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ON A CLASS OF POLYNOMIALS

by D. H. Voelker

ABSTRACT. A class of polynomials is defined and studied. Its
functional relation is given from which the properties are de-
duced. The polynomials are reciprocal of 1st kind, primitive,
monic and positive. Their zeros are simple and real negative.
The coefficients are positive integers and increasing until the
center, then decreasing. They are calculated until the order 12.
Their recursion and generic formulae are given.

1. INTRODUCTION. When the complex Fourier series
©co

Z . ein = f(x) is used for the solution of differential equa-

-

tions of 1st order, one has to use the result that the Fourier

coefficient C, = iK{a (o # ik) corresponds to the function
_ 211e°‘X . . .

f(x) = —“——— 1in the interval (0, 2r); in the case of an

1_e2ﬂa
equation of 2nd order that c, = S — belongs to

(ik-a)

2me®¥ zﬂe2na

f(x) = T (x + Ijzi?z— ). The general case can be broken

. m
down to terms of the form ——iiﬁl—:T (0 <m < n, here and
(ik-a)™ .
throughout this paper) by expansion into partial fractions.
But as the factor (ik)™ means only the mth derivative of f(x),
we need to consider only c = — 1 By induction it can
K (iK-u)n+1

be found that this Fourier coefficient corresponds to the

function
2me®* n 2T o n 2ma -2 v _n-v
f(x) = ———— [x"+ e o) e (e ) (—5—=)" x ]
n!(l_ezwa) vl Y v-1 1_e2wa

where the ¢, are polynomials defined by formula (A).
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2. DEFINING FORMULA

n
(A) ¢ (x) = (1-x)"+ xvzlcnjl) b, ) (1™, eg(x) = 1.

By this definition we can calculate the first polynomials as

follows:

- . - . - 2
¢0(X) =1 H ¢, (x) 1+ x : ¢, (x) 1 + 4x + X ;

_ a2 3 _ 2 3
¢3(x) =1+ 11x + 11x" + x : ¢4(x) = 1 + 26x + 66x~ + 26x" + X
pg(x) = 1+ 57x + 302x2 + 302x° + 57x% + x°.

For n > 5 see Appendix p. 124.

If we replace n in (A) by (n-1) and multiply by (1-x) we obtain

n
dn-1 (1-x)" + szl(z) ¢v_1(x)(1-x)“"“.

I1f we subtract this from (A) and use (ntl)_(:) = (vfl) we find

anothervform of the definition:

n
(B) ¢ _(x) - ¢ _,(x) = xvzlcvfl) ¢,_, ) (1-x)7Y  (n#0)  or also
- n-l n n-v #
(©)4,0) = (+nxde, )+ x T (1)) ¢y GO (1-0) (n#0).

These definitions can be transformed into still other forms if
one applies a priori the relation xn¢n(1/x) = ¢n(x), proved on

p. 118 (3.5) ff. Then the definitions (A), (B) and (C) become

(A 4 ()

n
x-1" + zl(“jl) b, ) x-1Y
\)=

n
(B') ¢, (x) - ¢ _;(x) = zl(vgl) ¢v"1(x)(x-1)“‘“ (n#0)
\)=

n-1 _ i
(€ ¢ (x) = (x*n) ¢ _, (x) + vélcvfl) by )N (nf0)

Definition (A) can be rewritten in shorter form as

o .
(™ ¢ (x) =x ) (ntl) ¢v_1(x)(1-x)n'v , but then we have to
v=0

define ¢_1(x) to be 1/x. Also, (D) cannot be transformed by the

relation (3.5) because the latter is not valid for n = -1.

4
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A1l the above defining formulae are used in this paper only with
¢0(x) = 1. It should be pointed out that (A), (B), and (C) can

be generalized either by another choice of ¢0(x) or by a [a gen-
erall ¢0(x). (A'), (B'), (C') and (D) then become useless.

From (A) or any of the other definitions it follows that the
¢n(x) are polynomials of degree n. Their absolute term is always

1, since (2.1) ¢n(0) = 1.

If we set x = 1 in (A) we obtain ¢n(1) = (n+1) ¢n_1(1) and by
iteration (2.2) ¢ (1) = (+1)!

As to other properties of the ¢n(x) it is advisable to establish
first a functional relation for ¢n(x) and then find the proper-

ties from it.

3. FUNCTIONAL RELATIONS.
A functional relation for the ¢n(x) of fundamental importance is

(3.1) 6, () = (14nx) ¢ (x) + x(1-x) ¢!_, (x).

n
Proof. The derivative of (D) is ¢!(x) = ] (™1 by () (1-x)77V4
v=0

+ X
v

n
0(“31) 8l (x) (1-0)™Y - xvgoc“tl)¢v_1(x)(n-v)(1-x)n‘”'1 :

e~

In the second sum we insert ¢v—l(x) from formula (3.1) which is

supposed to be valid for n as stated. Then the second addend be-
n n

comes  } (™M) o ) (1-x)* V7o T (*Th (1evx)e,_, (x) (1-x) 77V
veg VY v veo VY v=-1

from which we obtain that

o n
op(x) = Zo(":l) ¢\)(x)(1—x)“"’"1 - (n+1)x zo(ntl)m_x)n—v—l :
v= ve

Using (D) on the second sum we find that

n
$200 = 1 CID 4, 100"+ (7h e 0007 -
- (@) 6 () (1-x)7h

On the right side, only the first term remains. Applying to it
definition (C) we find finally



x(1-x) ¢)(x) = ¢ . (X) - [1+(n+1)x] ¢ (x) , and this is (3.1)
for (n+1) instead of n.
Formula (3.1) is better suited for the numerical calculation of

the ¢n(x) that the defining formulae of section 2. The table of

coefficients on page 124 has been calculated by the use of (3.1)
through n = 9.

