Revista de la
Unidén Matemdtica Argentina
Volumen 26, 1972,

MEAN CONVERGENCE OF SERIES OF BESSEL FUNCTIONS

by A. Benedek and R. Panzone

1. INTRODUCTION. Let be v > -1 , wn(x) = /fJu(xsn)/ | JV+1(sn)|=

= Jy(xsn)/ ﬂJv(xsn) Vx| 0 <x<1, and {s):n=1,2,...} the

2 ’
set of positive zeros of J,. Let us denote with LP(v;a,b) the LP-
space of functions defined on (a,b) with respect to the measure

¥ such that du = x"dx. When (a,b) = (0,1) we shall write LP(y) for
this space. When v = 0 it will be denoted with LP(a,b), or simply
with LP if (a,b) = (0,1). If c,(f) denotes the nth Fourier coeffi

cient of f with respect to the orthonormal system {wn} s €y =

1
= J f(x) wn(x) x dx , and B 1/2 or 1/p, then according to [12]
[o]

and [2], it holds:

£GP . PP ax -0

N + o

1 N
(1) AN

whenever
(2) 1<p<eo, {(»+1/2) AO} + 3/2 - B>1/p>1/2 - B - {(»+1/2) AO}.

From (1), it follows that
1 N 1

(3) J 11 < wn|p xPP dax <k J |£]P xPP ax
o 1 o

with K = K(8,p,») independent of N.

From [9], theorem 2, it follows that inequality (3) must also hold
for other weight functions xPp obtained by interpolation between x
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and xP/2. This suggests that (1) could also be true for those
weight functions. More than that can be said. Precisely, we
shall prove the following result:

THEOREM 1. If » > -1 and p and g verify (2) then for any
f e LP(gp), (1) holds.

A particular case of this theorem is obtained when

(4) Bp=(p/2) [(1-22)/2(1-a)]+ &/ (1-a) , »=zx|(1-20)/2(1-a)| > -1,

where ¢ € (-e,1). It is not difficult to see that the results con
tained in [3], theorems 2 and 3, could be obtained from theorem 1
with g and » defined by (4). Besides in this case xPP is in gen-
eral not obtainable by interpolation, (take, for example, a= 1/4).
Dini series are analogous to Bessel series but -with the s_'s re-
placed by the set {An} of positive solutions of the equations:

(5) - z J;(z) + H Jv(Z) =0

If » + H< 0 it is necessary to add to the system {p,(x) ; n = 1,
2,... , o (X) = J (xa )/0J (xa ) vxll_ , a function ¢ (x), (cf.
n v n 14 n 2 o

[11], ch. XVIII). Assuming that ¢ = 0 when » + H > 0, we have:
o

THEOREM 2. If » >-1 and p and g verify (2) then for the system
{wn(x) :n=20,1,2,...} and any £ € LP(Bp), (1) holds.

This result has been obtained by Wing for § = 1/2 and 8 = 1/p

when » >-1/2 , (cf.[12]).

Askey in [1] has given a general account on theorems of this type
for several orthonormal systems. Theorems 1 and 2 are the Bessel
analogues to results due to B. Muckenhoupt for Jacobi series (cf.
[14]1). Moreover, this paper is of a technical nature, since the
main ideas used in the proof of th. 1 , are already present in
the literature.

2. Since there exists a constant M = M(n) such that

]wn(x)| <Mx” , 0<x<1 , we have:
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1 1
e (8] < M(J x<"+1'ﬁ)qu)1/q(J |£x8 [Pax)t/P | q = p/(p-1).
(o] o]

Because of (2), (v+1-)q >-1, and it follows that cn(f) 18 a con-

tinuous linear functional in LP(8p).

To prove theorem 1 it is sufficient to show that:

i) (3) molds for a set of functions dense in LP (Bp),

ii) (1) holds for a set of functions dense in Lp(ﬁp).

In fact , i) together with the preceding consideration on Fourier
coefficients imply (3) for any function in LP(8p), and in conse-
quence from ii), it is also possible to conclude that (1) holds for
any function in LP(8p). The dense sets in i) and ii) do not neces-
sarily coincide.

The proof of theorem 2 will follow the same lines as that of theo-
rem 1. To prove i) we shall use the following result proved in

[5] for » >-1/2 and in [2], §4 , for -1 <v < -1/2.

