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PRIME IDEALS AND SYMMETRIC IDEMPOTENT KERNEL FUNCTORS

S.. K. Sim

INTRODUCTION,

Let R be a ring with unity element and 7 a prime idempotent ker-
nel functor on Mod-R, the category of unital right R-modules. We
will denote by Ter(r) the tertiary radical of a supporting modu-
le for 7. In the first part of this paper we give neceésary and
sufficient conditions for R/Ter(r) to be r-torsion free while in
the second part we apply this result to study symmetric idempo-
tent kernel functor. It is shown that, every symmetric prime idem
potent kernel functor on Mod-R, where R is a right ndetherian
ring, is in fact the symmetric idempotent kernel functor associa-
ted with some ideal of R. This extends a result of [4].

Throughout, R will be an associative ring with unity element,
module" will mean unital right module. The category of R-module
will be denoted by Mod-R.

1. TERTIARY IDEAL OF A PRIME IDEMPOTENT KERNEL FUNCTOR.

We first recall a number of definitions and results concerning
idempotent kernel functors. Our main reference is Goldman [ 2],
whose terminology we follow.

A subfunctor ¢ of the identity funétor on Mod-R is called an idem
potent kermel functor if ¢ is left exact and such thac ) '
o(M/o(M)) = 0 for all M € Mod-R. M is said to be g-torsion if
o(M) = M and o-torsion free if o(M) = 0, To each R-module S,
there is an idempotent. kernel functor Tgy OR Mod-R} given by

T¢M) = {meM | £fm) = 0 for all £: M — E}

where E is the injective hull of S. Note that § is T 4-torsion
free and for any idempotent kernel functor ¢ on Mod-R such that
S:-is o-torsion free, we have ¢ < Tg» in the sense that o(M) &
& 7g(M) for all M € Mod-R. In case § = R/K for some right ideal
K of R, we will write By for Tge An idempotent kernel funqtgr'a
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on Mod-R is called a prime if 0 = 7, where S is a supporting modu
le for ¢ i.e., S is o-torsion free and S/S' is o-torsion for each
non-zero submodule S' of 8.

Let M be an R-module. The two-sided ideal of R consisting of all
elements which annihilate a large submodule of M is called the
tertiary radical of M and is denoted by Ter(M). It is well-known
that Ter(N) = Ter(M) for any essential extension N of M. For a
prime idempotent kernel functor ¢ on Mod-R, we define the tertiary
ideal Ter (o) of o by Ter(s) = Ter(S), where S is a supporting mo-
dule for 0. Ter(¢) is well-defined because all o-injective suppor-
ting modules for ¢ are isomorphic (see [2], Theorem 6.4).

EXAMPLE 1.1. Let R be a commutative or right noetherian ring and
P a prime ideal of R. Then ¥, is a prime idempotent kernel functor
on Mod-R and Ter(#P) = P.

Let M be an R-module. We will denote the two-sided ideal of R con-
sisting of all elements which annihilate M by Ann(M). Note that if
M is o-torsion free for some idempotent kernel functor ¢, then so
is R/Ann(M) as we can always embed R/Ann(M) into the direct pro-
duct of cyclic submodules of M.

PROPOSITION 1.2. Let 0 be a prime idempotent kernel functor on

Mod-R. Then Ter(o) = )} 1, where ® 78 the family of all two-sided
Ied
ideale I of R such that I # R and R/1 is O-torsion free.

Proof. Let S be a supporting module for ¢. Then for each I € &
there is a non-zero R-homomorphism f: R/I — E, where E is the
injective hull of S. Let M = £(R/I) N S. Since M is also a suppor-
ting module for o, we have I € Ann(M) C Ter(M) = Ter (o). Hence

J I CTer(o). On the other hand, if x € Ter(¢), then x € Ann (M)
Ied )
for some large submodule M of S. Since Ann(M) € &, we have

x € J 1. It follows that Ter(s) = ] I.
Ied Ied

A non-zero R-module M is called a prime R-module if Ann(M) =
= Ann(M') for every non-zero submodule M' of M.

THEOREM 1.3. Let 0 be a prime idempotent kernel functor on Mod-R.
Then the following are equivalent:

(1) R/Ter(o) is o~torsion free.

(2) Every supporting module for ¢ contains a prime submodule.
(3) o = Ty for some prime R-module M.

(4) Ter(o) = Ann(U) for some prime supporting module U for 0.
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Proof. (1) = (2). Let S be a supporting module for o. Since
R/Ter(o) is o-torsion free the injective hull of S contains a non-
zero homomorphic image of R/Ter(c), say M. Then M N S is a prime
submodule of S because for any non-zero R-submodule U of M N S we
have Ann(U) C Ter(U) = Ter(oc) € Ann(M n S) C Ann(U).

(2) = (3) is clear.

(3) = (4) follows from the fact that M contains a supporting modu-
le for o.

(4) = (1) is clear.

REMARK 1.4. Let 0 be a prime idempotent kernel functor on Mod-R.
If the conditions of 1.3 hold, then Ter(o) is a prime ideal.

REMARK 1.5. Let 0 be a prime idempotent kernel functor on Mod-R.

If R satisfies the maximum condition on two-sided ideals I for

which I # R and R/I is o-torsion free, then the conditions of
1.3 hold.

Indeed, let S be a supporting module for ¢ and U be a non-zero
submodule of S such that Ann(U) is a maximal element in the set
{Ann(M) | M is a non-zero submodule of S}. Then U is a prime sub-
module of S. Hence condition (2) of 1.3 holds.

The following example, which is essentially due to Fisher ([ 1],Ex-
ample 1), shows that there exists a prime idempotent kernel func-

tor whose tertiary ideal is not a prime. Thus the conditions of
1.3 are not always satisfied.

