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§O. INTRODUCTION. 

In this paper we present some results and open problems in the 
theory of differentiation. Of the results, some are new and 
others are known. The latter ones are presented here either be
cause we felt we could offer new or more illuminating proofs of 
them or because of their relationship with open problems which 
seem to be of interest. 

The first section presents some aspects of the relationship be
tween the Hardy-Littlewood maximal operator and the differentia

tion properties of a basis. Here we also give a characterization 
of the space L(l+log+L) (~n) in ter~s of an integrability condi

tion of the maximal function. The second section shows the inti
mate connection of differentiation with various types of covering 

lemmas. The third section deals with some special types of dif
ferentiation ba$es. In the course of our di$cussion, when it 
seems appropriate, we mention some open questions which appear to 
be of interest either for the new methods one should try to apply 

in order to answer them or for the possible roles solutions to 
such problems would have in other areas. 

We have sacrificed generality in hopes of achieving clarity of e~ 
position. Most of the time our setting will be ~n (or ~2) with 

bebesgue measure. If A C ~n is measurable, IAI will denote its 
Lebesgue measure. In ~n, we will call a family of non-empty open 

bounded sets, R, a differentiation basis if for each x E ~n there 
is a sequence of sets {Rk } C R which contract to x, i.e. given 

any neighborhood 0 of x, all sets Rk , from some subindex ko on 

* The second author was partially supported by NSF grant GP-9123. 
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are inside O. 

Given a function f E Ll (~n), we define the upper and tower de-
oe 

rivatives of I f with respe~t to R at the point x E ~n by 

neff,x) 

and 

Q(Jf,x) = inf lim inf (1/ IRk l ) JR f 
k ~ 00 k 

where the supremum and the infimum are taken over all the se

quences {~} C R contracting to x. 

We say that R differentiates f f whenever D ( f f ,x) = Q( f f ,x) 

for almost every x E ~n. This common value is then called the de 

rivative of f f (with respect to Lebesgue measure and) with re

spect to R at x. The main problem of the theory of differentia

tion is to find out for which classes of functions and for which 

differentiation bases R, differentiation of J f holds. The the 

ory, of course, begins with Lebesgue differentiation theorem 

which states that if R is the system of all balls in ~n and 

f E L10e (~n), then R differentiates I f to f(x) at almost every 

x E ~n. 

For a detailed account and extensive bibliography on the theory 

of'differentiation of integrals one can consult [1] and [6]. 

1. DIFFERENTIATION AND THE MAXIMAL OPERATOR. 

tet R be a differentiation basis in iHn and f E L1 (iHn). For 
oe 

x E ~n we consider 

Mf(x) sup (1/IRI) fRlf(y) Idy 

where the supremum is taken over the R's such that x ERE R. The 
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function Mf is called the Hardy-Littlewood maximal function of f 

relative to R. The operator M: f + Mf is called the Hardy-Littl~ 

wood maximal operator with respect to R. Since (X : Mf(x) > A} 

is open, Mf is a measurable function. 

The maximal operator is very closely connected with the differen

tiation properties of a basis, as the following theorem shows. 

This theorem was first stated and proved in a slightly weaker form 

and in terms of a so-called halo condition by Busemann and Feller 

[2]. It can also be found in this form in [6]. The technique of 

the proof we present here of the second part belongs to Calderon 

(cf. [15] vol. II., p. 165). This technique has been used and ex

tended in a more general setting by Stein [12]. It is easy to 

see that also some other criteria of [2] can be concisely stated 

in terms of the maximal operator. 

In order to state the next theorem, we need some terminology. We 

.say that a differentiation basis R is homothecy invariant if R E R 

implies that any set homothetic to R is also in R. A sublinear 

operator A defined on LP(din ) (1 ..;; p < 00), with values in the set 

of measurable functions MCdin ) is said to be of weak type (p,q) , 

whenever Af, for f E LP, satisfies, for any A > 0 , 

I (X : IAf(x) I > All ..;; (~ nfn )q 
A P 

where c > 0 is independent of f and A. This is a condition 

weaker than continuity of A from LP to Lq. This last situation 

is expressed by saying that A is of strong type (p,q). 