THEOREM 3. [Let dn be the Dirichlet kernel of the system {wj} s

n
dn(X,Y) = 21 wj(X) wj(y) and assume v >-1 . Then, if M =
= (s, *+s ,1)/2 it holds :
X 6

(6) dn(st) = zj:]_ AJ (x,y) » 0 <x,y <1 s
where:

ALGy) = 01 XY 5 AL Gy) = 0/t 2exey)
(7)1 AGay) =0, (M) I, M ) M /2(y-x) 5 A, (x,y) = Ay(y,x) ;

Ag(x,y) =0, (xM ) J, . OM ) M /72(x+y) 5 A (x,y) = A (y,X) .

The 0's that appear in (7) are uniformly bounded with respect to
X,y and n.

To prove i) for theorem 1 it is sufficient to see that for
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1
T,E(x) = P.V. Jo A (x,y) £) vy &y,

is uniformly continuous (with respect to n) in the space Lp(ﬁp)
whenever p verifies (2). For this we shall make use of the follow
ing results:

THEOREM 4. Assume - <s,t <+ , 0 <x,y < 1. The operator
lst -1

(8) Uf(x) = J x7y~ (2-x-y) © £(y) dy ,
o

is continuous in LP if

9) (-s) v 0 < 1/p < (1+t) A 1

This proposition can be proved in the same way as Lemma 3 of §6
in [2].

THEOREM 5. j) The operator

+00. b a-b
(10) K Lo gE () = PV J £(t) IxIb!1+IX|)A_B at
a,bja, -2 x -t |t (1+|t|)

is continuous in LP (-o0,+00) 7f
an 1<p<ew;b=>B;A=>a; -1/p<bra;avB<I1/p
where 1/p' =1 - 1/p.

jj) If 1 < p < o qgnd the operator (10) is continuous in LP(-oo,+eo)
then (11) holds.

i) for b = B = a = A is due to Hardy and Littlewood, [4]. As it
is stated here, this result can be seen in Muckenhoupt's paper [6].
The last section of the present paper contains a proof of theorem
5 in which the proof of j) follows the line of argumentation given
in [4] and [8]. jj) is well-known when A = a = B =b = 0 and sug-
gests that theorems 1 and 2 are not true for the limiting values
of p in the second inequality in (2). In fact, the following re-
sult will be proved:
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THEOREM 6. Assume 1 <p <o , -0 <f <+ . TInequality (3) holds
for Bessel and Dini series only if (2) holds.

REMARK 1. The 0's that appear in (7), theorem 3, are not only uni
formly bounded with respect to x, y and n but also with respect to
» if this variable is restricted to a closed interval contained in
(-1, . This can be seen by a careful examination of the constants
that appear in the proof given in [2], §4.

3. AUXILIARY LEMMAS. The first of the following two lemmas is
proved in Tolstov's book [10], ch. 8, sections 14, 19, 20 and 23.
The second one is analogous to Dirichlet-Jordan test for trigomno-
metric series and is proved in Watson's book, [11], chapter XVIII.

LEMMA 1. 1) There exist two positive constants A and B depend-
ing only on v (> -1) such that for N\ great enough it holds:

1
(12) AN < J J2(t) 't dt < B/A

o

ii) If f is 2k times continuously differentiable (k = 1) and
equal to zero in neighbourhoods of 0 and 1 then for v >-1:

’ 1 1
= - . 2 _ 2k-1/2
(13) bn-bn(f) = Jon(xsn)t(x)xdx / JOJV(xsn)xdx —0(1)/5n
iii) (13) holds also when instead of {sn} the set {kn} of positive

zeros of (5) are used.

COROLLARY 1. If f verifies the hypothesis ii) <n lemma 1 and p
satisfies .(2) then its Bessel and Dini series converge in LP(Bp).

oo

Proof. Let } b J. (xs ) be the Bessel series of f. Because of
n=1 ¢ v n

the asymptotic expansions of Jv(x),‘x > 1, we have for a certain
constant C = C(v):

(14) VX 3,00 ] < cx@H/D0y 1y Ly >a1, x>0

Therefore:
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13 (xs )| < C (1v (xs )(V+l/2)A0) < _C x(V+1/2)/\0
voon /X5, " /Xs_

Then, because of (2), we get:
1 ' 1 .

