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We establish in this paper a connection between Galois extensions
of a commutative ring and algebras graded over the Galois group.
As in the case of Galois extensions whose group is Zz, we intro-
duce a Brauer group associated to central separable algebras that
are graded over a group G; for our purpose, graded tensor products
are not needed. The methods of [8], where Galois extensions ap -
pear as centralizers of the homogeneous component of degree 0 of
algebras graded over Z,, do not work for arbitrary G; here Galois
extensions appear as centralizers of the full.graded algebra in a
new algebra, the construction of which from the given graduation
is similar to the construction of a twisted group ring from an
action of a group.

After this, we use graduations to obtain the results of (91, [4]
on the cohomological description of Galois extensions that have
normal basis.

1. THE GRADED BRAUER GROUP. Let R be a commutative ring and G a
finite abelian group; we shall consider R-algebras graded over G,
that is R-algebras A with a decomposition A = & GGGAG where the

Ac's are R-submodules such that AU.An c AOn ; if a € A we write
a=17 a(4) to denote the homogeneous components a5 of a. If A
and B are G-graded we consider A 8& B as G-graded by A® B =

= ® (A®B) with (A® B)_ - ® | ooh, ® B,

If A is G-graded, we denote with AE the R-algebra defined as fol-

lows:.AE is the free left A-module generated by {e0 : o € G} with
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multiplication given by ae .be = a.b, _; .e ; then AE is an as
o n (67"n)"n

sociative R-algebra with unit 1 Zcec. We consider A C AE via

the R-algebra monomorphism a € A —— a.1 = anec ; then

€gd = zn %(o-1n)%n
.LEMMA 1. [Let A be a G-graded R-algebra. If A is separable over

R then AE <s separable over R.

Proof. Let m: A ® A° —— A be the multiplication map and
e € A® A° such that m(e) = 1 and (1® a°-a® 1°).e = 0 for ev-
ery a € A. If we write e = Xofc with f_€ (A ® A°)0 then m(£,)=

and (1 ® a° -a ® 1°).f1 = 0 for every a € A ; thus we assume e=f
(i.e. that we have a homogeneous splitting of m: A® A° — A)

If e=e.]) e, ® e’ € AE ® AE® , then e splits AE ® AE® — AE

If A is a G-graded R-algebra, we consider G as a group of automo
phisms of AE by the action given by o(aen) = ae . Then G acts
trivially on A C AE and if Z(A) is the centralizer of A in AE th

action of G in AE induces an action of G in Z(A).

Let us recall the following facts from ([4], Def. 4.5). If R is
a commutative ring, A a faithful R-algebra and G is a group of
automorphisms of A, then A is said to be a Galois extension of R
with group G if the following equivalent properties hold:

a) A® = R » A is finitely generated and projective over R and
the map AG —— EndR(A) is an isomorphism.

b) A® = R ; if F is the ring of functions from G to A then

f: A A —— F defined by f(a ® b) (o) = ac(b) is bijective.
Clearly b) is equivalent to b') A® = R and £: A ® A — AG
defined by f(a ® b) = Zoac(b)c is bijective.
Moreover a) is. equivalent to a') A® = R and AG is central sepa-
rable over R. Indeed, if a) holds AG = EndR(A) is central sepa-
rable over R; conversely, assume AG is central separable, then A

is finitely generated faithful projective over R and therefore
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AG —— EndR(A) is injective (since it is the identity over R) ;
now it follows from [1] that the map is onto since the central-
izer of its image is A® = R.

If G is a fixed finite abelian group and A, B are Galois exten-
sions of R with group G, then A ® B is a Galois extension of R
with group G x G; as in [3] , we see that if H = {(o,0°) € G x G},
the (A ® B)H is a Galois extension of R.with group G x G/H = G .
Clearly, if ER(G) denotes the set of G-isomorphisms classes of Ga
lois extensions of R with group G, then the above construction de
fines a product under which ER(G) becomes an abelian group (see

. . . = e . =
[3]1) whose identity element is E cEGR e, with ec.en 60nec ,

oen = eon » the trivial Galois extension of R with group G (the

algebra of functions from G to R).