1.1. THEOREM. Let R be a differentiation basis in din which is 

homothecy invariant. Then the two following conditions are equi

valent: 

Proof· 

(a) The maximal operator M with respect to R is of 

weak type Cl, 1) 

(b) R differentiates f f for every f E Lioc (din) and 

D( J f ,x) = f(x) for almost every x E din 

Ga) ~ (b). Since djfferentiation is obviously a local 
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property we can shall assume f E Ll(~n) and, changing f, if neces 

sary, on a set of measure zero, If(x) I < 00 for every x. We then 
have 

E Dcjf,x) does not exist or D(ff,x) # f(x)} = 

= {x: ID(ff,x) - f(x)1 > O} U {x l.!Hff,x) - f(x)1 > O}=AUB 

We shall prove that for any a > 0 

Hence IAI ,,0. Similarly IBI = 0 and so lEI = o. (Questions of 

measurability for the sets we are considering are pretty obvi

ous in view of the character of the differentiation basis we con
sider). Given,- > 0, we can take f = g+h , g E C(~n),h E Ll(~n), 
~h~l ~ E· Obviously D(fg,x) = g(x) at every x, and so 

ID(ff,x)-f(x)1 > a}1 = I{X : IDcfh,x)-h(x)I > a}1 

Mh (x) > ~ } I + I {x hex) a}1 ~ 2c+1 
> "2 a E 

Since E can be taken arbitrarily small, IAal 

is "proved. 

O. Hence (a) => (b) 

(b) => (a). As we show later (lemma 1.3), (a) is equivalent to : 

(a') The maximal operator M is of weak type (1,1) on functions 

which are in K, the set of finite linear combinations of charac

teristic functions of bounded measurable pairwise disjoint sets 

(i.e. for any such function f and for A > 0, we have 

I {X : Mf Cx) > A} I 

It is therefore sufficient to prove Cb) => Ca'). Assume that Ca') 
* * is not true. Then there is a sequence {f k } C K , fk ~ 0 , 

* ~fk~l = 1 , and numbers Ak ~ 0, such that 
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If we define, for H > ° , 

J' * fk(y)dy 
R 

where the supremum is taken for R E R , x E R , and the diameter 
oCR) of R is < H, then we can take HK sufficiently big so that 

* then IIfklll n If we now consider fk(x) = fk (x/Jl k ) , Jl k > ° , Jl k 
and if we set Ek = * JlkEk , 

1Ek l n * * then IlklEkl I {"'kx : MH fk (x) > Ak } I 
k 

* Now Ek is clearly bounded. Hence we can select Jlk small enough 
so that Ek is contained in the ball B(O,1/4) of center ° and ra
dius 1/4, and furthermore o(Ek ) ~ O. We can also choose a posi
tive integer r k so that 2 ~ rklEkl ~ 1 • Then I7 rklEkl = 00. 

We shall now use the following lemma, which is a straight-forward 
generalization of a result of Calder6n, and which can be seen in 
[l.5}ro vol. II ~'p . HiS:. 

1.2. LEMMA. Let {Ak} be a. sequence of measurable sets contained 
in B.{O,l/4) so',thatJIAki = 00. Then it is possible to select a 
sequence ~f points {xk } oj B(O,1)~so that every point of a set of 
positive measure is in infin~tely many of the sets Ak(xk)=xk+Ak . .:-

To use this lemma we consider Ek repeated r k times. Then, since 
I rklEk l = 00 we can apply the lemma. We translate Ek to obtain 
Ek(x 1 ) , Ek (x 2) , ... , Ek(X rk ) and simultaneously the functions f k , 

. 1 2 r k obtaining the functlons fk ' fk , ... ,fk We then set 
r 

f = ~oo ~ k i fi h Lk=l Li=l ~k k were are to be chosen in a mo 
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ment. We hav.e R f II <; E <lk rkU fklll and since rk 11\ I <; 2 and 

IEkl > 2kHf kUl h k ' we get UfUl <; E(2<lkAk/2k). 

On the other hand, there is a set of positive measure E such that 
every x E E belongs to infinitely many Ek(xi)'s, and so there is, 
for such an x, a sequence {~} C R , x E ~ , contracting to x 
such that 

We can choose Q k so that E(2<lkAk/2k) < ~ and <lkAk ~ ~. It is 

enough to take <lk = 2k/ 2 /A k . So we get fELl and for x E E , 

D(ff,x) = ~ , which contradicts (b). So the theorem is proved. 

We finally prove the lemma we have stated at the beginning of 
thi~ proof. It can be seen in [4] in a more general form. 

1.3. LEMMA. The two fottowing conditions are equivatent: 

(a) M is of weak type (1,1). 

(a') M is of weak type (1,1) on functions in K. 

Let fELl f ~ 0 Proof. We only have to prove (a') * (a). 
We can take gk E K , gk ~ 0 , gk ~ feLl). 
we have 

For any x, x ERE R 

We denote 
then, for 

(l/IRI) J f (y)dy = lim 
R k~~ 

(l/IRI) JRgk(y)dY 

E = {x Mf (x) > A} , Ek = {x : Mgk(x) > A} 

some R E R , x E R , we have 

(l/IRI) JRf(Y)dY > A and so , from some ko on 

(l/IRI) JRgk(Y)dY > A . 