(]4|) (J JV (Xsn) PXﬁPdX)I/P < C Sr—ll/z(J X[(V"'l/z)/\o"‘ﬁ“l/zl de)l/pz
o

o}

-1/2
n

= 0(s )

From (14') and lemma 1, it follows that

: _ -2k
an Jv(xsn)llp,ﬁp = O(sn

)
and therefore, the Bessel series of f converges in Lp(ﬁp). The
same argument holds for the case of Dini series. QED.

If one uses now the L2(1)—comp1eteness of the Bessel system, (cf.
[13], or [11] and [15]), one could assert that the series associe-
ted to f converges to this function in Lp(ﬁp). Thus proving ii),
§2. We shall not assume that result, which will follow as a corol
lary. At this point this paper tries to be self contained, using
when possible, results of elementary nature.

LEMMA 2. If f is of bounded variation and continuous in (0,1)

then £(x) = § b J,(xs)) , 0 <x <1, vhenever v3> -1/2.
1

n=

(The coefficient bn is defined by formula (13)).

Let D be the set of functions twice continuously differentiable
which are null in neighbourhoods of 0 and 1. From the preceding
results it follows immediately next corollary, (cf. remark 2, §5).

COROLLARY 2. If £ €D, » >-1/2 and p verifies (2) then

b _(f) J (xs_) converges to f in Lp(Bp).
1 n 14 n

-(w+1) (¥ +1

LEMMA 3. et F(x) €D and define £(x) =x F(t) t” dat ,

‘o
then, <f v > -1:
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1 1
. F(x)Jv(xsn) x dx s, Jof(x)JV+l(xsn) x dx
(15) =
! 2 1 2
Jo JV(xsn) x dx JO Jv+1(xsn) x dx

Proof. From the formulae

d -v I Ld v+l - v+l
(16) S, @) = -2, (@) 5 @, ) = 2T (@)
it follows

d

(a7 79, 0) -2z %7 (az) ;%;(ZV+IJ (2)) =az’* (2.

v+1 v+1

Therefore

(18) %;(XJV(XSH) 3, (xs ) = xsn(Jf(xsn) - 52, (xs)))

The equality of the denominators in (15) follows after integrating
(18) between zero and one. The equality of the numerators follows
after integrating by parts the first of them and using the first
of formulae (18). QED.

4. RELATIONS BETWEEN BESSEL AND DINI SERIES. Let Dn be a number

in the interval (Xn+ w/8 , kn+l

at least 7/8. Such a number exists if n is great enough, (cf. [11],
p. 598). Let N = N(n) be the greatest integer j such that s,<<Dn.
Obviously, n, > n, implies N(nz) = N(nl) and if n —» o then N(n)-> o,
The difference between the Dirichlet kernels of Bessel and Dini

- w/8) whose distance to any S5 is

series is:

“1/2 _ N n
R_GGLy,B) o) 2= 1 w0 v ) - T e (0 e )

j=1 i=o

where H is the constant that appears in (5).

Let us call S the set of simple functions defined on (0,1), i.e.,
the family of linear combinations of characteristic functions of
intervals.
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Then we have:

LEMMA 4. T[Let fo be a function in S equal to zero in a neighbour-
hood of x = 1 and assume v >-1. If f(x) = foo(x) and p verifies
(2), then it holds in LP (Bp) that

1
(19) [ rcymen™Ee) yay - o

[o}

n -» o

Proof. It is sufficient to prove the lemma for fo the character-
istic function of (0,T), T < 1. In this case using the following
equality which appears in [11], §18.31, (19) becomes:

D_+i
v +1 n” ZJV(xw)JV+1(Tw)dw

T
(20) j y P22 (x,y,mydy = L
o n i U -deed, (w) (wWJ) (w)+HI(w))

The asymptotic expansion of Jp and its behaviour around the origin
yields that there exists a constant M verifying:

V& g e <M et pomy | we (D, -ise,D_+iw) ,

(21
| vXW %ﬁxw)| <M ex|n|(1+(an)(V+l/2)A0)

Then, from (20) and (21) it follows that with a certain constant C
it holds:

1 CTV+1/2(1+(XD )(V+l/2)A0)
|J £(y) R (x,y,0) x7 /2 y1/2 gy < S <
° D (2-x-T) vx
< S orn0) -1/ _ 212 weis2yn0-1)2
(1-T)D_ (1-T)D_

In consequence, for a certain constant K = K(T) we have:

1,1 _ ,
(22) j |J £(y) R_(x,y,H) x71/2 y1/2 gy 10 48P gy <
o o
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< K Jl L [(+1/2)A048-1/2]p 4,

o}

]

n

From (2) and (22) the thesis follows immediately. QED.
LEMMA 5. Let be v > -1. Then,

x(v+1/2)A0 y(V+l/2)/\0

(23) R (x,y,H) = 0(1)
n 2-x-y

and the operator defined by
! -1/2

(24) "Ry et ee vy ey
[e]

is uniformly zontinuous with respect to n in LP(Bp) whenever p ver
ifies (2).