PROPOSITION 2. Let A be a G-graded central separable R-algebra.
Then the centralizer Z(A) of A in AE is a Galois extension of R
with group G.

Proof. Since A is central'separable, we have ([1], Th. 3.1)
AE = A ® Z(A) and therefore Z(A) is separable over R. On the
other side, if e € (A ® A°)1 splits m: A ® A° —— A and we write

e=Jt witht €A ®A .1 then 1 J u withu =m(t ) €A
o o o o g 0 ¢} g 1

such that a(e).uc

that x = Zc u e, belongs to the center of Z(A) and ZUGG o(x) =1

= uqe.a(e) s ¥ a(e) € Ae . Then we can verify

Therefore Z(A)G is separable over R (if e
¥: Z(A)G — Z(A)G ® Z(A)G given by ¢(a)

Zi a; ® bi’ then
)

is a two sided Z(A)G-map that splits Z(A)G ® Z(A)G —— Z(A)G)

-1
i’Ucr.x.ai@bio .a
On the other side, Z(A)G = R and since the automorphisms of Z(A)
are easily seen to be linearly independent over Z(A), we conclude
that the center of Z(A)G is R, i.e. Z(A)G is central sepérable o-
ver R.

We define now a Brauer group BG(R). IfM = $0€GM0 is a G-graded
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module, we consider EndR(M) as a G-graded algebra with the gradua
tion given by (EndR(M))0 = grmﬂomR(Mn’Mon)' A G-graded central

separable R-algebra is trivial if there exists a graded R-algebra
isomorphism A = EndR(M) with M a finitely generated, faithful pro
jective G-graded module. If A and B are G-graded central separa-

ble over R, A is equivalent to B if A ® T1 =B @® T, where T. , T

1272
are trivial; then BG(R) is the set of equivalence classes of G-
graded central separable R-algebras under this equivalence; then
BG(R) is an abelian group in which the inverse of A is A°, since
the canonical isomorphism : A @ A° — EndR(A) is graded. As in

[1], Prop. 5.3 , we can see that the class of A in BG(R) is the

identity if and only if A is trivial.
LEMMA 3. If A € BG(R) is trivial then Z(A) = E in EG(R).

Proof. A = EndR(M) with M = $cxMa ; let u M — Mc be the cor
responding projection, then uc.un = 66,n u o, ) u = 1, u € Al'

Then ¢: E —— AE defined by w(en) = Zo u e is an R-algebra mo

n
nomorphism such that ¢(E) C Z(A) and ¢: E —— Z(A) is a G-mono-

morphism; therefore ¢(E) = Z(A) and Z(A) = E in EG(R).
LEMMA 4. If A, B € B (R) then Z(A ® B) = Z(A).Z(B) <n E,(R).

Proof. Let h: (A ® B)E —— AE ® BE be the map defined by h(eT)=
= Zon=r e, ® en ; then h is an R-algebra homemorphism and

h(a ®b) = a ®b ; thus h maps Z(A ® B) into the centralizer of
A®B inAE @ BE , i.e., into Z(A) ® Z(B). Since o ® a-l h(eT) =

ch_T € . ® - h(eT) , we have

h: 2(A®B) — (Z(A) ®2(B))" = z(A) . 2(B) and being h a G-
map we conclude that Z(A ® B) = Z(A) . Z(B).

LEMMA 5. Let L be a Galois extension of R with group G. Then
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there emists A € BG(R) such that L = Z(A).

Proof. Let A = LG with AG = Lo . Then LG € BG(R). Consider
Z(A) CAE and the map ¢: AE —— L defined by w(zcaaec) =
=a (1) €L (if a = Zohoa €ELG , a(1) = Zchc). We show that

¢ | Z(A) is an antiautomorphism of Galois extensions.

Observe that Zc u e € Z(A) implies h.u(7 = uoh and o u = w8,

ag
h,e € LG. 1In particular, if u

= ) h owith h €L we have
1 g o o

Zo h.hco = Zc hoc(h)o and therefore hou(h) = h.ho ¥ o €G, hel
Let now u = ZU ue , V= Zo ve, €1I(8) , u, = Zo h o,

v, = ZO h'o then u,.v, = J

\ -
1V h hocn and there

' =
hcc(hn)cn zo,n n

0,Nn

h% h = ¢(v) ¢ (u). On the other side, if

fore ¢(u.v) = o

2c,n
u = Zc ue. €z(A) , u, = ZG hc° then for n € G we have n(u) =
=zo un

-14,8, and since u _; = nu;n7l o, en(u) = u (1) =
Ly nthdon™2 (1) = J n(h ) = np(u) , i.e. p: 2(A) — L is a G

map, and since ¢ is also an R-algebra homomorphism it follows

that ¢ is an isomorphism.