Hence E lim sup Ek and lEI <; lim sup IE~I , k ~ ~. 

lEI <; lim sup cngkUl/A = cUfUl/A 

Thus 

If x E E 
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There is an interesting question related to theorem 1.1: 

1.4. PROBLEM. Can one substitute weak type (1,1) in theorem 1.1 

for weak type (V,p), 1 < p < 00, and simultaneously Ll for LP ? 

One could think of applying the techniques of [3] or [12]. 

Also in relationship with theorem 1.1 and problem 1.4 one can for 

mulate another interesting question. One knows that the space 
L log+L(~2) of measurable functions f in ~2 such that 

flfl log+lfl < 00 where log+a = log a if a > 1 , log+a = 0 if 
o < a < 1 , behaves in a special way in the theory of differentia 

tion (cf: for example [7]). 

1.5. PROBLEM. Is there any simple relationship between some 

property similar to the one in 1. 1, 1.4, for the maximal operator 

and the fact that R differentiates I f for f E L log+L? 

The following theorem, which is an extension of a result of Stein 

[13] gives a characterization of the space 

in terms of an integrability condition on the classical Hardy-Li! 

tlewood maximal function. 

1 .6. DEFINITION. For x E ~n we consider the system of open 

balls centered at x, B (x, r) , r > O. Define, for f E L1 (~n) 
oc 

Mf(x) = sup (1/ IB(x,r) I) J If(y)ldy 
r>O B(x,r) 

Mf is then called the (classical) Hardy-Littlewood maximal func -

tion. It is easy to observe that Mf is measurable. 

1.7. THEOREM. Let g E L(~n). Then the following two conditions 

are equivalent: 

(a) J Mg(x)dx < 00 

Mg(x»l 
(b) gEL log+L 
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Proof. We can assume, without loss of generality, g ~ O. Define, 

for A > 0, W(Mg,A) = i{X : Mg(x) > A'}i. We shall use the follow

ing inequalities (cf. [13]). 

(*) 
c c f f g (x) dx ..;; w (Mg, A) ..;; f fAg (x) dx 

g(X»C 3A g(x»z 

where c l , c z' c3 > 0 are independent of g,A' Assume first that 
(a) holds. We can write 

f Mg(x)dx 
Mg (x» 1 

[ - Aw (Mg , A ) ] ~ + I: w (Mg , A ) dA 

By the above inequalities w(Mg,1) < ro and Aw(Mg,A) + 0 as A + ro 

Hence 

f ro fro 1 f ro > W(Mg,A)dA ~ c l i g(x)dxdA 
1 1 g(X»C 3A 

f f
(l/C3)g(X) 

c l g(x) A dAdx . 
g(x»c 3 1 

Since g E L, we see that g E L 10g+L also and (b) is 

a similar fashion, if (b) is true, 

fMg(x»l 
Mg(x)dx = w (Mg ,1) + r w (Mg, A) dA 

1 

and we have w(Mg,1) < ro , fro W(Mg,A)dA ..;; 
1 

..;; C fro - f g(x)dxdA 
Z I A g(x»~ 

Z 

f f
Zg(X) 

c z g (x) 
Zg(x»l 1 

proved. 

A dAdx 

Cz f g(x) 10g+(2g(x))dx < ro , which proves (a) . 

Stein'S theorem results now as a corollary of 1.7. 

In 

1.8. COROLLARY. Let f ELl (IRn) • f > O. Then. if M is definpiJ 
o 
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as in 1.6, we have that f E L 10g+L if and only if JA Mf(x)dx < 00 .• 

where A denotes the support of f. 

Proof· We have fA Mf(x)dx = JAnBMf(X) dx +JAnB' Mf(x)dx where 

B = {X Mf(x) > 1 } and B' is the complement of B. 

If f E L 10g+L, the first integral is bounded by the theorem. The 
second is obviously bounded, since A is compact. 

Assume now fA Mflx)dx < 00. Then, as Stein shows, Mf E L (~D) 
lac 

Furthermore, if f E L (~D), then B is bounded. 
a 

and by the theorem f E L 10g+L. Q.E.D. 