Proof. From [11], §18.31, we get

D_+ic
25) R_(x,y,H) o1 (® * wJ, (xw) J, , Oyw) !
Xy 7i Jp i J (W) (wIJ(w)+HT, (w))

Since w € (Dn-iw,Dn+iw), from the asymptotic expansion of Jv it
follows for a certain positive constant M' and n great enough,
that

(26) IEAOIESS el - Imw

Taking into account the relation ZJ;(w) = - (w)+JV_l(w), it

Jv+l
also follows from the asymptotic expansions that

(27) A3+ BT /v s el

for n great enough. Replacing (27), (26) and (21) in (25) we fi-
nally obtain for certain constants C and C' and n great enough
that:
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400
Rn(x’y,H) <CJ’ e(x+y—2)|‘n|{1+(an) (V+1/2)/\0}{1+(ynn) (V+1/2)/\0}dn <

< Cly) WHHDN (g x )1

This proves the first part of the lemma. From Theorenm (4) it fol-
lows that the operator

1
(28) j F(y) (Z-X-y)_l x(ﬁ"‘”)/\(ﬁ‘l/z) y(V"'l_B)’\(l/z'ﬁ)

o

dy

is continuous in LP if p verifies (2). Then, using (23), we ob-
tain that (24) is uniformly continuous in LP (8p). QED.

From lemmas 4 and 5 it follows immediately next result.

COROLLARY 3. 1f » >-1, p verifies (2) and £ € LP(8p), then in
LP(gp).

1
[ R ey <2512 £y 4y o o

° n - oo

That is, the Bessel series of f(x) converges to f in LP(Bp) if and
only if the Dini series of f converges to f in the same space.

LEMMA 6. Assume that theorem 2 is true for v €(0,1/2). If F(x)eD,
P verifies (2) and -1 < v < -1/2, then the Bessel series of F ,

(=)

) anV(xsn), converges to F in LP(Bp).
n=1

Proof. Because of Corollary 1 in the preceding section the series
under consideration converges to a certain function G(x) in the
space LP(8p). Therefore, in view of (2), the series

(29) Iob x g xs)

n=1 o

converges in L1(0,1) to x1+”.G(x). Integrating (29) term by term
and using the second formula in (17) we obtain,

Rl b4
(30) ) 5;1 bn x 1+ Jv+l(xsn) = J 16 (t)dt ,
n=1 o

the convergence being uniform. Then, for any x € (0,1) ,
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x 1+p

t G(t) dt

o}

63 st

(xs ) =
n=1 n

-(1+»)
v+1 x J

On the other hand we have, again from second formula in (17), that

S, is the nth positive zero of (v¥1)J (z) + z J;+1(z), i.e., if

v+1
in formula (5) we replace H and » by »+1, its nth zero kn coinci-

des with s Since (v+1) + H = 2(»+1) > 0 , we have in this case

¢o =0 .. It follows from lemma 3 that the series in (30) is the

Dini series of

(32) f(x) = x~ T+ r‘ F(t) e dae

o

with respect to the preceding system. Because of » < -1/2 the
right hand side of the second inequality in (2) implies that
p(B-1-») > -1 and therefore f(x) € LP(fp). Besides, if (2) holds
with »,8,p, it also clearly holds with »+1,8,p. Hence, from the
hypothesis, the series in (31) converges to f(x) ‘in LP(gp). Com-
paring (31) and (32) we obtain F(x) = G(x) a.e.. QED.

