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SOME THEOREMS ON NEAR CONSERVATIVE FIELDS OF FORCE

John DeCicco and Robert V. Anderson

1. NORMAL FAMILIES OF oo™ 1 CURVES C ORTHOGONAL TO SIMPLE FAMILIES

OF co! HYPERSURFACES IN RIEMANNIAN SPACE Vn

Let Py be an absolute covariant vector in a Rlemannlan space V
Wthh is never the zero vector. A family of ot~ 1 curves C in V
is given as the set of integral solutions of the system of n or-
dinary differential equations, each of the first order, namely

(1.1 dx® _ P
= H
ds Ipl
where |p| = (P;P)llz = [eg:’L"ili)]-.pj]l/2 > 0, and s is the arc

length measured along such a curve C.

Such a family is said to be mormal if and only if it is ortho-
gonal to a simple family of ool hypersurfaces V(x) = constant,
each of deficiency one, in Vn

The family of curves given by (1.1) is normal if and only if the
Pfaffian equation

(1.2) p;, &x* =0,

is integrable. For this there must exist two absolute scalar

functions f(x) and o(x), with iﬁz not the zero.vector, such that
X

(1.3) g 0 _ o

Then the second order covariant derivative of f£(x) is given by
_ 0

(1.4) f..=e (p:,L .+t Py c’j).

THEOREM 1.1. If Tij ig the curl of the covariant vector P;- then

the modified integrating factor o obeys the equations
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(1.5) Tij T Pi,5 T Py, TPy 95 7 Py Oy

From (1.5), the following symmetric relations are found

(1-6) pi Tjk = pi pk O’j - pi PJ- G,k ’

pj Tki = pj pi G’k - p] pk G,i ’

Pp Ti5 =P Py 05 - P Py 9,

k|
THEOREM 1.2. The family of oo~ 1 curves C, given as the integral
solutions of the system of n first order ordinary differential
equations

. ij
(1.7) ax* _ & " Py |
ds Ipl

forms a normal family <f and only if the curl Tij of the covar-

tant vector P; obeys the identities

(1.8) p; Tjk + Py Tki * Py Tij =0,

for i,j,k = 1,2,...,n.

This is an immediate consequence of (1.6).

2. SOME ADDITIONAL PROPERTIES OF THE MODIFIED INTEGRATING FACTOR o.

In the preceding section it was shown that if (p) is the covariant
vector of the system of differential equations (1.1), which form
a normal family, then

b b
(2.1 g p, Ty = £° PalPy 9,5 - Py 0 p) -

Define a covariant vector u, such that

(2.2) u, =g®®p T, .

a “ib

Thus the differential equations of the modified integrafing fac-
tor o may be written in the form

(p,§% ) u.
(2.3) o = — P; & i .
? (p,p) (p,p)

Now the second order covariant partial derivative of ¢ is
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3 90
3o p; — (P30
ey P By T ad T
+Hd (p,p) ! (p,p) (p,p)
Y N 9
P (Pagy) axd (PoP) Uy 5y (pup)
2
(p,p) (p,p)?
Hence upon forming the conditions o ij ~ o ji = 0, there are
obtained the conditions
90
(2°5) (PsP) (p! a_i) le + (Psp) [ui,j - uj,i] +
] 9 90
+ — - —— —— -
(p>p) [p; 3 P53 1 (s 5%
90 3 9
(P, 55 [p; 7 Pigd 1 (p,p)
) 3 =
[u; 3 ug 1 ] (p,p) =0 .

Also from the definition of the covariant vector u; it is seen
that

. _ _ab _ _
(2-6) P. ui - pi u. = g Pa (pj Tib Pi Tbj) =

Tij = (p’p) Tij .

THEOREM 2.2. The covariant vector u, and the modified integrating
factor o obey the identities

-

(2.7) Py Uy - Py Uy s (psp) Ty

J
and
3 d 3oy _ 0 i}
(2'8) (pj axi - pi ax_j) (P! -a—x') = (p’ ax) + (ui,j uj,i) +
30
P, 59
+—E—’3—’)‘[pj aa—i-piﬁ] (p,p) *
p,pP X X
1 9 )
e E e U RGNS

(p,p) J ox

These identities will be important in succeeding sections.
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3. SOME CONDITIONS FOR AN ISOTHERMAL NORMAL FAMILY.

