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LOCAL SOLVABILITY AND CAUCHY PROBLEM
FOR A CLASS OF DEGENERATE HYPERBOLIC OPERATORS

Jorge G. Hounie®

INTRODUCTION.

The Cauchy problem for hyperbolic differential operators with
multiple characteristics has been thoroughly studied in the cons
tant multiplicity case ([ 1], [2] and [3]) but there seems to be
few results when the multiplicity is not constant.

As a first step in that direction, we study here the Cauchy pro-
blem for a class of hyperbolic operators with double characteris
tics at t=0 and simple characteristics for t#0. This is carried

out in the abstract set up of evolution equations ([7]). This

is a simplified commutative model of the microlocal behavior of

pseudodifferential operators and provides a basis for the under-
standing of the latter.

Given an abstract Hilbert space H and an unbounded self-adjoint

positive definite operator A on H, we study evolution operators
of the form

D) P = (3,-ia(t,A)A) (3,-ib(t,A)) + c(t,A)A

wherevat means %— and the coefficients a(t,A), b(t,A) and c(t,A)
t
are power series in A—l, with coefficients in C (J); J an open

subset of the real line containing the origin. These power series
are assumed to converge in L(H,H) as well as each one of their

t-derivatives, uniformly with respect to t on compact subsets
of J.

When the leading coefficients ao(t,A), bo(t,A) are real and van-
ish simultaneously at t=0, we have (an analogue of) a hyperbolic
operator with double characteristics at the origin.,

If we further assume that

* The results of this work are part of the author's doctoral dig

sertation.
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(2) . ay(0) # by (0)

P will have simple characteristics for t#0.

The main result of Chapter I is theorem 2, where we prove that 1o
cal Cauchy problem is well posed for an operator satisfying (1)
and (2). In Chapter II we study an analogous class of operators,
now in pseudo-differential form. The methods applied in Chapter I,
namely, asymptotic expansions, do not lead straightforwardly to
results for pseudo-differential equations and we only give suffi-
cient conditions for local solvability. g

We intend to treat the Cauchy problem for this class of pseudo-
differential operators in a future work.

I am indebted to Professor Treves, who introduced me to the sub-
ject and suggested the proof of Proposition 2.1,

CHAPTER 1.

1. In the first chapter of this work, we will follow the nota-
tions of [4]. A will denote a linear, densely defined, unboun-
ded operator which we assume self-adjoint and positive definite.
Models for A are self-adjoint extensions of (1-ax)° or |Dx| in
n space variables.

We will consider differential operators on the real line, where
the variable is denoted by t, of the following kind

(1.1) P = )

.(t,A)Arai
r+j<m

r,]

where r,j are positive integers.

The coefficients C (t A) belong to the ring QA(J) defined as
follows: J is an open subset of the real 11ne, the elements of
QA(J) are series in non-negative powers of A”", with coefficients
in C”(J), which converge in L(H;H) (the B-space of bounded linear
operators on H), as well as each one of their t- derivatives, uni-
formly with respect to t on compact subsets of J.

The operators of the kind (1.1) form an algebra which is denoted
PA(J). The operator given in (1.1) is said to be of order m.

We will use the scale of '"Sobolev spaces" HS (s € R) defined by
A: if s > 0, H® is the space of elements u € H such that ASu € H,
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equipped with the norm i|u||s = nASuuo, where | “0 denotes the norm
inH = H, If s < 0, H® is the completion of H for the norm
lui = HASuﬂo. The inner product in H® will be denoted by ( , ). .

8
For every s,me R A" is an isometry of H® onto H®™™,

We denote H” the intersection of the spaces H®, equipped with
the projective limit topology, and H™" their union with the in-
ductive limit topology. H” is an F-space and H™™ can be identi-
fied with the dual of H” by the pairing (u,v )= (u,v), defined
on H® x H™™.

Let J be an open subset of R. C*(J,H”) is the space of C” func-
tions in J valued in H®. It has a natural F-topology. If Kc J
is compact, C:(K,Hw) denotes the subspace of C*(J,H”) of func-
tions supported in K. We give C:(J,H“) the inductive limit topo
logy induced by the C:(K,H”) as K ranges over all compact sub-
sets of J,.