5. PROOF OF THEOREMS 1 AND 2. 1I) The first part of the proof
will consist in proving i) for Bessel series (cf. section 2).
The analogous result for Dini series will follow then from lemma
5. Assume 1 < p < oo,

1) T, is continuous in LP(Bp) if p verifies (2). In fact, the
continuity of this operator in LP(8p) is implied by the continui-
ty in LP of the operator:

gly) dy

Jl yv+1-[3 Xﬁ+v

o

2) T2 is continuous in LP(Bp) if p verifies

(33) 3/2 -8 >1/p>1/2 - 8

In fact, it is implied by the continuity in LP(0,1) of the operator:

1
j g(y) (2-x-y)~} (x/y)P-1/2 gy
(o]
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and this follows from theorem 4.

3) T3 is uniformly continuous in LP (Bp) if

(34) 3/2 -8 >1/p>-»-8 , -1 < v <-1/2

s
and if v 2-1/2 and p verifies (33). (Idem for Ts).
It is sufficient to see that

oo 00

(35)  sup JOIP.V.J

A3(x,y)f(y)ydy|p xﬁpdx/J | £(x) ]Pxﬂpdx
f

[o] o

has a finite upper bound independent of Mn (=1). Here f may be
supposed to run on the set of functions null outside an interval.
It follows easily after a change of variables (as in [2], (29))
that (35) is independent of Mn which can be thus replaced by one.
Then it only remains to show that

(36) P.V.

°J (x)J )
j Mfw) y dy

o Ly - X
defines a continuous operator in LP(8p;(0,%)).

From the following estimations for x > 0 and -1 < » <-1/2:

(37) 53 J, (x)

o) (12 R 3, G = 001/ (et 2,

o1y , x>0 , v =-1/2

(38) %3 J, (x)

we get for -1 < » <-1/2 , x >0

(39) 53 J, (x) = 0(1) xv+1/2(1+x)-(v+1/2)’

(40) X I, (x) = 0(1) x”PH/ D) (quyrHl/z,

Using (38),(39) and (40) one sees readily that the continuity of

(36) in LP(Bp;(0,%)) when -1 < » <-1/2 and -1/2 < v, respectively,

is implied by the continuity of the following operators in LP(0,%):
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® 1+x - (r41/2) (xy»+B E(y) i <.

(41) P.V. Jo (1+y ) (y ) Xy dy , -1 <w 1/2 ,
®  xB-V2F 1 <

(42) P.YV. Jo(y) F0) ay , -1/2 <

An application of theorem 5 proves the continuity of these opera-
tors, therefore the uniform continuity of T3.

4) T4 ig uniformly continuous in LP(Bp;(0,1)) <f

(43) v+2->1/p>1/2-8, -1 < v <-1/2 ,
and if v = -1/2 and p verifies (33). (Idem for T6).

It is seen as before that it is sufficient to prove the continuity
of T, in LP(Bp; (0,%)) when M_= 1. Call a(x,y) the kernel obtain-
ed from A3 (cf. (7)) when Mn is equal to one and observe that
a(y,x) = Aa(x,y) for this value of Mn. Then for f € LP(Bp; (0,%))

the continuity of TA’ Mn =1

(48) Jw|Jm a(x,y) £(x) x dx|? yPP ay < Jw|f(x)|P #P ax
[o] (o]

o
holds if and only if for g € LY((1-8)q;(0,%)) , 1/p + 1/q =1 ,

oo .00

(45) J IJ a(x,y) g(y) vy dy|9 xFldax < c J 1gx) |8 x(1-B)a ax
o o °

holds, where C is independent of f and g. According to the point
3) proved above, (45) is verified when -1 < v <-1/2 if
-v-(1-) < 1/q < 3/2-(1-B), i.e., if p verifies (43). On the
other hand, if »> -1/2, (45) holds if 1/2-(1-8)< 1/q<3/2-(1-8),
i.e., if p verifies (33). 1) - 4) imply 1i).

II) Assume » >-1/2. Corollary 2 of section 3 implies ii) for Be
ssel series and therefore for those v's theorem 1 is proved. From
Corollary 3, section 4, theorem 2 for » >-1/2 follows. This re-
sult and lemma 6 imply ii) for Bessel series if » € (-1,-1/2)

This completes the proof of theorem 1. This theorem together with
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Corollary 3, section 4, imply theorem 2. QED.

REMARK 2. E. Murphy communicated to us that a closer observation
of [11], pp. 580-592, shows that lemma 2, and therefore Corollay 2,
still.hold for » >-1. This makes superfluous Lemmas 3 and 6, and
reduces part II of the preceding proof to a line. Expository reas
- ons make us to follow the present procedure.

