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NORM LIMITS OF NILPOTENT OPERATORS AND WEIGHTED SPECTRA
IN NON-SEPARABLE HILBERT SPACES

Domingo A. Herrero

In his survey article "Ten Problems in Hilbert Space'", P.R.Halmos
has raised the following questions: Is every quasinilpotent opera
tor in an infinite dimensional separable Hilbert space the norm
limit of nilpotent ones?, What is the closure (in the norm) of the
set of nilpotent operators in a separable Hilbert space? ([ 11},
Problem 7, p.915). The first question has been affirmatively ans-
wered independently by C.Apostol and D.Voiculescu (I 31) and by the
author ([15]). The complete characterization of the set of norm
limits of nilpotent operators in a separable Hilbert space was fi-
nally obtained by C.Apostol, C.Foias and D.Voiculescu in [2}, in
terms of the different parts of the spectra of the approximable
operators,

The purpose of this paper is to give a complete characterization
of the norm closure of the set of all nilpotent operators in a
Hilbert space of arbitrary dimension, in terms of the different
parts of the spectra and the weighted spectra of the approximable
operators. The literature about this problem contains several nec
essary (and easy to verify!) conditions for an operator to be a
norm limit of nilpotent ones (see [2]1;[12];013];[15];[20]). Theo-
rem 1 below says that those conditions are also sufficient (Rough
ly speaking: The set of norm limits of nilpoténts is as large as
one could expect),

The first part of. the paper is devoted to an analysis of the
weighted spectra of an operator A acting on a non-separable
Hilbert space; it has some interest in itself, This analysis may
be considered as a continuation of the article [6] by G.Edgar, J.

Ernest and S.G.Lee. A decomposition of A related to its weighted
spectra is given,

The second part is devoted to the proof of the characterization
theorem (Theorem 1) and several related results on approximation
of operators. In particular, it follows from these results that
the first question of Halmos has an affirmative answer in any
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Hilbert space.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT.

Throughout this paper ¥ will denote a non-separable Hilbert space
of (topological) dimension h. The closed bilateral ideals of the
algebra L(¥) of all (bounded linear) operators acting on ¥ have
been completely characterized by several authors (see [5];[7];
[17]1): to each cardinal a, B <a < h, there corresponds a unique
ideal Ja = {T € L(X): dim (Ran T) < a} (the upper bar denotes
norm closure in both cases) and these are the only non-trivial
(i.e.,different from {0} and L(#)) closed bilateral ideals of
L'(%). Clearly, these ideals are well-ordered by inclusion,

Let L L{@F) — L(M)/Ja denote the canonical projection onto the
quotient algebra. The spectrum of weight a, Ah(T) =

= spectrum [ﬂu(T)] in L(K)/Ja, as well as each of its parts has
been analyzed in [ 6] and we shall use those results without fur-
ther quotation. Given T € L(¥) and ¢ > 0, there exists a (closed)
subspace KE of ¥, containing the kernel of T, such that

ITxl < ellxl for all x € Ms, x # 0, and ITxl > elxl for all x L ¥_.
Let GE(T) = dim IE; then the approximate nullity 8 (T) of T is de
fined by 6 (T) = min(e > 0) SE(T). na(T) = {A:6 (A-T) > a} is the
approximate point spectrum of T, of weight a,and it coincides
with the left spectrum of ﬂa(T). Let T* be the adjoint of T; then
Au(T*) = {X: N € Aa(T)} (= Au(T)*) and Au(T) = ﬂa(T) U na(T*)*.
Hence, to every A € C (the complex plane) we can associate a po-
sitive real number e€(A) and a subspace M} such that:

(1) 1TA-T)xI < e)lIxl for all x € ¥ and I (A-T)xI < e(M)IxlI for
all x L M}; (2) dim ﬂa = §(\-T); (3) If §(A-T) <h, then €(A) is
the largest possible number such that either (1) or (2) is false
whenever e(\) is replaced by 2e(\); (4) If 8(A-T) = h then

e(\) = 1. It readily follows that, if § A\-T) < a, then e(A) <

< 1/2 dist [R,AG(T)]. Finally, e*(A) and H&* are defined by:
e*M)IT] = e(X)[T*] and ﬂk*[T] = J()'):[T*].