It follows from lemmas 3 and 4 that the correspondence A —— Z(A
induces a group homomorphism Z: BG(R) —_— EG(R). Consider now

the map from the Brauer group B(R) of R (see [1]), to the Brauer
group BG(R) obtained by considering an ungraded central separable
algebra as trivially graded. We clearly obtain a group homomor-

phism B(R) —i— B, (R).

PROPOSITION 6. Let R be a commutative ring and G a finite abel-
ian group. Then

0 — B(R) —& B, (R) AN E,(R) — 0

is an split exact sequence.

Proof. If A€ B(R) and we grade it trivially we have a.e =e_.a
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in AE for every a € A ; it follows that Z(A) = E. Let

v BG(R) —— B(R) be the group homomorphism obtained considering
a graded algebra as ungraded. Since pi = identity, it suffices
to show that ¢|Ker(Z) is injective. Let then A € BG(R) be such

that Z(A) = E and A = EndR(M)- Since Z(A) = E , Z(A) = @ cEGRvU

with VeV, = éc,nvc , ZOVO =1, v, = o(vl). If v, = ) ue 4
withu € Awe have v.=Jue ; =Ju e . Sincev .v =
o n 6 g oln o onl g "' n
=68, V., , it follows that u .u_ =6 u_and J v_ = 1 implies
dg,n © ag n 0g,n O g O

Z u_ = 1. On the other side, since v_. € Z(A) we have f u =
o c o 0 o

ucefe for every fe € Ae. Let now be M0 = uc(M). Then M = Q)GEGMU

and for fe S Ae we have fe(uc(m)) = (feuo)(m) = (uoefe)(m) =
= uoe(fe(m)) , i.e. fe(Mo) C M06 and therefore the graduation of

A is induced by the graduation M = @ aeGMo of M ; thus A is triv-

ial in BG(R).

2. ABELIAN EXTENSIONS WITH NORMAL BASIS.

Let G be a finite abelian group and E the trivial Galois exten-
sion of a commutative ring R with group G. The map EG — EG
defined by ac — o(a)ol is easily seen to be an R-algebra
antiautomorphism of EG; thus from the usual structure of left

EG ® EG°-module on EG we obtain a structure of left EG ® EG-mod-
ule on EG, which is explicitly given by ac ® bn.x = ag.x.ni(b)nL
Considering E as a left EG-module, we have that E ® E is a left
EG ® EG-module and the canonical map ¢: E ® E —— EG (induced by
v(e ® f) = ZGEG eo(f)o) is an EG ® EG-isomorphism. Since

EG ® EG = EndR(E) ® EndR(E) = EndR(E ® E), it follows that R-auto
morphisms of E ® E and EG have the form x — u.x with

u € U(EG @ EG).

Let us recall the definition of Harrison's complex: the correspon

dences o.x...x6 —> g Xe X0 X0 X0,

1 n 1 o induce R-algebra

+1X-.
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. n n+l .
homomorphisms 4; * RG" —— RG y i =1,...,n., If By s B

are induced by O1XeeeXa, — Ixo;x., %0

tively, then Ai: U(RGn) —_— U(RGn+1) and Harrison's complex is

n? °1x"'x°nx1 respec-

URRG™) , n > 1 with &: URG™ — URG™)) defined by 6(x) =
~1)1

=TT a, 3 (x )( D . We shall use the second cohomology group

H (R,G) of this complex; with the usual identifications, it is ob
tained from

U(RG) — U(RG ® RG) — U(RG ® RG ® RG)

with 6(x) = x ® x.8,(x"Y) , where 81(fgr,0) = Jroo@o, if
X CURG) , 8(x) =1@x.0,x).0,(x") x 1@ 1 if x €cume @ ReY,
where Al(zu’nro’no ®n) = Zo’nrc’no ®o@®n, Az(z c®n) =