So fB Mf(x)dx < 00 

Another simple corollary of the theorem is the following: 

1.9. COROLLARY. Let f ELI (IRD) and M defined as in 1.6. Then, 

for every A C ~D, measurable, IAI < 00 , one has 

and also 

f Mf(x)dx ;;;. c; f If(x) I (l+log+lf(x) I)dx 

Proof. The first inequality is well known and results very easi

ly from the theorem: 

f Mf(x)dx 
A 

f Mf(x)dx + f Mf(x)dx ~ 
A {Mf(x»l} A {Mf(x)Sl} 

As for the second, we have, recalljng (*) in the proof of theorem 

1.7. (note that c 3 can be taken;;;' 1) 

f Mf(x)dx ;;;. f Mf(x)dx 
Mf(x»l 

w(Mf,l) + foo w(Mf,A)dA ;;;. 
1 
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Since we also haveJ Mf(x)dx > J[f(X) [dx 'one easily obtains 

J Mf(x)dx > c~ J [f(x) [(1+log+[f(x) [)dx Q.E.D. 

If Q is the unit cube this corollary implies that Mf E L1CQ) if a 
and only if f E L(1+log+L)(Q). 

§2. DIFFERENTIATION AND COVERING LEMMAS. 

The connection of covering properties of some differentiation 

bases with their differentiation properties is well known. The 

classical Vitali lemma has been the standard tool to prove the Le 

besgue differentiation theorem. A way to state and use it for 

this purpose is as follows: 

2.1. THEOREM. (Vitali lemma). Consider, for every x E ~n the 

set of closed cubic intervals centered at x. Call it R(x), Let 

E be a set in ~n and assume that for every x E E there is given a 

sequence (Rk(x)} C R(x) contracting to x as k + 00. Then one can 

select from all these given sets a sequence {Qk} of disjoint 

closed cubic intervals such that [E - Qk[ = O. 

A way to prove the Lebesgue differentiation theorem of J f , 

f E Ll1 ,with respect to closed cubic intervals centered at the 
oc 

corresponding points is now the following: 

As sume f E L 1 . 

assuming [f (x) [ 

Take gEe , h E L1 , ~h~ ~ E , f = g+h. 
o 1 

< 00 everywhere, if a > 0 , we have: 

Then, 

~ [(x 

[D(ff,x)-f(x)[ > a}[ = [(x: [D(fh,x)-h(x)[ > a}[ ~ 

[ncjh,x)[ > ~ }[ + [(x: [h(x)[ > I}[ = [A[ + [B[ 
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We clearly have IBI <! ~h~l. As for the set A, it is a measura-
a 

ble set and for every x E A we have a sequence {Rk } C R(x) con-

tracting to x such that (l/I Rk l)1 fRk h(y)dYI > ~ Hence, appl~ 
ing Vitali lemma, we get {Qk} , IA-Qk l = 0 , Qk pairwise disjoint. 

Thus: 

IAI = IA n (UQk) I < IIQkl <! I If h(y)dyl <! flh(Y) Idy < ~ 
Cl Qk Cl Cl 

Since £ is arbitrarily small, we get I{x : ID(ff,X)-f(x)1 > Cl}=O 

and so D(ff,x) = f(x) for almost every x E ~n. In the same way 

Q(ff,x) = f(x) a.e. thus D(ff,x) = f(x) a.e. 

This type of proof clearly shows. the role played by the covering 

lemmas in differentiation. Theorem 2.2 emphasizes this role in a 

slightly more general setting. 

For the remainder of this section we shall be considering only 

functions defined on the closed unit cube Q of ~n. Our differen

tiation bases will similarly be subsets of Q, with the relative 

topology. Since differentiation properties are local this does 

not lead to any lack of generality. We consider Orlicz spaces 

with Q as their fundamental set. For a detailed account of the 

theory of these spaces we refer to [8] 

We denote the norm of the Orlicz space L~ associated to the N-funl 

tion ~ by ""~. The Orlicz space dual of L~ will be denoted by 

L~. The space L~ is said to satisfy the ~2-condition if there is 

a k > 0 such that the N-function ~ satisfies ~(2t) < k~(t) for 

large values of t. 

2.2. THEOREM. Let L~ be an Orlicz space whose dual L~ satisfies 

the ~2-condition. Let R be a differentiation basis in Q with the 

following property: 

(a) If A is a measurable subset of Q and for every x E A there 

is given a sequence {Rk(x)} C R, Rk(x) -7- x (i.e. contract in 

to x), then, given £ > 0 , one can select a sequence {Qk}· 

among these given sets so that, if S = uQk 

(1) IA-SI<£ 
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(2) IS-AI<£ 

where xk is the aharaateristia funation of Qk and Xs that of 

S. 

Then: 

(b) R differentiates ff for every f E L* and the vaZue of the de 

rivative is f(x) aZmost everywhere in Q. 