We will denote D'(J,H™") the dual of C:(J,H”), and refer to it
as the space of distributions in J valued in H ™.

DEFINITION 4.1. Let P € PA(J) be of order m, and assume that J
contains the origin,

We say that the two sided local Cauchy problem is well posed if
there exist a mneighborhood of the origin J'(0)cC J, such that
for every f € C¥(J,H”), hl""’hm-l € H” there exists a unique
ue C”(J',H”) such that

P =f in J

u
(1.2)

i .
3Tu = h, 0<i<nm-1
t o0 i

If the same holds whenever f=0 we say that the homogeneous
Cauchy problem is well posed. The forward Cauchy problem is de-
fined in the same way with J' replaced by a semi-open interval

[0,€).

n . P

Let c(t,A) € Q,(J). Then c(t,A) = ] < (t)A™I, > (t) € c7(J1,0).
j=0

If A is in the spectrum Q(A) of A the series c(t,A) =

©

= ] cj(t)x'j converges uniformly with respect to t on compact

=0
subsets of J, together with its t-derivatives.

To every differential operator

j. k
P = C. ,(t,A)Ads P, (J
jHZtm k(830 e P, (J)
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we associate the ordinary differential polynomial

d_3) = jyk
P(5psM) j“{“m cj’k(t,x)x 3, » A Eo(A).
Here A plays the role of a (real) parameter.

From now on we assume that the coefficient Co m(t,A) of 3: is
L]
identically one (hence the "t-direction'" is non-characteristic).

THEOREM 1. Let P € PA(J). The following statements are equivalent
a) The homogeneous two-sided Cauchy problem for P is well poéed.

b) There exists J'(0) CJ sueh that every solution u(t,r) of

(1.3)

uI = a, a, €C
t=0

as well each one of its t-derivatives grows slower than a pow
er of A when A € o(A) uniformly in t € J'(0).

C) The m solutions ua(t,x) a =1,...,m of

P(%?,A)ua =0

(1.4)
i _ i ,
atu°|t-0 8, verify
sup, |G tu, (6,0 < k(1+2)P, X € J(A), for a certain
te
O0<igm-1

neighborhood of the origin J', and positive constants k, p.

REMARKS. 1) When a function u(t,A) verifies a growth condition as
in (b) of Theorem 1, we say that u(t,\) is tempered.

The proof of Theorem 1 is rather simple and we do not include

it here. It makes use of Ovsjannikov's theorem for singular op-
erators in Banach scales (see [2] and also [3]) and the spectral
resolution of the self-adjoint operator A.

2) Since Theorem 1 reduces the study of the correctness of the
Cauchy problem to the study of the growth of an ordinary dif-
ferential equation, it will produce immediate answers in the ca-
ses where the 0.D.E. can be integrated, for instance the first
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order .and the constant coefficient cases.

2. We now study a class of second order evolution operators of
the form ’

(2.1) P = (at-ia(t,A)A)(at-ib(t,A)A) + c(t,A)A
where a, b, c are elements in QA(J) and J contains the origin,
We assume that

(2.2) ao(t) and bo(t), the Zeading coefficients of a(t,A)
and b(t,A) are real

(2,3) aO(O) = bo(O) =0, a'o(O) - b'o(O) #°0

We can regard P as a hyperbolic operator with double characteris-
tics at t=0 but simple characteristics for t#0.

THEOREM 2. Let P = (8, -ia(t,A)A) (at¢ib(t,A)) + c(t,A)A belong
to PA(J) and assume that (2.2) and (2.3) hold. Then, the two-
sided local homogeneous Cauchy problem for P is well posed.