= annroyno ®n @ n

r_.
0,n 0,n

Let ~ : RG ® RG —— RG ® RG be the map induced by

c®n — 0® onl clearly ~ is an R-algebra isomorphism of

RG ® RG, ~* = 1. Since RG ® RG C EG @ EG , then RG ® RG acts on
E ®E and EG. Let us write ulx] , u(y) to denote the correspond-
ing action of u € RG® RG on x € E ® E » ¥ € EG. Then it is
straightforward to see that, for u € RG ®RG , 6(u) = 1 if and
only if

') U(m ule ® £1) = T(e).U(£) ¥ e,f €EE

where m: E ® E — E is the multiplication and we consider
E C EG as E.1.

Let u € U(RG ® RG) with 6(u) = 1 and let X = u(E og) C EG; since
ue U(RG ® RG), x — u(x) is an R- automorphlsm of EG and there-

fore EG=@ X grif u =} oun U n¢ ®n then u(E.o) = zu,sra,BaEqB' =
= Zra BuEB' o -u(E)o , and ou(en) Zra’soaenﬁ—1= Zra.sace"3_1=
=U(oc en) = u(c(e)cn). Now relation (1) shows that Xl.x1 c X1

and it follows that XU.Xn cX » i.e. we have a graduation on EG;

on
call [EG]u this graded algebra and v (u) the image of
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[EG] , € B,(R) in E;(R) . We shall show that u —— y(u) induces a

map H2(R,G) — E;(R)

Observe first the following : u and v define the same graduation
on EG if and only if v = u.t® 1 with t € U(RG);: in fact, if u(E)
= V(E) we have U"l.¥(E) C E; if U-1.¥v = Zrc ,¢ ® n then

Zru na.e.n-l € E for every e € E implies roo, =0 if o # n; thus
bl t]

Xcro,oo ®o =24,(t) , t = Zorq,co € U(RG) and therefore
A

1(t) = u.t® 1 ; the converse is clear.

Let now u, v € U(RG ® RG) be cocycles such that v=6(t).u =

= t®1.1® t. Al(t_l).u ; then v = Ay (t).1 ®t*.t”! @ 1.7, where
t* = Xcroo‘1 if t = Zroo . Since A(t) (Eo) = Eo we have v(Eo) =
=t7le 1.1 ®t*.u.a(t)(Bo) = t-1 @ 1.1 ® t*(u(Ev)) . On the
other side, t~1, t* €U(RG) C RG C EG and it is clear that

(t"'® 1.1 @ t*)(x) = t-l.x.t* for x € EG; thus V(Eo) =

= t"! . U(Eo).t, which shows that [EG]u and [EG]v are isomorphic
as graded algebras and therefore that they have the same image

in E;(R) . It follows that we have a map V¥ : H2(R,G) —— EG(R)

Let ﬁ € U(RG ® RG) be a.cocycle. Since EG==®03(E0) is a gradua-
tion on EG, H(E) is an R-subalgebra of EG; note that E(Ec) = E(E)c

implies o € G(E) and therefore c.’ﬁ(E).c"1 C G(E) ; this relation
allows us to define an action of G on U(E) ; since G(o(e)) =

= oﬁ(e)c"1 , u(E) is RG-isomorphic to E; moreover, if we consider
the twisted group ring of u(E) with respect to that action of G,
we have a map U(E)G — EG and uU(e)o . d(f)n = ule)ou(f)o-lon =
= U(e)o(U(f))on shows that u(E)G = EG and by lemma 5 we have

¥(u) = W(E) ; in particular this shows that y(u) has a normal ba-
sis, i.e., ¥: H2(R,G) — A; (R) , the subgroup of E,(R) formed
by algebras with normal basis. Moreover, it follows from relation

(1) that ¥(u) = E with the usual action of G and product defined
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by (e,f) _ mul[e® f] . This remark can be used to show that
¥ HZ(R,G) e AG(R) is a group homomorphism; indeed, if H =
={(0,0-!) : 6 €EG} then j + E—— E ®E defined by j(ec) =