In this section conditions will be found under which a family of

1 curves c are normal to a simple family of ool hypersurfaces
which form an isothermal family. First, if these hypersurfaces
are given by V(x) = constant, then the Lamé differential parame-
ters of first and second orders [2] are given by

B A =AW=ty v, A, =) =gty

si 53 2 ,ik

From preceding results, a family of ot~ 1 curves given as the inte
gral solutions of the system of n first order ordinary differential

. ij
equations ggi - g pj , will be normal to the family of sl
ds Ip|

hypersurfaces V(x) = constant if and only if there exists a scalar
function o(x) such that

(3.2) V. =¢% p. , \' = e’ (pi

s 1 i »1]

"Thus it is seen that

(3.3) A, (V) e™® (iv(p) + (p, 320

AL (V) (p»p)

Now it is known that if a family of

{ hypersurfaces V(x) = con-

stant is isothermal, then A2 , and V(x) are functionally depend-

A 1
3
ent [ ]. Thus 153 = c, itself defines a member of the family
1
: A
V(x) = constant, Thus the gradient of “ZZ , is .parallel to the
1
covariant vector p;- Thus
3 - 3 Ko
. 3o —= div(p) + — (p, =)
div(p) + (p, =) i i ax
(3.4) _ aoi [ X7}, X X B
ax™ (p,p) (p,p)
ai (p,p)
- [div(p) + (p, 321 ¥E— =2 p, ,
(p,sp)

where A is a scalar function. By equations (2.3), this becomes

(3.5) - u, [div(p) *+ (p, 3] + (p,p) ;3; [div(p) *+ (p,5D)] -
X

- di 3 - (p, &9y 2 =
div(p) o1 (psp) - (P, 3% 1 (p,p) = 4 p; »
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where 4 is a scalar function.

From the foregoing relations it is clear that

1

(3.6) )+

[div(p) + (p.5)1 (pj u; - by uy

. @D (p; =25 - p; —5 1 divep) +

+ (p,p) [p; aii - Py gig 1 (e, 39 -

- div(p) [p, ii - p; ;i; 1 (p,p) -

- (p, %%) [p, aii - Py ;i? 1 (p,p) =0

Define two linear differential operators Aij and Bij’ by

(3.7) A, =p, == -p. > B.. = u, ai - uy =2
1] I ax? T oaxd 1 J 5x ax3d

Using the operators (3.7), and applying equations (2.7), these
relations of (3.6) become

(3.8) (p,p) [-div(p) Tij + A,

i3 div(p) + (ui,j =u, )]+

Jsl

* By (pop) - div(p) Ay (p,p) = 0

Now consider the expression

(3.9) Sij = curl(ui) = ui,j - uj’1
Since
oo - 39
(3.10) ai = (P,P) c,i (P, BX) Pi s
it is easily seen that
30 ) . 3
3.11 . == s =) T.. + . /T < P +
(3.11) 813 (s 5% Tyy * Loy 3 % 1 1 (p,p)
3
* Ay g%)

Solve equations (3.10) for the o i’ and substitute these into
s
(3.11).

The result is
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(3.12) S.. = 80y T Efi%%l (p,p) -
ij = = (P’g'f) ij - (p p) ij PP
By (p,p) oA (P,%%).
(p,p)

Now substitute this expression for Sij into the relations (3.8).
After simpiification it results that

(3.13) (p,p) [~ T.p + ALl [div(p) + (p, $D)] -

. 3
- [div(p) + (p, 5-%)] Aij (p,p) = O
Recall the definition of the second order Lamé differential para-
meter. The equations (3.13) take on the form
-0 _ _-¢
(3.14) [- Tij + Aij] e AZ(V) = e AZ(V) Aij log (p,p)-
If AZ(V) # 0, these can be written as
-G _
(3.15) Aij log e AZ(V) = Aij log(p,p) *+ Tij
THEOREM 3.1. The set of oo™ 1 curves C defined as the integral
solutions of the -system of n ordinary differential equations
i Uij

(3.16) ax* _ 8 " Pj

a— ’
S Ip|

is orthogonal to an isothermal family of ool hypersurfaces, each
of deficiency one, if and only if the conditions (1.8) and
[¢)
e A (V)
(3.17) A.. log — 2 -7,
1] Al V) 1]

are identically satisfied whenever AZ(V) # 0.

