <p < = ,

and consider

S
MEGO) = sup [1/4(8)] [ |E0xpve,x vt fat
S>0 -S
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where &(S) <s the length of the curve section on which one integ-

rates.

What are the properties of this maximal operator? Is it

of type (p,p)?
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