- . H . _ .
Zaeoa ® € ,-1 maps E isomorphically onto E @ E”, and Jo = o@1.j

Then we can verify that j is an isomophism from ¥ (uv) onto ¥ (u)y(v),

Let us finally show that v: HZ(R,G) —_ AG(R) is an isomorphism.
If v(u) is trivial, from EG = u(E)G = [EG]u 5 it follows that
there exist an R-algebra isomorphism w: EG — EG such that

w(o) =0 and w(E) = U(E) ; we know that w must be of the form

X — w(x) with wEU(BG ® EG) and since w(o) =0 we have

wEU(RG ® RG) ; then ﬁglw(E)<:E and we have u-lw =A1(t) with

t €EU(RG).

Let us show that u = Al(t_l) ; to this end, we can assume R to be
local ; then w is an inner automorphism of EG, i.e. w(x) = p,x.p_l
with p € U(EG) ; but w(o) = o implies pEU(RG) . Then w = p @ p*~

L ¢-1 ® 1 ;now 1= 6(u) =

and u = w(a; Tt ™) = 4, (p).1 @ p-
5(61(P).1@p™H) s(t7le 1) = s(p @ Ns(t-l ® 1) implies
- -1 -1
1® p.Al(p_l) =1 @t.a (t 1) and therefore u = A;(t).t7~ ® t .
1

Thus ¥ is injective.

Let now LGEEb(R) » then there exists an RG-isomorphism j:E —— L
and if we denote with J the R-algebra isomorphism defined by

LG = EndR(L) = EndR(E) = EG , then J : LG —— EG is such that
a

J(o) = ; then setting X, = J(Ac) we obtain a graduation on EG,
EG = @UXU whose image in EG(R) is L. Let now f : EG —— EG be
the map defined by f (e) = J(j(e) o) ; then f is an R-automdrphism
of EG such that f(EO) = Xo ; thus there exists z €U(EG ® EG) such
that z(EO) = XU ; note that f(o.x.n) = of (x)n and therefore

2€U(RG® RG). If z = ¥ o ® n,let t=Zg(Z T )o€U(RG) and

T
o,n 0,n n"o,n
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set v = Al(t'l) . 1®t. z . From the relation Xl.Xi C Xl we have

z(E).z(E) C z(E) , i.e. z Y(2(E)z(E)) CE and it follows that

z(m vie ® f1) = z(e).z(f)

Now v = t~! ® t*., z and since ¢! ® t*(x) = tl.x.t if x € EG, we

have v 1(v(e).V(£)) = 2" (z(e).2(£)) and therefore v(m v [e & £])

=v(e).v(f); i.e. v is a cocycle. Moreover, V=tl® tr. 2 implies

-1

V(Eo) = t71 ® t*(z(Eg)) =t ".X .t , i.e. EG with the graduation

g
EG = @oxo is isomorphic to[EG]V and therefore L = y(v). Thus, we

have obtained the following:

PROPOSITION 7. If u € U(RG ® RG) <s a cocycle in the Harrison's
complex, let Eu be the R-algebra obtained defining a product in
E by (e,f) — mule ® fl . Then with respect to the standard
action of G on E, G 28 a group of R-algebra automorphisms of Eu
and E, 18 a Galois extension of R with group G. Moreover,u —E,

defines a group isomorphism HZ(R,G) = AG (R)

3. ABELIAN EXTENSIONS OF FIELDS.

We shall show now that for certain fields Harrison's cohomology
can be replaced by the usual cohomology in order to study Abelian
extensions (note that Galois extensions of fields have normal ba-
sis). Let K be a field and G an arbitrary group. We shall consid-
er now central separable algebras with a representation of G as a
group of K-algebra automorphisms of A. If M is a KG-module then G
acts on EndK(M) by o(f) = ofc™! ; call a G-algebra A trivial if
there is a G-isomorphism of K-algebras A = EndK(M) for M a KG-mod
ule. If A and B are G-algebras, let G act on A® B via o(a @ b) =
= ¢o(a) ® o(b), a € A, b € B. If A and B are central separable G-
aigebras, then A is equivalent to B if there is a G-isomorphism
A® T1 = B @® T2 with Tl' T2 trivial G-algebras ; we obtain in
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this way an equivalence relation in the set of G-isomorphism class
es of central separable G-algebras; if %;(K) is the quotient set

then %;(K) is an abelian group (note that the inverse of A € QE(K)

is A°, since A ® A° —, End  (A) is a G-isomorphism).