6. PROOF OF THEOREM 6. First, we show that given p € (1,%) ,

v > -1, and f, if p is a limiting point of the second inequality
in (2), then (3) does not hold. Since the proof is the same for
Bessel and Dini series, we shall restrict ourselves to Bessel's
system. In this case, (3) implies that

1 .
B B P
|Jo b £y ayl Pt <xae 1, v g e Pep)

that is

! 1-8 8 P
- <
|Jo v, Fy' P ayly P <R, vEEL
From this inequality and therefore from (3) it follows that:
1'3 - 3 <
(46) Hwn y Hq.“wn X lIp < K
It is sufficient to show that if p is a limiting point, (46) can-

not hold. Because of lemma 1, ]wn(y)l > C/§:|Jv(ysn)| for a cer-

‘tain constant C independent of n. Then,
. .

47 o) Y P s SR (gt g o dan
o

Analogously,

(48) 1o 00 F1 > e s (Paf g ) Pay)
o

If (46) would hold, from (47) and (48) we had for a certain cons-
tant M, : ‘
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1 1
(49) M > 5;1 (j ny(1+V-I3)qdy + an y(l/z'B)qdy)l/ch y(ﬁ"'v)de +

o 1 o

. an y@-1/2)pg.y1/p
1

Assume now that 1/p = -[B+(®A-1/2)]. In this case, if -1 <v <-1/2,
P{B+r) # -1 and the right-hand side in (49) equals oo, contradic-
tion. If v> -1/2 , 1/p = 1/2-8 , and we have: 1/q = 1/2+8 . Then,
from (49) we obtain for a certain positive constant C:

M> s [ yatap /e[
1

n -1 1/p 5 1/p
n . x~ ~dx) = C(1lg sn) .

This is again a contradiction if n is great enough.

The left-hand side of (46) does not change if we replace p by q,
q by p and B by 1-f. Therefore (46) does not hold when 1-1/p =
= -[(1-B)+(®A-1/2)], i.e. when 1/p = 2-B+(®A-1/2) = 3/2-B+
+(w+1/2)70.

It also easily follows for p = 1 or -« that if 1/p belongs to
the closed interval defined by the second inequality in (2), then
(46) cannot be satisfied. From these observations and an inter-
polation theorem due to E. Stein ([9], th. 2), the desired result
for 1 < p <o follows. QED.

7. PROOF OF THEOREM 5. j) It is sufficient to prove the follow-
ing lemma:

LEMMA 7. The operator K defined by K = Ka B .ap 18 continuous in
s ’ b
LP(-oo,oo) 1f

(50) -1/p <a,p <1/q , 1/p+ 1/q =1
In fact, because of the hypothesis of theorem 5 there exists a and

g such that B<g <b , a<a <A, -1/p <ea,§ <1/q and therefore
the following functions are bounded on all the real line:

P(x) = IxIPB(141x1)270P+  q(x) = IxIB-B(1+1x])BF A%
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Since Ka b:A Bf = P(x) K(Qf), theorem 5 follows from lemma 7. To

prove this lemma we shall use the next general lemma.

LEMMA 8. Let w(t) be a measurable function defined on the real
line and suppose that for some p, 1 <p < oo, there exist a positive

(a.e.) measurable function r(x,t) and a constant M such that:

+°o
w(t) ri(x,t o o
I) J_w 'W(X 1 . r{—rl dt <M N a.e. X € ( s ) ’
e P(x,t)
) J 1 -1‘ —;dx<M , a.e. t € (-,
-00

Then the operator

wa(x)

P.V. [:%% £ g

is well-defined and continuous in LP(-o0,0).

This result follows easily from an application of Holder's inequal
ity to the difference of Hw and the Hilbert transform Hl' The
proof is left to the reader, (cf.[2], th. 3).

Proof of lemma 7. Calling w(t) = ltl—b(1+|tl)b_a and r(x,t) =

= Ix/tI/pa , I) and II) of lemma 8 are reduced to:

a-b

(51) J |(1+ x|

1+|yx|) lyl™® - 1||y1'1/p -yt dy <M , a.e. x,

+° a-b
(52) J )(}:lﬁ(l) lyl® - 1\|yl'1/q [1-yl~l dy <M , a.e. x.