This follows from (3.15) and use of the fact that
(p,p) = e 2% A, (V).

It is noted that in case p; is always a unit covariant vector this
condition (3.17) becomes

-G _
(3.18) Aij log e AZ(V) = Tij .
For, in this case (p,p) = +1.

THEOREM 3.2. 4 set of o1 geodesics C is transversal to an iso-
thermal family of ool hypersurfaces V(X) = constant if and only if
the conditions (1.8) and
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b

-c _
(3.19) Aij log e AZ(V) = Tij

are valid for each such geodesic C.

For, as p is displaced parallel to itself along such a geodesic,
(p,p) = constant. Thus (3.19) holds and the result follows.

4. NEAR CONSERVATIVE FIELDS OF FORCE AND ISOTHERMAL FAMILIES.

Consider a positional field of force ®, conservative or not. The

simple family of o1 Faraday lines of force C is composed of the
oo 1 integral solutions C of the system of n ordinary differen-

tial equations

(4.1) daxt 8T % et
[®] ||

where s denotes the arc length along such a Faraday line of
force C.

This family of o] Faraday lines of force C is a normal family if
and only if it is orthogonal to a family of o] hypersurfaces, each
of dimension (n-1), in Vn. In this case the conditions of Theorem

1.2, hold. Such a field of force ®, is termed a near conservative

field of force @®.

Thus if ® is a near conservative field of force ®, there exists

*
an associated function W (x), and an absolute scalar function o(x),
such that

(4.2) @ =0 W
1 axl
and
(4.3) e, Tjk + Qj Tei ¥ B Tij =0,

the expressions (4.3) being identities. Here Tij is the curl of
the force vector ®.

It is noted that the work W in a near conservative field of force,

is given by

(4.4) W= W(x;C) = Jze'° A gxt
1 ax*

and is in general a functional depending on the particular path C

of integration.

s
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THEOREM 4.1. A field of force ® is near conservative <if and only if
it obeys the identities (4.3).

A field of force is said to be isothermal near conservative if and
only if its associated family of ! hypersurfaces W#*(x) = constant,
form an isothermal family.

THEOREM 4.2. A near conservative field of force ® is isothermal
near conservative if and only if the force vector ® and the asso-

*
ctated function W (X) obey the conditions
*

e’ A, (W)

(4.5) A.. log —— =T.: ,
1] AW 1]
1

where Aij is the linear differential operator defined by (3.7),
where p; has been replaced by Qi'

This follows from previous results.

A field of force @ is ultra solenoidal if and only if

(4.6) B div(®) e,
axt (8,9) '

where N is an absolute scalar. That is ® is ultra solenoidal if
and only if the gradient of the absolute scalar div(®)/(®,®), is
parallel to the force vector @ .

It follows immediately that a field of force is ultra solenoidal
if and only

(4.7 A, v (@ .
' 1 (e, '

Upon expanding this condition it is easily seen that another form
is
(4.7) (®,9) Aij div(®) = div(®P) Aij (9,9).

However it is known that the condition for an isothermal near con-
servative field of force may be written in the form

(4.9) (@,9) [- T, + &) [div(®) + (@, §D)] -

- [div(®) + (@, 3] [A;; (2,2)] = 0.

Now a field of force is said to be ultra Laplacean if and only if
it is both near conservative and ultra solenoidal.
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THEOREM 4.2. A field of force ® is ultra Laplacean if and only if
obeys the identities

(4.10) @i Tjk + Qj Tki + Qk Tij =0,
and 5o o
(@,35) 74,
(4.11) A.. = T..
Hooee s M

Thus it follows that near conservative fields of force which are
solenoidal or near solenoidal are <mproper ultra Laplacean fields
of force.