An immediate consequence of (3.1) is obtained by use of (C),

) ' _ E n+l 1 n-v
(32 e = 1 (GID 6y (0T
From (3.2) we can find

n+1)

(3.3) ¢!(0) = 2(2™-1) - n (3.4) ¢1(1) = ("3) . m

An important consequence of (3.1) is the relation
(3.5) x" ¢ (1/x) = ¢ (X).

Proof. Let (3.5) be valid for n as stated. Its derivative is

n

mcn'1 ¢n(1/x) - 57 ¢;(1/x) = ¢;(x).'We eliminate the two deriv-
X

atives by use of (3.1) and have

‘ o (1/x) - [1+(m+1)/x] ¢_(1/x)
an—l¢n(1/X) _ xn—2 n+1 n =

15 1
-3 %

0per G0 - [Te(neDxl 4, ()
(1-x)x

. Adding the identity

1+(n+1)x xB ¢n(1/x) - I+(n+)x ¢n(x) we obtain
(

(1-x)x -x)x
+1 (x)

g (10 = B o ginadly T (40 < 4 (00
-x)x -x)x

which is (3.5) for (n+1) instead of n.

The relation (3.5) characterizes reciprocal polynomials.

L, PROPERTIES OF THE COEFFICIENTS.

n
Let ¢_(x) = J a_ x" and insert it into (3.1), the latter written
n \’=0 nv

for (n+1) instead of n. Comparison of the coefficients of x¥



119

(1 < v <n) yields

= + ' - -
a1,y T g,y t (¥Da oy wva - (v-Da, ;) or shorter

(4.1) an+1,v = (v+1)an’v + (n+2-v)an’v_l

This recursion formula holds also when v = n+1 and v= 0 if
a ., = 0 for negative indices.

Consequences of (4.1)

(4.2) ALl coefficients a , are positive integers.

Proof. If ¢n(x) has only positive integer coefficients, the right

side of (4.1) is a positive integer, therefore also a1 v"
s

The coefficients through n = 5 are positive integers, see page 116.

(4.3) The coefficients are symmetrical: an,v = an,n_v

Proof. It is well known that from (3.5) follows Ian | = |a

sV n,n-v‘
(reciprocal polynomials). By (4.2) the coefficients are all pos-

itive, thus R an,n_v, i.e. the ¢n(x) are symmetrical poly-

nomials, also called reciprocal of 1lst kind.

(4.4) a = a = 1. This follows»from (4.3) for v = 0 and from

,0 n,n

(2.1). Thus, the ¢n(x) are monic and primitive.

<y < B

(4.5) 3y < 3, v+l (0 v 5 1).

Proof.

an+1,v+1 - an+1,v = (v+2)an,v+l * (n-Zv)an’v - (n+2-v)an,v—l >

> (\)+2)an’\)+1 + (n—Zv)an,v - (n+2-v)an’v = (v+2)(an’v+1- anrv) > 0.

Thus, if (4.5) holds for n, it holds for (n+1). That it holds for
n=2,3,4,5 is seen on page (p.116)

Because of the symmetry (4.3) the coefficients must decrease mon-
otonically in the second half of the polynomials.

Two particular cases of (4.1) are useful.

(4.6) a ;=2 ; +n+1 (Setv=1in (4.1) and use (4.4))
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4.7) a, o= 2(n+1)a
use (4.3)).

2n-1.n (Set n = 2k-1, v=¢x in (4.1) and
9

The recursion formula (4.1), together with (4.3), (4.6) and (4.7)
as well as (2.2), seems to be the most convenient way to calculate
the coefficients. The table on page 124 has been extended until

n = 12 by this method.

RPN GV TCRA B L
k=0

(4.8)

a =
n,v
Proof. Substitute (4.8) into the right side of (4.1)

(v+1)an’v + (n+2-v)an

oo = (1) fo(-1)‘ (™*2) (w4107
B K=

C@ezew) T DS ) om0 ™h 2 e) [ CDRCED (et ™
k=0 k=1

b o) (e )™ (mezew) T (DR (T2 (a0 -
k=1

=T D0 L) (D) - ez BT - e -
=1

© k=1
2T D 0™ Lo (P ¢ (e -
k=1 K
v +3 +2
=K£0(-1)K (nK Y (v+1-k)" = a1,y " q.e.d.

5. THE ZEROES OF THE ¢n(x).

It is desirable to know where the zeros of the ¢n(x) are situated,

not only to help their numerical computation but also for theo-
retical reasons.