2.3. REMARK. Note that conditions (1) and (2) mean that the sy~ 
metric difference of A and S can be made arbitrarily small in 
measure and (3) that the overlapping function can be made arbi 

trarily small in norm. 

Proof of theorem 2.2. Let f E L*. Since L* satisfies the ~2-co~ 
dition, the set of continuous functions on Q is dense in L* and 
so we can take, given £ > 0 , gEe, h E LIjI , IIhll* .;;; £ , f = g + h. 
We can assume If(x) I < 00 for almost every x. We have then 

I{X E Q : ID(ff,x)-f(x)1 > a > O} I.;;; I{x E Q : ID(fh,x)I > yll+ 

+ I {x E Q Ih(x)I>~}! 

For IBI we have 

by the generalized Holder inequality. 

As for IAI we can proceed as we did after theorem 2.1 for the Le
besgue differentiation theorem, using now property (a) to get: 
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Since £ is arbitrarily small, we get IAI = O. In the same way we 
can proceed with Q(ff,x). Thus (b) is proved. 

There are some known results about the possible equivalence of 
covering properties and differentiation properties, i.e. of the 
equivalence of a property of the type (a) and a property of the 
type (b) in theorem 2.2. This is the main result of the Possel 
equivalence theorem [10], which can be stated in the following 
way: 

2.4. THEOREM. (de Possel). Let R be a differentiation basis in 

Q. Then the two following statements are equivalent: 

(a) Given any measurable subset A of Q and for every x E A a se

quence {Rk(x)} CR. Rk(x) ~ x (i.e. contracting to x). then 

for every £ > 0 • one can select a sequence {Qk} among the 

given sets Rk(x)'s. such that. if S = uQk 

(1) IA - SI < £ 

(2) IS-AI<£ 

where xk is the characteristic function of Qk and Xs that of 

S. 

(b) R differentiates Jf for every f E LOO and the value of the de 

rivative is f(x) almost everywhere in Q. 

Proof. We first show that differentiation of ff , f E LOO to f 
a.e. is equivalent to differentiation of If to f a.e., for f char 
acteristic function of a measurable set. Assume then that R has 
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this last property (density property). Let f E Loo • We shall 
show that if A {X D(ff,x) .;;;. v> u> f (x) } , then IAuv l = O. 

uv 
Gonsider E = {X : r .;;; f (x) < s}. Since R is a basis with the 

rs 
density property the set N = {X E E 

rs rs 

null set. Take x E E - N 
rs rs Then, if Rk ... x Rk E R , we 

have, if II fll C , and E' denotes the complement of E 
rs rs 

Dividing by IR land letting k ... 00 we get that 
k 

at almost every x E E 
rs 

Hence, if s-r < v-u , we clearly get 

IA n E 1= 0 and so IA 1= O. Thus I{x : D(ff,x) > f(x)}1 '" o. uv rs uv 

In a similar way I{X : ~(ff,x) < f(x)}1 = O. This proves that 

d(ff,x) = f(x) at almost every x. 

We now prove that (a) implies that R has the density property 
Suppose there exists M C Q , measurable set, and a such that 

o < a < 1 , so that 

For every x E A there is then Rk ... x , {Rk } C R, such that 

IR n AI < aiR I 
k k 

We apply the property (a) of R and select {T } C R so that 
k 

IT n A I < a I T I and for E: > 0 
k k 

Then we have 

IA - uT I .;;; E: 
k 

I IT I ..; IAI + E: 
k 
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= (l/a)[ IAI - IA -UTkll ;> (l/a)IAI - (E/a) 

Thus a ;> (IAI - E)/(IAI + E) for E arbitrarily close to zero 
which is impossible, since a < 1. Thus IAI = O. Hence R satis~ 
fies the density property. 

We now prove (b) - (a) or, what is equivalent, that the fact that 
R is a basis with the density property implies (a). 

Let A be a measurable subset of Q, IAI > O. Suppose that for 
every x E A we are given Rk + x , Rk E R. Given E > 0 , take 
a = IAI/(IAI + E) < 1 , and a relatively open subset G of Q , 
"G ~A, such that IG-AI < E. Call R* the sets among the given 
ones of R which are in G. Define 

\l A = sup {I R I : R E R* , I A n R I > a I R I} 

It is clear that \l A > 0 , since otherwise IAI = 0 , for R is a 

basis with the density property. Let R E R* be such that 
0 

IRol > (3/41l1A and IA n R I > a IR I. Consider now Al = A-R 
0 0 0 

We proceed now in a similar way with AI' i. e. we consider 

\lA = sup {IRI : RE R* , IAI n RI > alRI} 
I 

and take RI E R* such that IRII > (3/4)\lA I and IAI n RII > aIRII. 