Let A be a central separable G-algebra. If o € G, then o is an in-

ner automorphism of A, i.e. o(x) = a x a;1 for some unit a € A.

. _ -1
Since on (x) = (aaan).x.(aoan) for every x € A, we have asa,

=k a with k € K* . If we consider G acting trivially on X,
ag,n on g,

then ku nis a 2-cocycle of G with coefficients in K . If o(x) =

b

, then k= k! kk k! with k, € K

=bxbl andbb =%k b
(4] g g n g, g,n dg,n 0 n on

non
such that bc= kca0 and therefore the cohomology class of ko’nin
HZ(G,K) is well defined by the action of G in A
We can now verify that the product of the cocycles associated to
algebras A and B is the cocycle associated to A ® B ; if A =
= EndK(M) with M a G-module then o (x) = aoxa;1 with a; € Endg (M)
such that acan = acnand‘therefore the cohomology class associated
to A is trivial. It follows that the correspondence A — ko’n
defines a group homomorphism Bé(K) N HZ(G,K*) . Consider now
B(K) — Bé(K) obtained by letting G act trivially on central

separable algebras

PROPOSITION 7. Let K be a field and G a finite group. Then

0 — B(K) — BL(K) — H2(G,K*) —— 0
18 an split exact sequence.

Proof. We first show Bé(K) —_— H2(G,K*) is onto. Given

k)€ H2(G,K*), let E be the trivial Galois extension of K
’

with group G and let A be the cross product associated to E and

k ; explicitely A = g;oeGEu0 with uou = k

u_, ue = o(e) u_;
OsMn n g,n on [of g
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then A € B(K) and G acts on A by o(x) = uoxugl‘; clearly the cocy-
cle corresponding to this action is {ko,n} . Consider the homomor-
phism Bé(K) ——> B(K) obtained by forgetting the action of G.
Clearly B(K) —— Bé(K),———+ B(K) is the identity ; to complete
the proof we need only show that the restriction of ¢ to

Ker(Bé(K) —— B(K)) is injective; let then A € Bé(K) be such that
kc’n\is trivial and A = EndK(M) . If the action of G on A is given
by o(x) = acxa;1 we can assume (since ko’n ¥s a coboundary) that
aoan = acn 3 since a € EndK(M) this means that M is a G-module

and that the induced action of G on EndK(M) is the given one on A.

Thus A is trivial in Bé(K).

Assume now that G is a finite abelian group of exponent e and K is
a field of characteristic prime to e that contains the e-th roots
of unity. If G is the group of characters from G to K, we know
that E = Ké; indeed T: Ka —— E defined by T(x) = ZoeG x(o)e0
is a K-algebra isomorphism with inverse 77l E — XG given by
T—1(e0) = 1/n (er

say that A = &

-1
6 X (6 )x) (see [4]) . If A is a K-module, to

A where the A 's are K-submodules of A is e-
d€G "o I°]

quivalent to say that A is a module over E, also equivalent to say

~

KG . If a decomposition

IR

that A is a Ké—module, as follows from E

A = eoEEGAo is related to an action of G on A by the isomorphism

- -1
E = KG we can see that x(a) = ZGGEG x (o )a(o) if a = Za(o) with

a(o) € A0 and Ac = {a€A: x(a) = x(o 1)a ¥Xx. € é} ; in particu-
lar, if A is a K-algebra then A = G%(;G A0 defines a graduation
on A if and only if the related action of G on A is an action by
K-algebra automorphisms of A. Note that for a graduation A =

= ®c € Ac and an action of é on A related as above, the isomor-
phism KG = E can be extended to a K-algebra isomorphism

T : AG — AE with T(a) = a for a € A.
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Clearly trivial G-graded algebras are related to trivial é-algebras;
if A and B are K-algebras, the product graduation of A ® B is re-
lated to the product G-structure of A ® B and it follows tﬁat

B,(K) = By(K) canonically, which in turn implies that By (K) =

= H2(G,K*).