Before embarking in the proof of Theorem 2 let us make some pre-
liminary remarks. According to Theorem 1 we can replace the ope-
rator A by a real parameter A € o(A) and deal with the correspon
ding ordinary differential equation. Since there is no possibi-
lity of confusion we denote the parameter with A inst?ad of A.
We use the notation

X = 8t-ia(t,A)A », Y = 8t~ib(t,A)A , &6 = a(t,A) - b(t,A)

We see that XY+c(t,A)A = YX+C#(t,A) for a certain c#(t,A) (< PA(J)'
Therefore there is no restriction if we impose

(2.4) §'5(0) >0
To have some insight of the problem, let us look at the simplest

example of operator occurring in Theorem 2, namely

P = (3t—itA)(3t+itA) + cA

where ¢ is a complex constant.

It is easy to check that the change of variable s = YAt takes
Pu = 0 into the Weber equation [(as—is)(as+is) + clv = 0 whose
solutions are known to be tempered in s (for s real).
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We have an estimate
k
[v(s)| + [v'(s)| < c(1+]s|M)
Now the solutions of Pu = 0 can be written u(t,A) = v(/At) and we
conclude that u(t,A) is tempered.

In the general case, we reduce the problem introducing suitable
(formal) changes of dependent and independent variables to a sim
ple form, where standard techniques give asymptotic expansions
for the .solutions and provide the necessary estimates.

PROPOSITION 2.1. Let P = XY+C(t,A)A and assume that (2.4) holds.
-]

Then there exist a formal series s(t,A) = ) sj(t)A—j,
j=0

8

8.A"d
j

N~ 8

a(s,A) = [ (DA, ) -

YjA_J, o(A) =
j=0 j

0 3

e~ 8
=}

such that
a) so(t), ao(t) are real; 5'0(0) #0
b) SO(O) = Sj(O) =0, j=1,2,...

¢) The change of variable s = s(t,A) takes P into

s:[(as—ia(s,A)A)(as-ia(s,A)—isA-e(A))+y(A)A]

REMARKS. 1) The functions sk(t) are defined in a certain neigh-
borhood of the origin. The series s(t,A), a(s,A), y(A), e(A)
are not convergent in general. This is not an inconvenience for
we ultimately replace them by their partial sums with a large
number of terms.

2) Since the sj(t) are complex valued functions for j > 1,
s = s(t,A) is not in general a real change of variable. Thus
the notation

s t
J 0 a(s)ds will always means I B a(s(t))s'(t,A)dt
0 0

Proof of Prop. 2.1. We may write

P=XY +cA = (at-iaA)(at—ibA) + CA =
(2,5) s
. _ o2 s a_ tt - i b &
= st[(as i3 A+ — )(as i3 A) + 3 Al
t sy t st

where we have used s:_lat =3, Since we want (2.5) to be
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(as-iaA)(as-iaA—isA+e(A)) + y(A)A it will be enough to take

P20 Bt W= ieA
s 2
t s

i A - W= iaA+ i5A - 8(A)

s
W e Wi L%:al A+ )+ y(A)A = S A
t

s

£
s2
t t

Thus we need to determine W, s, vy, o satisfying the system of
equations
i)Y Ws_ - (s, )2W2-W(iss A-s_ ) + y(s.)2A = cA
t7t t t Tttt t
(2.6)

Coy . . 2 2
ii) 16Ast S See * 2W = 1s(st) A + e(st)

We solve the system formally setting

W= 7} Wi(t)A_i y(A) = ] YiA-i
i=0 i=0

s(t,A) = E si(t)A_i 8(A) = E eiA‘l
i=0 i=0

Insertion into equation (2.6) and identification of like coef-
ficients leads to recursion formulas

2 _
16gWolspdg * volsdg = <
(2.7)0
. . 2
160(st)0 = 150(st)0
-iW, 8 (s, )y + B, + vy, . (s.)2 = c
k+1°05¢) o k k+1 8¢l k+1
(2.7)k
. . 2. ..
1800 )pqy * Dy = sy (5)g*2is0(s) (s )y *
2
* ek(st)o
where
k 2, .2
By = jgol(st)jcwt)k-j-(st)j(w PSR SO ITL PR CHS P P

2
MR FLCIOPISTNY and

K ) k=1 ) )
k- .zo(st)k6k+1—j LA O] [isp(se)py*05(s)y )

o
I

j= j=0
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We observe that Dk depends on Wo,...,Wk; SgreeesSys 60,...,ek_1
and Bk depends on WO,...,Wk; Yoo oYy Sgr++r9SErS4r”
We proceed by induction.