ConsiLer now A2 ~ A - u l (R.nA.) , Ao = A , and so on. If the o 0 l. l. 
sequence {Ai} is fini~e we stop this process. Assume {Ai} is in

finite. The sets Ri n Ai are disjoint and so 

IAI ;> IA n (u R.) I ;> IU(A. n R.) I l. l. l. LIAl.. n R.I ;> aLIR.1 l. l. 

Hence LIRil ..;; IAI + E , i.e. I (Lxi - XA) ..;; E , if Xi denotes the 

characteristic function of R.. Since L I R. I < "" , we have I R. I + 0 l. l. l. 

and so \lAi + O. Let A"" = A - URi· Then \lA"" ..;; \lAi for every i . 

Hence \lA"" = 0 and IA""i = O. This proves (1) of (a). Since Ri CG 

for every i, we have IUR. - AI < E , which proves (2). As for (3), l. 
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if S = URi ' then because of (1), 

and this is ~ E as proved before. This completes the proof of 
the theorem. 

The following theorem, which belongs to Hayes and Pauc, shows 

another case in which a covering property is equivalent to a dif

ferentiation property. Here· we present a simplified statement 

and proof of the theorem, in terms of the differentiation bases 

we consider. For the result in all its generality we refer to 
[5] or [6]. 

2.5. DEFINITION. For brevity we will say that a 

basis R in Q is an sP basis for some p, 1 ~ P < 00 

property (a) of theorem 2.4 with" "I replaced by 
LP- norm . 

differentiation 

if it satisfies 
H , i.e. the 

P 

2.6. THEOREM. (Hayes, Pauc). Let R be a differentiation basis 

in Q. Then the t~o foZZo~ing statements are equivaZent: 

(1) R is an sP basis for aU p, 1 < P < 00 • 

(2) R differentiates J f. f E Lq , for aU q. <.q<oo, 

and the vaZue of the derivative is f aZmost every -

~here 

Proof. The proof relies on the following lemma, which will be 

proved later. In order to state this lemma, we introduce first 

some terminology. For a finite sequence A = {Mk}1 . of meas-
, ••• , J 

urable sets we will write a (A) = UM k ' w (A ,x) = Lxk (x) - Xs (x) 

where xk is the characteristic function of Mk and S = a(A). 

2.7. LEMMA. Let 1 < z < p < z + 1 < 00. Assume that R is an SZ 

basis but not an sP basis. Then there exists a measurabZe set A. 
a subaoZZection R* of R. ~hich contains. for every x E A, a se

quence contracting to x. and there exist numbers E, a > 0, Buch 

that for every finite subcoZZection of R*. G = {Rk}I, ... ,N ' for 
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whiah we have 

(i) I A - a (G) I < c 

( i i ) L ~ I Rk I - I A I < c 

(iii) II w (G , • ) II < C 
Z 

(suah G exists, since R is an SZ basis) we also have 

(iv) 

(The set between bars in (iv) will be denoted T(G,a)). With this 

lemma we proceed as follows. Suppose that R is a differentiation 

basis which differentiates J f to f at almost every x E Q for all 

f E LP (1 < P < 00). Then, by theorem 2.4, R is an Sl basis. As

sume R is not an S£ basis for some £ > 1. Then we may take p,z, 

1 < z < P < z+1 such that R is an SZ basis but not an sP basis . 

We now apply lemma 2.7. 

Let A, R*, c, a the elements which appear in the lemma. For 

h = 1,2, ... we consider Fh = {Rkh}k=l 2 N C R* such that 
, , ... , h 

and finally max {6 (R~) : k = 1,2, ... ,Nh } -+ 0 as h -+ 00. It is po~ 

sible to choose them in this way since R is an SZ basis. Now, be 

cause of the lemma, we have IT(Fh,a) I ~ c. We try now to cons -

truct a function f E L q, q = ·~1- > 1 , such that differentiation 
p-

of J f to f at almost every point does not hold, reaching so a 

contradiction. 

{x 
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~ f [~(F x)]zdx ~ ___ E_ . Call D UOh · We have I DI ~ 
E 

Let h' 2h+2 2 

Qh = dF a) - D. Then I Qh I ~ 
£. If C = lim sup Qh then 

h' 2 
, 

I C I ~.£>O. Define now f(x) I [w(Fh,x)]p-l We have 
2 

Nfll ~ I II[w(F ,.)]P-1U = I(f[w(Fh,X)]Zdx)l/q ~ Ez / qI(1I2h+2 )1/q<"". 
q h q 

Hence f E Lq. If x E C then x ~ D = UOh and so f(x) = O. On the 

other hand, if x E C then x E Qh C T(Fh,a) for infinitely many 

h's, and so there is a sequence {Tk } C R , Tk + x , such that 

fTkf> alTkl. Hence D(ff,x) ~ a> 0 for every x E C, which is a 

contradiction. This proves that (2) implies (1). The implica -

tion (1) ~ (2) is obtained as in theorem 2.2. 