Let us explicitate the isomorphism Hz(a,K*) —_— EG(K) : if

2.8 px . L - " . -
{kx w} € H*(G,K* let as in proposition 7, A @xEG Eux with uxuw
= kx,w“xw’ uXe = x(e)ux. Then G acts on A by x(x) = ux.x.uX ; for
the G-graduation or A related to that action of G on A we have a

K-algebra isomorphism T: Aé —— AE such that T(a) = a and if we
consider the action of G on AE, we obtain an action of G on Aé;

thus Z(A) i$ isomorphic to the centralizer of A in AG, which is

-1 . -1 -1, -1
R = u . Thus
co K.uX x with o(uX x) x(a™ ) « X

the Galois extension of K associated to {kX w} is the K-vector

. . -1
space L = G&Ea K a, with product given by ax.aw = kx,¢ax¢ and G
acting as c(ax) = x(c_l) a

easily seen to be G&

X

Let G be a finite abelian group of exponent e and K a field whose
characteristic is prime to e. Let K be the field obtained adjoin
ing the e-th roots of unity to K and W the Galois zroup of K over
K. If G is the group of characters from G to K, we shall see

that E,(K) = H;(é,i*) (see [4] Cor. 4.8, Th. 2.2), where the coho
mology groups Hw(a,K*) are defined by W-invariant cochains, i.e.
such that wf(xl,...,xn) = f(wa,...,wxn). Observe first that if
L is a Galois extension of K such that W can be extended to a
group of automorphisms of L, then L = i" @ K; moreover, if the ac
tions of G and W commute on L, then G acts on L' and L' is a Ga-

lois extension of K with group G, as follows from LG = i ® K .
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If EX v € K* is a W-invariant cocycle, let L = & X a, the exten-
-1

sion of K associated to it, that is, a_.a, = k a a =
’ > Tx Ty X>¥ xw ? o x)

_ -1 . . L L )
= x (o )aX ; then the relation w(kx’w) = kWX,W¢ implies that de

fining w(ax) = Ay for w € W, we extend W to a group of automor-

phisms of 1 which obviously commute with G and then L = v EEG(K).

We can verify that the correspondence kX v L induces a group
b

homomorphism Hé(G,R*)-———* B, (K). If L is trivial, then L = A

has a normal basis generated by 9 € L such that a(e) n(e) =

=8, ng(e); writing a = zoki o (8) with k; € KX, we deduce that

v X

[ = [ 1 = B ] 3 :
w(kx) kWX and kx¢ kx,wkx k¢ , which shows that

Hé(f;,f(*) — E (K) is injective.

Let L € E, (K) and L = L®K; if A=16 , A=1L6=A®K then L
and T are the centralizers of A and A in AE and AE respectively.
Consider the action of G on A related to the graduation of A and

let T: ARG — AE be the canonical isomorphism. Since AE =AE ® K,

W acts on AE; it is clear that T: AG > AE is a W-isomorphism

if W acts on AG by means of w(ax) = 1 ® w(a).wx . Then
L = T'I(Z(A)) = T"I(Z(K))w. Let us determine a cocycle correspong
ing to A in Hz(é,k*). Let 6 = ) use, € I(A) generate a normal

basis of Z(A) and § = T-1(6) € AG; then & = J a x with a, =

. Sy, . . P : : 3
= 1/n Zcx(a Juy; note that x(a).a, = a,.a ; if b, is a unit of A

such that x(3a) = bX a b;l we must have a, S K.bx and since Zaxx

generates a normal basis, aX # 0 and therefore a, is a unit of R;
then x(i)ax =a, a shows that a cocycle corresponding to A can

be defined by the relation aa, = Since w(ax) = a ,

kx,wax¢'
, it follows that w(k

wX

and a = Now

wX.wY awX‘P X,W) = kwx,wW'

T-1(z(R)), the centralizer of A in Ké, is ® K a;lx. If a;lx =a,,

- = --1 - - - .
av en a_.a, = a =
we have th X3y kx’¢ X and w(aX) awx and since

L = TjX(Z(A)) = T'I(Z(}—\))w , we conclude that L is the image of

- 2“ —-*
{kx’w} € HW(G,K ).
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