The zeros of the first five polynomials (p.116) can be found by
elementary methods. They are

- -0.268
n=1 , -1 ; n = 2 , -2+ /3 =
-3.73
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_lé%ilﬁi + % /270+26/705

1]

{-0.0431

n=4 -23.20
1 -0.431
_13-/105 ¢ 7 v270-26V/105 =
2 -2.32
n=2>5 -1
— -0.0195
-(14+3/75) + /330+84/75 =
-51.22
- (14-3/T5) + /330-84/T5 = {'0'220
-4.,54
The zeros for n = 6 and n = 7 are (by approximation)
n==6 -0.00915 ; -0.123; -0.535 ; -1.87 ; -8.16 ; -109.3
n=7 -0.00438 ; -0.0717 ; -0.319 ; -1.000 ; -3.14 ; -13.96 ;
-228.5.

The zeros are all simple, real negative and are separated by the

zeros of the next lower polynomial.
(5.1) These are general properties of the
Proof. Let xnv(1 < v < n) be the (simple)

X <x
nn n,n-1

<. .0 <x <x < 0. Then,
n n

2 1
different signs at two consecutive zeros,

$,(x) .
zeros of ¢n(x) such that
the derivative ¢;(x) has

and equation (3.1) be-

comes, for (n+1) instead of n and for x X

nv ?
¢n+1(xnv) = nv¢;

ative for all v. Therefore also ¢n+1(x)

(1-xnv)x (xnv) where the factor of ¢£(xnv) is neg-

has different signs at
two consecutive zeros of ¢n(x) so that between them must lie at
least one zero of ¢n+l(x). Thus we have at least (n-1) different

zeros of ¢n+1(x). Another zero must lie between and 0

< x

x n+l,1

nl < 0) because of ¢n+1(0) = 1 and ¢n+1(xnl) <0.

Corresponding to this zero X 4110 another zero must exist, found
’
beyond X .» as the polynomials are reciprocal and

._1__ X = 1
s = —
xnl n+l,n+l xn+1’1

zeros of ¢n+1(x), they must be simple. They lie all on the real

an . Since we have now (n+1) different

negative axis and are separated by those of ¢n(x). Thus, the

statement (5.1) has been proved.
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The fact that the zeros of the polynomials ¢n(x) lie on the neg-
ative real axis makes ‘the ¢n(x) a subclass of the class of
Hurwitz polynomials, i.e. of those polynomials whose zeros lie
all in the left half plane. Hurwitz polynomials play a role in
considerations of stability.

As the Hurwitz polynomials are positive, i.e. assume for values
of the right half plane only values of the same, the ¢n(x) are
also positive polynomials.

Some more properties of the zeros of ¢n(x) are easily obtained.

If we set x = -1 in (3.5) we have (-1)"¢_(-1) = ¢_(-1) which
implies ¢n(-1) = 0 for odd n. For even n, x = -1 cannot be a

zero of a reciprocal polynomial

The zero x = -1 is the only rational one; all others are irration-
al because the real zeros of a polynomial with integer coefficients
are either integer or irrational.

Besides, our polynomials are reciprocal so that if p (integer) is

a zero, also % would be a zero, which is only possible if p = + 1.

But p = 1 cannot be a zero because of the positivity of the co-
efficients (4.2) so that x = -1 is the only rational one.

A look at the cases 1 < n < 7 shows that the zeros of ¢n(x) lie

between -a_ __, and -;l— .It can be proved, that the relation
s

nl
(5.2) -a_ __, <x_ <-2 (1<v<n) holds for all n.
’ nl
4n, v+l
Proof. For 1 < n < 5 is max —%L——— =a_ . (p.116).
nv

For arbitrary n we have, using (4.1),

an,v+1 + nt+l-v

an+1,v+1 (v+2)an,v+l * (n+1—v)anv - anv v+2
a
an+1,v (v+1)anv + (n+2—v)an’\)_l v+l | n+2-v :,v—l
v+2 v+2 nv
This fraction assumes a maximum when v = 0:
qn+l, v+l
—2— = 2a +n+1-=a cfr. 4.6) = a
an+l, v nl ) n+l,1 ( ) n+l,n
Gn+l, v+l
Therefore, we find by Kakeya's theorem (|x_,, | < max AT
’

n+l,v
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- < < i
that 2410 \.xn+1,v for all v < n+1 and , as the polynomials
are reciprocal, also x < - L . Thus, we have (5.2) for

n+l,v a 1.1
b

(n+1) instead of n.

The zeros X1 accumulate toward the origin if n + =,

1
Proof. If x > - 7 < %1,

n-1.1 we have, on ground of (5.1), -

[STENTIN

<x we have ¢;_1(—%)‘> 0 and, because of (3.1),

nl"®

¢ (-1y - ot ¢!, (-1 <0, which implies, together with ¢ (0)=1,

n2
that A <x < 0. Thus we have 1lim x = -0, and as the ¢ _(x)
n nl oo nl n
are reciprocal also lim x = -»,
n->o0 nn

Clarkson College of Technology
Postdam, New York, E.E.U.U.

Recibido en mayo de 1972.
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