Proof of lemma 2.7. Assume that the lemma is not true. So R is 

an SZ basis, not an sP basis, and for every A measurable, for eve 

ry R* C R such that every x E A has a sequence of sets in R* con

tracting to x, and for every E,a > 0, there exists a finite col-

lection {R } C R* satisfying (i) (ii) (iii) and not (iv). 
k k=l, ... ,N 

We shall prove that R has to be then an sP basis, reaching a con

tradiction. 

Let 0 be a given measurable set, R* C R such that every x E 0 has 

a sequence of sets of R* contracting to x, and n > 0 , a > o. We 

can assume that all sets of R* are contained in some open (rela -

tively to Q) neighborhood of 0 , U , such that Iu - 01 < n. Se

lect G = {R } , such that (i) (ii) (iii) hold, with E r!::. 
k k= 1, ... , N 

placed by n, and also we have IT(G,a)1 < n. Denote by peG) the 

collection of sets in G which do not constitute T(G,a), i.e. 

p (G) {R E G 

We then have 

(1) 10 - o(p(G))1 ~ 10 - o(G)1 + IdG,a)1 <2n 

(2) lo(p(G)) - 01 ~ Iu - 01 < n 

Finally, if peG) = {T } h h=l, ... ,M' Xh denotes the characteristic 
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function of Th and Xs that of S = UTh ' we have 

Now (1) (2) (3) show that R is an sP basis. This concludes the 

proof of the lemma. 

Theorems 2.4 and 2.6 suggest the following questions 

2.8. PROBLEM. State simple general conditions on the equivalence 

of covering properties and differentiation properties of a basis R. 

The interest of such a problem is obvious when one considers the 

usefulness in many fields of analysis of certain covering lemmas 

and the difficulty of the methods of obtaining them. In the way 

suggested in 2.8 one can think of obtaining first differentiation 

properties and deducing from them covering theorems. For example, 

one knows that the system of all intervals in Rn satisfies (2) of 

theorem 2.6 [14]. So one has for this system a covering theorem, 

expressed by (1) of 2.6. In this context the following problem, 

which is a particular case of 2.8, seems to be especially interest 

ing. 

2.9. PROBLEM. One knows that the system of all intervals in Rn 

differentiates f f to f at almost every point for all 

f E L (log+L)n-l [7]. Can one obtain from this fact a better cover 

ing lemma than the one of the Possel given in 2.4, and also better 

than theorem 2.6? 

§3. SPECIAL DIFFERENTIATION BASES. 

In R2 we fix ~ different directions d 1 , d2, ... ,d~. Consider the 

system B of all open convex polygons such that each of their sides 

is parallel to one of the ~ fixed directions. When t = 2 one 

knows that B differentiates f f to f at almost every point for all 

f E L 10g+L, but not for f ELI [7]. Busemann and Feller [2] have 
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shown that B is a density basis for arbitrary ~, i.e. has the de~ 
sity property. We will show that B, for arbitrary ~, differenti
ates f f to f at almost every point for all f E L 10g+L. The the 
orem depends on a geometrical lemma which is very simple in R2 
The theorem admits an extension to Rn , which is proved by the 
same type of geometrical arguments, although lemma 3.1 is only 
valid in Rn , for n > 2, witli altered wording. For simplicity and 
brevity we will present the theorem only for n = 2. 

3.1. LEMMA. Let BE B. Among all pa~allelog~ams aontaining B 
the~e is a alosed one PCB) of minimal a~ea suah that: 

Cb) The sides of PCB) a~e pa~allel to two of the ~ given 

di~eations defining the system B. 

P~oof. Let K be any bounded convex body in R2. An easy continul 
ty argument shows that, among all parallelograms containing it , 
there is at least one of minimal area. Let P(K) be any of them . 
We show that Ip(K)1 ~ 21KI. To do so, it will be enough to prod
uce a parallelogram S ~ K such that lsi ~ 21KI. For this, take 
any direction d in R2 and consider the two supporting straight 
lines t 1 , t2_of K parallel to~. Take now the segment AB joining 
any A E t1 n K and any B E t2 n K. Draw the two supporting lines 
sl' s2 of K parallel to AB. Then it is obvious, from the convexi 

ty of K, that the parallelogram S formed by tl ' t2 ' s 1 ' s 2 is 
su'chthat lSi ~ 21KI. SO IP(B}I ~ 21BI is proved. 