5. NEAR CONSERVATIVE FIELDS OF FORCE AND PARALLEL FAMILIES.

Consider a near conservative field of force ®. Suppose that the
associated family of ool hypersurfaces W*(x) = constant forms a
parallel family (%1, 1f

(5.1) o, = e (XD s

i ,i ?

the condition for this is
(5.2) A (wx) = gt WE WL = H(WH)

This means that the gradient of AI(W*), must be parallel to the
force vector ®. Hence

] 20 _
(5.3) . ;;T e (®,®) = Xl ¢i

where Rl is an absolute scalar.

Expanding the condition (5.3), it is seen that

: ] 30
(5.4) — (®,2) + 2 —, (2,9) = A, @, ,
axt sxt S
where k2=e—zckl is an absolute scalar.

However if u, = g2P ® T, . it is recalled from section two that

30
(¢, — u,
(5.5) LA P J g T,
3)(1 ((I),‘I)) t (q)’@)
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since the field of force ® is near conservative and its lines of
force therefore form a normal family.

Use of this result in equations (5.4), yields

(5.6) 3 -
pw (®,2) + 2 u; =2, &
@, 3%

where k3 = Az - ——5755— , 1s again an absolute scalar.
(2,®)

THEOREM 5.1. 4 near conservative field of force ®, in Riemannian
space Vn has as its associated family of o] hypersurfaces, a par-
allel family <if and only <f

-20 %) = _
(5.7) Aij log e Al(W ) Tij
A field of force ® in V,» which obeys the conditions of Theorem
5.1, is called a parallel near conservative field of force ®.

Suppose that a field of force ® is parallel near conservative. In
addition let it be assumed that ® is ultra solenoidal. Then the
following result is valid.

THEOREM 5.2. A parallel near conservative field of force ® is ul-
tra solenoidal if and only <f it obeys

(5.8) Aij log div(®) + Tij =0

where Tij ig the curl of the force vector ¥ .

This follows from Theorem 5.1, and the conditions (4.8).

5
6. CARTOGRAMS AND NEAR CONSERVATIVE FIELDS OF FORCE [ ].

Suppose that a Riemannian space Vn is a conformal image of a

Riemannian space Vﬁ, by means of the cartogram T defined by
[*]
(6.1) ds = e? as

In Vn’ consider the near conservative field of force defined by

(6.2) : ® = e 9 Wk

i ,1

where W*(x) is the associated function of the near conservative
field of force ®, and o is an absolute scalar function.

i

Now under a conformal cartogram ds = e ds, it is known that the

fundamental metric tensor g transforms by the rules
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- AT =ij _ o"2M _ij
(6.3) 8;; e”" gy Y g € g
Thus for the cartogram ds = e? ds, we have

T =5, B = ° Jj o o0 _ aW*
(6.4) ¢i = 855 [ e g5 ® e Qi ol

THEOREM 6.1. A near conservative field of force ®, in a Riemannian

space V is a conformal image of a conservative field of force

n 3
in a Riemannian space Vh swhich is related to Vn by the conformal

a/2

cartogram ds = e ds. In Vn , the associated function W¥(x) of

the near conservative field of force ¥, is the work function for

the conservative field of force ® . Here

(6.5) &, = W

1 aXl
Now recall that a conservative field of force, which is ultra so-
lenoidal is termed a near Laplacean field of force.

THEOREM 6.2. 4n ultra Laplacean field of force ® is a conformal

image of a mear Laplacean field of force.

For, by Theorem 6.1, a near conservative field of force ® is a
conformal image of a conservative field of force ® in a conform-
ally related Vﬁ . Then since angle is preserved by a conformal
map it follows that the vector

(6.6) Lo div(®)

ixt (2,8)

will have its image in Vﬁ, parallel to the force vector 51 in Vﬁ.

Thus from above, the ultra solenoidal property is preserved by a
conformal map. The ultra Laplacean field of force is then an im-
age of a near Laplacean field of force ® in a related Vﬁ and the
result is established.
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