EXAMPLE 1.6. Let FV be a countably infinite dimensional vector
space over a field F and let {el,ez,e3,...} be a basis for FV.
For each i € N, let Vi be the subspace of V generated by
{ei, €1 Ci420 R
Consider the subset H of HomF(V,V) consisting of all linear trans-
formations h satisfying the conditions:

m (Vi)h cV. for all i e N

1
(z)  ph

]

0 for some j € N

For each n € Z, let kn be the linear transformation given by

(ei)kn.= ne, for all i € N, Also, let t be the linear transforma-
tion given by

(et = { i+l ¢

0 , 1if i is even

if i is odd
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for all i € N, Then R = {h + tkn + hm | h € H, myn € Z} is a sub-
ring of HomF(V,V). One can show that‘{Vi | i € N} is the family

of all non-zero R-submodules of V and then deduce that V is a sup-
porting module for o = Ty* As we have (tkl)R(thl) C HC Ter(V) =

= Ter(o) and tkl ¢ Ter(V) = Ter(e¢), Ter(c) cannot be a prime ideal.

2. SYMMETRIC IDEMPOTENT KERNEL FUNCTORS.

For an idempotent kernel functor o on Mod-R, let F(¢) be the idem-
potent topologizing filter associated with ¢ i.e., F(¢) is the fa-
mily of all right ideals K of R such that R/K is o-torsion.

Following [ 4], an idempotent kernel functor ¢ on Mod-R is called
symmetric if every right ideal in F(0) contains a two-sided ideal
in F(0). It is shown in [4] that if R is a right noetherian ring,
then for every prime ideal P of R there is an associated symmetric
idempotent kernel functor o, ., defined on Mod-R by

oo pM) = {meM | mRs = 0 for some s € R-P}

PROPOSITION 2.1. Let R be a right noetherian ring and 0 a prime

idempotent kernel functor with Ter(o) = P . Then Or-p <o0.

Proof. Since R is right noetherian, conditions of 1.3 hold and
so P = Ann(M) for some prime supporting module M for o. Let

m.€ QR_P(M). Then mRs = 0 for some s € R-P If m#0, we would have
s € Ann(mR) = Ann(M) = P which is a contradiction. Thus M is

Op_p - torsion free and hence 0, , < 0.

PROPOSITION 2.2. Let R be a right noetherian ring, P a prime ideal
of R and 0 a symmetric idempotent kernel functor on Mod-R. Then

0 <0, p f and only if R/P is 0-torsion free.

Proof. Assume that R/P is o-torsion free. Let K € F(0). Then there
exists a two-sided ideal I of R such that I € F(¢) and I € K.
Since R/P is o-torsion free, I € P and so I n (R-P) # @ which
implies RsR € I C K for some s € R-P. If follows that K € F(oR_P).

Hence 0 < o . The converse is clear because R/P is o

R-P P—t0r51on

R._
free.

The following result extends Proposition 14 of [4] where much
stronger condition is imposed.

THEOREM 2.3. Let R be a right noetherian ring and 0 a symmetric



63

prime idempotent kernel functor on Mod-R. Then 0 = 0 p-p? where
P = Ter(o).
Proof. 2.1 implies Opp <O while 2.2 implies ¢ < Op-p*

Let A be a family of idempotent kernel functors on Mod-R. For any-
M € Mod-R, let o (M) = ﬂAp(M). Then o is also an idempotent kernel
pE

functor and we will call it the <nfinimum of A and denote it by
Inf {p | p € A}. In case A =@, Inf {p | p € A} = =, the idempotent
kernel functor for which every R-module is torsion.

If R is a right noetherian ring, then every idempotent kernel fungc
tor 0 # o has a supporting module. Furthermore, if S is a suppor-
ting module for o then Ter(S) = Ter(fs) is a prime ideal of R.

THEOREM 2.4. Let R be a right noetherian ring, 0 an idempotent
kernel functor on Mod-R and 7 be the family of all Ter(S), where
S is a supporting module for 0. Then 0 is symmetric i1f and only

if 0 = Inf {0, , | P €m}.

Proof. In case 0 = o there is nothing to prove. Thus we may assume
0.# o and so 7 # @, Since R is right noetherian R/P is o-torsion
free for each P € w,

Assume that o is symmetric. Then, by 2.2 , we have

¢ < Inf {o,_, | Pew}. On the other hand, if X ¢ F(o), then there
is a right ideal L of R such that K € L and R/L is a supporting
module for ¢, Let P = Ter(R/L). Then, by (2.1), Opp S Hp- As

K ¢ F(ﬂL), K cannot be in F(GR_P). It follows that K is not a mem-
ber of the idempotent topologizing filter associated with

Inf {0, ., | P €n}. Hence 0 = Inf {opg p | P e},

The converse is clear.

REMARK 2.5, A different version of 2.4 can be found in ([ 4], Pro
position 10) .One can deduce from 2.4 that if R is a right noe-
therian ring and ¢ an idempotent kernel functor on Mod-R, then

0 =0, p for some prime ideal P of R if and only if ¢ is symmetric
and P is the largest member in the family of all two-sided ideals
I of R such that I#R and R/I is o-torsion free.

We conclude -this note by presenting an example which shows that
for a prime ideal P of a right noetherian ring R, the symmetric

idempotent kernel functor o needs not be a prime.

R-P

EXAMPLE 2.6, Let F be a field of characteristic zero, and let S be
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the ring Flyllx], where xy-yx = 1. It is shown in ([ 3] ,Example 4.5)
that R = F + xS is a right noetherian domain where xS is the only
non-zero two-sided ideal and that R/xS and S/R are two non-isomor-

phic simple R-modules. Since o0 = 0, it cannot be a prime.

R-x8§
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