The second equation in (2.7)0 is s =8 that integrates to

1

0%0 0

£ 1/2 o .

s.(t) = (2 §.(t)dr) . Since §.(0) = 0, &' (0) >0, s,(t) is
0 0 0 0 0 0
smooth and 5'0(0) > 0. Now we pick up Yo = co(o). That makes
co-yo(st)g divisible by 8o in C® and determines Wo.
Assume we have determined WO,...,Wk, Yoreee oYy Sgree Sy
IYRRREL R
The second equation in (2.7)k can be written after replacing
8q by sys'y

. v 2 o s Y ) = gl '
Dy -8, (s'y) 1(5p4 (') *505 " 08 1) = 18" (5p4150)

Hence we can define

2
t D, (t)-0,(s",) (1)
_ 1 k k 0
S1 () = is JO 5" dr
D, (0)

Moreover taking 0y = we can achieve sk+1(0) =0,

(s' )20
This determines Bk' Now we can choose Y41 SO 2S to make

2 PR .
Ck+1'Bk'Yk+1(S'0) divisible by 60. That determines Wk+1 and

completes the induction step. Q.E.D.

Let's go back to the operator
¥ = (3 -ia(s,A)) (2 -1a(s,A)-isA-0(A)) + Y(M)A

obtained from P by the change of variable s = s(t,A) and assume
for simplicity that all terms are convergent series.

We observe that if
s s? sq o s s? s
p - exp—[J ia(o,A)Ado+i S-A+e (AP exp[J ia(0,A)Ado+id +0 (A)3]
0 0
= : 6 (A .
then P = (as+ I%A"‘LZL)(BS - 1,%A_-6_§Al) + y(A)A
Since the leading term so(t) of s(t,A) is real the change of inde

pendent variable introduced by the exponential is tempered. Thus,
the Cauchy problem for P# is well posed if and only if it is well
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posed for P.

We investigate how the growth of the solution u(s,A) of

.Pu=0
(2.8) u(0) = a
u'(0) =8
when |Re s| <M, |Im s| < % and A > «. The change of variable

o = /As-takes (2.8) into '

.o 1 6(A) < _:0 1 8(A =
[(ad+1—2- + ?}A-—) (30 12 5 Fl) + Y(A)]V 0

(2.9) v(0) = a

v'(0) = 8_
VYA

That is the solution u(s,A) of (2.8) can be expressed as u(s,A) =

= v(/As,A) where v(o,A) is the solution of (2.9). We must study

the behavior of v(o,A) in the expanding sector |Re o] <

< MYA |Imo| < %: . Since v(0,A) depends analytically on A_l/z,
A

given o, there exists K > 0 so that |v(0,A)| < K for lo] < Tgs
with a similar estimate for v'(o,A). It is enough to consider
o] > 0y From now on we take Re ¢ > 0; the analysis for Reo< 0

. . . - l 8 (A) - - (v
is similar. If we set (aU i3 5 T v W and Y (w) we can
write (2.9) as
i % + e(i) 1
2/A
(2.10) Y' = Y
-y (A) (1 g+ U,

2VA

Writing z = i % v 208) for simplicity of notation (2.10) yields

i2vA
(2.11) Y [[i 0} 1|0 " (A, + 1A
. '= 2 + = =z + =
0 -i z “y(A) 0 0 z 1

Since Ao is diagonal with distinct eigenvalues one can find matri
ces
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r
P_ = ,r =21, B_ = , T =0
0 T olo b2?

r T

such that the formal change of unknown Y = PW takes (2.11) into

o ®©
W' = zBW, where P = ] P z7F + I and B = y B_ z"F, The matri-
r=l ¥ r=0 ¥
ces Pr’ Br are determined by the recurrence relations

i 0 1 0
BO=AO= P0=I=
0 -i 0 1
n .
rZO Anpn—k " Pn-kBk = -(n-k)Pn-k n>1

with the convention P_, = 0.