Assume u and v positive, then,

v v 1 1 +uv v A1
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From this follows:

a-b
(54) - 1 = < (_l*u ) v b o< 1 . ,
vé v v T+uv vd@ A v
and therefore:
-b
1+u 2 -b 1 1
(55) '( ) v-1|<| -1’v} -1,
1 +uv va /\Vb va va
a-b -b
(56) |(1ZT3V) v -1 |/|v-1|< (v @ yv® -1 v
VoivT® oA ovTP o 1)/1v-1

Since the right-hand side of (56) is bounded in a neighbourhood W
of 1, the left-hand side in (56) is uniformly bounded if v belongs
to W. Therefore, instead of (51) and (52) it suffices to prove
(57) and (58):

+° a-b
(57) f (X Ly E 2 eb iy e ey lay <M, ale. x.

oo 1+lxyl
+2° a-b
I xyl - i}
(58) J {(::—l"le—) y1® 1 gy THeasy )Ty <M, ale. x.

Again from (54) it follows that instead of (57) and (58) it is
sufficient to show that the following integrals are convergent:

had -a -b
5 y “Vy " +1 o -1/p
(59) Jo T y dy

et a b
GRS s o
° y + 1 .

This last integral converges at < if 1/q > a v b and convérges at

the origin if a > -1/p , b > -1/p; i.e. it converges if (50) is
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satisfied. Since (59) is obtained from (60) changing p with q and
the signs of a and b, (50) is reduced to 1/p >-a, -b > -1/q ;
this is again inequality (50). If f and g are bounded functions
with bounded supports away from zéro, then the following equality
between scalar products holds:

§61) K, st 8) = (E K_A,_B;_a,_bg)

. Therefore, if 1 <p < = gnd one of-the operators in (61) is con-

tinuous in LP then the other one is continuous in LY.

jj) Given an interval [c,d ], the Hilbert transform of its charac
teristic function is 1g|(x-d)/(x-c)|. From this easily follows

that K, b:a.B does not transform bounded functions into bounded
LR R ] )

functions, and in consequence p < ® is a_necessary condition for
the operator (10) to be continuous.’ Therefore, by the previous
statement 1 < p <s also a necessary condition for the operator
(10) to be continuous. - - ' '

Assume now 1 < p < e and call p(x) = |x|P(1+[x])27P , o(x) =

= |x|B+|x])AB. If u> 0 and (10)’is LP-continuous, we have:

-+ u )
(62) J pP|H(I)|P dx < C I - gPdx , k>1 ,

—00 u

where H = H1 and I is the characteristic function of (u,ku).

Suppose Ap < -1 , then from (62) we get for-u great enough:

+-00
(63) J pP|H(I)|P dx < 2C 1g k

Since H(I) (x) = 1g| (x-ku)/(x-u)| , if u > = we have:

400 .
(64) 1g|k|P j pP dx < 2C 1g k

-0

Since the integral in the last inequality is not zero and p>1,
(64) does not hold for k large enough. We have proved so that for
the continuity of (10) in LP ¢¢ is necessary that Ap > -1. If

bp < -1, then pP is not integrable in any neighbourhood of the ori
gin and therefore (62) cannot hold. ‘In consequence bp > -1 s nec
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essary for (10) to be continuous. If K, p.a.p 1S continuous in
’ ’ ’

LP, we already know that K A.-B; is continuous in LY. Because
-A,-Bj-a,-b

of the necessary conditions shown to hold, we must have: -1/q <

< -B,-a. That is, B,a < 1/q are necessary conditions for (10) to

be LP-continuous.

It only remains to show that if b < B or A < a, (10) is not conti-
nuous. Because of what we have already shown we may assume that
the remaining conditions in (11) are éatisfied. Suppose that f is
a bounded function with bounded support away from zero. Using the
well-known fact that H™! = -H/m?2 , it easily follows that:

(65)‘ K £) = - 7% § .

A,Bja,b (Ka,b;A,B

Then, if a = A , b = B, (10) is not only continuous but also in-
vertible and except for a constant factor it is its own inverse.
In consequence, (10) maps LP onto LP. But

(66) K f= (K

a,b;A,B £) .8 , g=r/o

A,B3;A,B

If the operator on the left-hand side is LP-continuous, then the
right-hand side must be in LP for every f in LP. Since the func-
tion between parentheses may be any function of LP, g must be
bounded, a contradiction. QED.
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