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CONVEX POLYTOPES IN RIEMANNIAN MANIFOLDS

by Su-shing Chen

1. INTRODUCTION. Let M™ be a n-dimensional Riemannian manifold.
By a m-dimensional convex polytope P® embedded in M® (2 <m < n)
we mean a convex Riemannian polyhedron (for definition, see [11)
embedded in M® bounded by a finite number of totally geodesic sub

m-1

m-l ¢ dimension m-1 such that Py

manifolds PA intersect at lower

dimensional totally geodesic submanifolds P: (0 <r <m-2).

Let various dimensional outer angles of P™ be given. One question
is to find the volume V(P™) of P® in terms of the given outer an-
gles of P®. When m is even (m = 2p) and M" is of constant sec-
tional curvature K (#0), the Gauss-Bonnet formula of Allendoerfer,
Chern, Fenchel and Weil ([ 1] and [2]) implies such a volume for-
mula which might be interesting and seems not to have appeared in
given classical literatures on convex polytopes.

2. GAUSS-BONNET FORMULA OF RIEMANNIAN POLYHEDRA IN RIEMANNIAN
MANIFOLDS.

A Riemannian polyhedron P® is a Riemannian manifold with a boun-
dary consisting of polyhedra P; of lower dimensions for

0 <t <m-1. We denote by X' (P™) the inner characteristic of p",
that is, the Euler-Poincaré characteristic of the open complex
consisting of all inner cells in an arbitrary simplicial or cel-
lular subdivision of P™.

From now on we shall assume m = 2p, that is, m is even.

Let S(P™) be the tangent sphere bundle over P™ that is the bundle
of unit tangent vectors of P™. Let 0:S(P™) — P" be the pro-

jection. Let Ei cee g be the Kronecker index which is equal to
1 k

+1 or -1 according as i1 ... i, constitute an even or odd permu-

k
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tation of 1,...,k. In [2], Chern constructed a (m-1)-form

p-1
® = Lp- I 0t - Y 2\
P =0 1.3...(2p-2x-1)2P"" 1
on S(Pm), where for » = 0,1,...,p-1,
i i i i i
® =Je T N N T TS S ST
11"'12p—1 i, i, i,, P P

There exists a unique closed m-form ¥ on P™ such that

i i
o*(¥) = =L Ie, ) .l A ... Ag. 2Pl

(1P
22pwp p! 1"°12p—1 i, 12P

Let I'(P™) be a outer normal vector field on P™ in S(P™). Then the
Gauss-Bonnet formula for Riemannian polyhedra P™ (m = 2p) in
Riemannian manifolds is given by ([ 1] and [2])

(1 me v - Jy(Pm)o*w - Japm jr(apm)Q - X' (P™)

where I'(3P™) denotes the outer angle at an arbitrary point x of

m-r-1

aP™ which is a spherical cell on the unit sphere S in the

normal linear manifold to P; at x.

3. CONVEX POLYTOPES IN RIEMANNIAN MANIFOLDS OF CONSTANT
CURVATURE K(#0).

Let P™ be a convex polytope in a Riemannian manifold M® of con-
stant sectional curvature K(#0). We shall consider P™ as a convex
polytope in a totally geodesic submanifold N® of M™, The curvature
form @ = (n?) in the principal bundle O(N™) satisfies

n§ =Kol AgJ

where 0 = (Oi) is the canonical form in O(N").

Consequently,

P i iy
J \P:__QL_J J €. A Y R T
p" 22PgP o1 Ly (p™) ipeerigy B 2p
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[ (2p)!1 KP v(P™).
27o,p (2p) (P7)

Since P" is convex, X'(P™) = 1. Hence (1) becomes

J ¥+ 1 = j ’J P .
™ ap™ ‘r(3p™)

m-1
Let 3P® = U U PY. Then we have
. r=0 y u

m-1
on Jocopmy @7 DL L [ e
aP™ /1 (5P™) U r=0 P: r(pi)

Since P: are totally geodesic in N®, we may choose a suitable

frame {el,...,er} on a coordinate neighborhood U in Pi such that
{el,...,er,er+l,...,em} is a frame for N™ and the Christoffel
symbol

r§B=o 1<a, B<r, r+1 <6 <m. (see[3]).

bl

We remark that under the spherical map n from T(Pﬁ) to Sﬁ_r'l
n*(do) = w;;l AL A m%g-l , where do is the surface area ele-
ment of S

m-r-1
" .

It is not difficult to see that

(2) j J s - DY L J- J o -
r 3 - P 1y oPFA, r ry A
Pu r(Pu) s 1.3...(2p-22-1)2 Al qu P(Pu)

_ .ot 1
7P 1.3...(2p-22-1)2P Ayt

[(zx)1(2p-2x-1)!]K‘V(Pﬁ*)r(pﬁ‘)

when r = 2\, otherwise

[ ] Le-o
Pu F(Pu)

Consequently, we get from (1) and (2) the following

. (2p)! KP v(P?Py 4+ 1 =
24Pz P p'
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pil n* (22! (2p-22-1)! K*
r=0 P 1.3...(2p-22-1)2P** 1

) V(pﬁ*) r(pﬁ*).
M

Thus, we can express the volume V(PZP) in terms of outer angles
of P2p and Pﬁx, for » = 0,...,p-1. This will be achieved induc-

tively. When p = 1, we get the usual Gauss formula for geodesic
polygons.
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