Computation of the first terms gives

21
B, = 0 B, = |
1 ’ 2
0 1(A)
21

We conclude that for Re o > o, (2.10) has a fundamental matrix
solution of the form

ab
(2.12) Y(o) = expliz? [; _0}1 223 10 -1 y(q,A)

with Y(o,A) bounded on o, <Re o < MYR; |Im ol < 4% .

C
Using the fact that |Im z|<;7% (for a certain constant C,) and
A

(2.12), it is easy to derive that the solutions of (2.10) are

tempered and grow slower than |o|P at infinity where p is any
Y :
constant bigger than |—%|. In turn, this implies that the solu-

tions of (2.8) are tempered. This considerations prove Theorem
2 at least when the change of variable given in Prop.2.1 gives
rise to convergent series.

Proof of Theorem 2. Let u(t,A) be the solution of
P =0
u
u(0) = o
u'(0) =8

(2.13)
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We take % >p > % Co(o) and consider the partial sums of order N
of the series s(t,A), a(t,A), e(A), vy(A):

sVet,A) = If s, (t)a™1 aN(t,A) = DZ‘ o, (0)A™E
’ . i ! . i
i=0 i=0

oNA) = ] et YWy = T oya
i=0 i=0

Then, there is a first order operator R f (t,A)? +gN(t 4)
with fN,gN € QA such that the change of varlables s ='sy (t,A)

takes Py into (s ) [(3 -ia A)(a -iaMA-isA- eN)+yNA] According
to the analy51s of the convergent case the solutions of P N = 0
grow slower than

N

Y Cy(0)
V/RP, p > -3 = 2
Taking two linearly independent solutlons Vis Vy of P.v., = 0,

N 1
P v, = 0 (say v, (0) = o0, v'l(O) IR (0) =1, v' 2(0) =
can construct a Green function G (t,r A) such that if

T
(GNf)(t) = J GN(t,r,A)f(r)dr then

T

PNGNf = f
G f =0
Nle=0
(G £)" =0
N t=0

Noticing that the Wronskian of v, and v, is bounded away from
zero (uniformly in A) we get an estlmate

|6 (t,t,A)| <K AP
Now we can write the solution u(t,A) of (2.13) as
RN
B(EA) = vy (6R) + Gy w) (E,A)

where vN(t,A) verifies PNvN =0, VN(O) = a; V'N(O) = B.

In view of the estimates for GN’ Vs V’N we have

|t]sT

sup (Ju(t,A)] + |u'(t,A)]) < C,AP + czAP‘“lsTp (Ju(t,a)| +
t|<T

[u' (£,A)])
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”C » Cy Constants. When A'is big enough C Ap ¥ < 7 and we' conclu-
de that u(t,A) is tempered. The theorem 1s proved,’ e

CHAPTER 1.

1. We consider an analogue of the operator P of Theorem 2, now
in the framework of pseudo-differential operators. and.give suf~
ficient conditions for local solvability.

Explicitely we assume that
(1.1) P(x,t,0_,D,) ~ (D ~ta(t,x,D,)) (D -tb(t,x,D.))*c(t,x,0)

where (x,t) denotes a point in R x R, a(t,x,D ), b(t,x,D),
c(t,x,D,) are pseudo-differential operators of degree one acting
on the x-variable, depending smoothly on t such that
(1.2) (a-b) (t,x,D ) i8 elliptic
(1.3) The prineipal symbols a; (t,x,D, ), b (t x,D ) of

a and b are real

Let us write

(1.4) P ~D% - r (x,t,D)D, + 1,(x,t,D)

We. see that the principal symbols ol(rl), °2(r2) of 1, 1,
are

o (r))(x,t,8) = tla;+b)) (x,t,8)

(1.5) .
GZ(TZ)(x,t,E) =t (albl)(x,t,ﬁ)

We start getting rid of the term in Dt' Consider the linear ope-
rator U(t) defined by ‘