Take now any closed parallelogram U of minimal area circum
scribing B and assume it does not satisfy (b). Then it clearly 
has two opposite sides each with just one point in common with B. 
It is then an easy matter to show that those two sipes can be si
mu~taneously rotated around these points so to obtJin a new paral 
lelogram U1 circumscribing B and such that lull ~ lui. Since U 
is of minimal are lull = lui. Rotating further we arrive at a 
parallelogram wi th two of their sides paralle·l to one of the ~ 

given directions. In the same way we proceed with the other two 
sides, obtaining a parallelogram P (B) satisfyirrg (b). This prov'es 

the lemma. 
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3.2. THEOREM. The differentiation basis B differentiates I f at 
almost every point and the value of the derivative is f, for all 
f EL 10g+L. 

Proof. The theorem is a trivial corollary of the lemma and of 
the theorem for £ = 2, £ being the number of directions in B. It 
is enough to observe that for any B, x E B E B, we hav:.e 

(l/\B\) JB\f(y)\dY ";;; (2/\P(B)\) f \f(y)\dy 
P(B) 

where PCB) is as in lemma 3.1. Now the possible directions of 
the sides of PCB) are a fixed number 0(£). Hence all the usual 
~stimates from which differentiability, in the case £ = 2, is de
iuced (cf. [7] or [16]) are here valid. Hence differentiability 
11so holds here. 

rhe following statement is rather trivial, but it will be present 
ed here because of its connections with some interesting ques
tions. 

3.3. THEOREM. Let d = (d.) 'EN be a denumerable set of direc -2 1 1 2 tions in R. To each point x E R assign d(x) E d, one of the 
iirections of d, and aSsume that, for each i E N, {x : d(x)=d i } 
is measurable. Consider now for each x the set R(x) of all open 
rectangles containing x and having one side parallel to d(x). 
Then there is differentiation of J f to f at almost ecery point 
with respect to this system of sets for all f E L log+L (R 2). 

On the other hand one knows the following: 

4 
l . 2 3. . THEOREM. Let R be the system of all open rectang es &n R . 

Then R does not satisfy the density property, i.e., R does not 
differentiate If to f at almost every point for f characteristic 
function of a measurable set. 

For the proof of this theorem we refer to ~l, remark of Zygmund 
at the end, or [2]. 

These two theorems lead in a natural way to some problems, which 
are still open. 
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3.5. PROBLEM. (Coifman, Guzman). Consider in RZ a continuou8 

fieZd of directions, i.e. for every x E RZ there is assigned a di 

rection d (x). determined by d (x) E RZ, I d (x) 1= 1 , 8() that d (x) -

varies continuousZy. For every x we consider Rex), the set of 

aZZ rectangZes centered at x with one side paraZZeZ to d(x). Is 

there differentiation of Jf with respect to this system of sets 

for some cZass of functions f? 

When d 
. set {x 

{d(x) : x E RZ} is denumerable and for each a E d the 

d(x) = a} is measurable,· we have theorem 3.3 . 

When d(x) is constant, we have differentiability of f f for all 
f E L log+L(RZ) and we have also some inequalities for the maximal 

operator and the related operators used in similar situations (cf. 
[16]). One can construct a counterexample to see that the maximal 
operator in the general case of 3.5 does not satisfy inequalities 
of the same type. 

The following question, also related to 3.3 and 3.4 is due to Zy& 
mung: 

3.6. PROBLEM. (Zygmund). It is known that, once we have fixed 

a rectanguZar coordinate system in RZ, one can find a funation 

fELl such that the system of intervaZs does not differentiate 

Jf to f ~aks]. Suppose now that g E Ll(RZ) is given. Can a 

pair of rectangular directions be found such that Jg is differen

ti~ble to g at aZmost every x E R2 with respect to the system of 

rectangles with those directions? If the answer is affirmative. 

how is the coZlection of aZZ such directions? 

The interest of such a question is clear, since in many problems, 
given g ELI, one is free to choose an appropriate coordinate 

system. 

The following problem, stated here in very particular terms, seems 

to be of interest in some questions of harmonic analysis. 

3.7. PROBLEM. (Coifman, Guzman). Let f E LP(R Z), 1 < p < ~ 
and consider 

Is Z 
Mf(x) = sup [l!,Q,(S;)] . If(xl+t'XZ+t) Idt 

S>O -s 
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where ~(S) is the Zength of the curve section on which one integ

rates. What are the properties of this maximaZ operator? Is it 

of type (p,p)? 
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