1
DtU = ——2-U
(1.6)
U(0) = Identity
Since r; is essentially self-adjoint, the unique solution of

this 'problem is a function of t with values in the group of
invertible operators in sz. The inverse of U(t) is the solu-
tion V(t) of the problem ‘
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1
DtV = -V e

(1.7)
V(0) = Identity

It has been shown in [4], that there exists a Fourier integral
operator K(t), depending smoothly on t and acting on the x-va-
riable, defined by an oscillatory integral

K(t) = jkcx,t,s)e“‘""t'E’ﬁ(e)da

1
w)h
which approximates U(t) in the following sense. Given a positive

integer k and real numbers s, s', there exists C= C(k,s,s') >0
such that

(1.8) max  sup |3l (U(t)-K())ul, < Iul_,
Osjsk |t]sT

briefly U(t) ~ K(t).

Let Q be pseudo-differential operator in the x-variable of de-
gree m. The proof of Theorem 7.1 in [4] shows that there is a
pseudo-differential operator Q#(t) of degree m acting on the
x-variables and depending smoothly on t (for |t| small) such
that

# -
(1.9 Q" (t) ~ K™ (t)QK(t)
where ~ stands for the standard equivalence of pseudo-differen-
tial operators.

Moreover, the correspondence Q Q# takes elliptic operators
into elliptic operators.

We now eliminate the term in Dt introducing the '"change of un-
known" v = Uu.

We have

v, = Utu + Uut

Vee T Uget * 20.u, + Uug,
using (1.6) we obtain

PU = UD? + ir, U, - U, + T,U

Hence
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-1

2 -1, -
vty = p? + uThiru, - Uty ¢ U0
(1.10) .2 .
=p? -t sicdy - rju=piultq
4 2 ¢ 2 t

Let q, be the principal symbol of the operator Q appearing in the
right hand side of (1.10), q2 the principal symbol of

Q" ~ k"1 (t)QK(t). Then
2 a-by?2
(1.11) a,(x,t,8) = t°(357) (x,t,8) and
v # #. t2 :
(1'12) ngxoltsao) = 02(Q ) = —f [(a'b)(x(xoatoeo)st’

2
E(xg,t,8)]

where x(xo,t,ao), E(xo,t,zo) are the solutions of the Hamilton
equations

ax _ Ty -
It -gradE 01(—5) x|t=0 = X,
dg _ oL -
It = erad, 9,(7) tloo = o

A consequence of this discussion is that it will be enough to
consider operators

2 2 .
L = Dt -t R(x,t,Dx) + s(x,t,Dx) with
(1.13) R(x,t,D ) positive elliptic of order two
(1.14) S(x,t,Dx) of order one

THEOREM 3. Let L = D: - t?R(x,t,D ) - S(x,t,D ) with R, S as in

(1.13), (1.14) and assume that either

(1.15) Im o,(s) (0,0,6) =0  [g] =1
or
(1.16) Im o, (s) (0,0,8) # 0 lel =1

then Y a > 0,there exists a neighborhood U of the origin so
that

Huno < aIILuII0

REMARK. The estimate in Theorem 3 implies the local solvability
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of the transpose of L, L.

Now ‘L = Dg - t2 tR - tS(x,t,Dx), so 'L satisfies the hypothesis

of Theorem 3 if and only if L does, so the theorem gives suffi-
cient conditions for the local solvability of L.

Proof. Let H be a Hilbert space with inner product ¢, ), H a sub
space cf H. An operator A with domain D is formally self-adjoint
if (Au,v ) = (u,Av ) for u,v € D. We recall that if A(t) is a c”
function of t € R with compact support and values in the space of
formally. self-adjoint operators with domain D, and u,v are C*
functions of t with values in 0 we have

2 Re J {(A(Y)u(t),u'(t) Ydt = - J(A'(t)u(t),u(t) ydt

]
We also recall the fact that the injection Hi(ﬂ) C H® has arbi-
trarily small norm when s' € s, s > ;Q}%Fﬁ_ and the diameter of

N tends to zero.

To take advantage of this fact we assume that the diameter of U
is less than ¢ and pick up representatives of the pseudo-diffe-
rential operators occurring on L whose associated kernels have -
support contained in a nbdd. of the diagonal

{(x,y) € Q x ny | |x-y| < e}

so if u e c:(u), then Ru, Su € C:(n) and the diameter of their
support is less than 3 e. The choice of ¢ will depend on the
principal symbols of R and S and will be made in the course of
the proof. It is convenient to work with at rather than
_ 1
Dc = 179, so we take
2

L=a2+t’R+s
Since R is essentially self-adjoint we may assume that it is
truly self-adjoint modifying S. We notice that the principal
symbol of the new S will coincide with the principal symbol of
the old one at t=0.

Using the positive ellipticity of R we may assume that R= p?
with P = P*,

CASE I. (1.15) holds. We write S = S® + s? with s® formally self-
adjoint and st formally antiself-adjoint. (1.15) implies

(1.17) Istul_, < 6%(e) Iul? for uecC(W)  and
L

H
X b3
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§(e) >0 as e€>0

We denote ( , ) the inner product in Li . Consider

t
(1.18) Re(Lu,u+2+u ) = -lu I%+0tP 12+ (sRu,u)-1u 12-3(t2P%u,u) -

- (3% u,u) + 2Re(SF,tu,) - 2Re(su,tu))

We can write
(1.19) 2 Re(SRu,tut) = —(SRu,u) - (tsﬁu,u)
Substitution of (1.19) in (1.18) yields
(1.20) Re(Lu,u+2+ut) = -Z(Hutﬂ2+ﬂtPuH2)-(tSEu,u) -
- 2Re(st,tu) - (£ (P?)+u,u)
We obéerve that
(1.21) I(tsﬁu,u)l <M e (Hutn2+HtPun2)for a certain M > 0
Also, using (1.17) and the ellipticity of P we get
(1.22) 2| (shu,tu) | < Hu 02enesTun? < pu i?ems? (o) nep 0
for a certain M independent of e.
Finally we also have

(1.23) [ (£>(®®),u,u)| <M e I1tP 1% for a certain M > 0

Combining (1.20), (1.21), (1.22) and (1.23) we get

(1.24) |Re (Lu,u+2+u,) | > lu 1%+1tP 12 for u € CT(U)
and ¢ small enough

On the other hand,

(1.25)  |Re(Lu,u,+u,)| < ILulM ¢ (lu 12+1tp 12)%/2
for a certain M, so (1.24) and (1.25) give
(uutﬂz+ﬂtPuﬂ2)1/2 <M e ILul which implies at once flul < MelLul.

That takes care of Case I.

CASE II. (1.16) holds. Let u € C:(U). We are going to denote

hut? = j (- ,01?,, at
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where IIu(‘,tJIII/2 is the usual % - Sobelev norm in the x-variable.

We are assuming that the formally antiself-adjoint operator st is
elliptic, so in a small neighborhood of the origin we have

l(sIu(-,t),u(-,t>)L2| (-, 012,
X
This implies that

(1.26)  |Im(Lu,u)| = | (sTu,u)| >J ||u(-,t)||f/2M = Nup?

It is clear that Huﬂo <M ¢ flull for a certain M.

Since |Im Lu,u| < IL Iy Wull we get the desired estimate.
Q.E.D.

REMARK. We observe that at a point (0,0,&) in the cotangent space
to a  at the origin, the conditions Im ¢ (S)(O 0,€) = 0 and

Im o (S)(O 0,€) # 0 are exhausting. That means that microlocally
we always fall either on case I or case IT.

The proof of Theorem 3 then shows how to obtain microlocal esti-
mates for L, without making any assumptions on the first order
term S. However it is not clear that a local estimate of the ty-
pe considered in Theorem 3, can always be obtained.

If one tries to "patch up" the microlocal estimates, the commu-
tators involved cannot be treated as perturbations,i.e., the mi-
crolocal estimates are not stable.

There is at least one case, though, where this can be done: the
two variables situation.

We have

COROLLARY TO THEOREM 3. If L = i - t2R-s with R, S as in (1.13),

(1.14) and a C RZ L Zs locally solvable.
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