If 8(T) and & (T*) are finite, then ind(T) = §(T) - 6(T*) is pre-
cisely the Fredholm index of T ([16]). For arbitrary values of
the approximate nullities, we shall define ind(T) as follows:

(1) If 8(T)Y = 8§(T*), then ind(T) = 0; (2) If &(T) > 8 (T*), then
ind(Tj = 8(T) - §(T*) (= 8(T), if 86 (T) is an infinite cardinal);
(3) If 8(T) < & (T*), then ind(T) = -ind(T*). The "extended index"
ind(T) is not invariant under small (norm) changes and not inva-
riant under h-compact perturbations. However, if 8(T) = a and
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8(T*) = B, then 8(T+K) = a and 8 (T*+K*) = B for all K € Jn’ provi
ded n <minla,B] (a,f >R ).

The spectrum and the essential spectrum (ANO(T)) play a special
role here. They will be denoted by A(T) and E(T), respectively,
to simplify the notation. Similarly, we shall denote JNO (compact
operators) by H(%).

The main result of this paper is the following

THEOREM 1. Let N(¥) and A() be the subsets of L () consisting
of all nilpotent and all algebraic operators, respectively.
Then: (i) T € A(¥)™ <f and only if for every N in C, ind(A-T)=0,

(i11) T € NOO™ <f and only if T € A(I) and A(T) and A (m,
R S a < h, are connected sets containing the origin.

2, THE ANALYS!S AND THE STRUCTURE OF THE WEIGHTED SPECTRA, THE
DECOMPOSITION THEOREM.

Our first result shows that the family of weighted spectra of a
given operator cannot be '"too arbitrary".

THEOREM 2, With the above notation, let T € L(H) and let A(T),
A (T), N, <@ <h, be the spectrum and the weighted spectra of T,
Then: (i) {A (T): N <a < h} <8 a well-ordered (by tnelusion)
decreasing famzZy of compact subsets of A(T) with a last member
A (T) # @ (the heavy spectrum of T),

(ii1) There ave only countably many different weighted spec-
tra.

(iii) Let F = {A.=A(T), =A (T),...,A (T) A (T),...} be

the family of all different spectra of T weZZ-ordered by inclusion.
If w 28 a limit ordinal (We shall necessarily have w < y < Q,
where AY = Ah(T) and @ <8 the first uncountable ordinal), then
Au =N {Av: v <ul.

(iv) Given A € F, there exists a unique cardinal ﬁ such
that AB (T) = A and A (T) is strictly contazned in A for every

a > ﬁv

Proof. (i) and (ii) follow immediately from the fact that the car
dinals are well-ordered and the definition of A (T). The details
are left to the reader.
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(iii)~Let u=-be a limit ordinal ¢orresponding’ to the ségment of the

ordinals in the index set of F. For each v < p,*let- oy ‘bea cardi-

nal suc_h_that A, (T).= A, and define @ = sup .(.v_<_u.) a = Loag.
SHER, PIRR Rap ts h ne FING Cpi T A5 vii

CLAIM : N Y S A (T)" ' ‘

Lt B V<u \). - M u- X i i i BRH

In fact, we clearly have A (T) C ﬂ A , Assume that A: belongs’'.to

the latter intersectionjthis meansathat,fqr every «v: & 'w; either:
S(AA-T) 2 « v? OF S(A-T*) > oy, Since «, = sup v <) e, it read-
ily follows that either 8 Q\- T) >a , or §(N-T%) > @, and’ thére-i -

fore A € Au (T) = AX,,for some AX E F. On the other hand, since
N

AX =:;Q; AQ; aﬁd F is well-ordered by inclusion, it is obvious
that x = u. .

(iv) Let J, = {a: A_(T) = A} and let B, = sup {@ € J,} =
=7 {a € S Obviously, ABv(T) cni{A (T): a € J,} = A,. The in
verse inclusion follows exactly as in (iii).

The cardinals a; of the proof of (iii) are B -irregular (as defi-
ned in [ 71) because F is countable. This is not necessarily the
case of the ﬁvﬁekgf (iv).

It is convenient to observe that the same results hold for the
famlly of all approx1mate point spectra of T, considered as sub-
sets ‘of 'the approx1mate p01nt spectrum M(T). In fact, the proof
of ‘the analogues of - (1) and (11) follows by u51ng exactly the sa—
me arguments, ‘the proof of the analogues of (111) and (1v) is
even edsier, sinceé we only have to consider & (A- T) The detalls
are 1eft to the reader.

Our next step will be the proof of the decomposition theorem.
To .this end, ‘we shall need some auxiliary results.

LEMMA 1. Let {Tn}n=lm be a denumerable family of operqtors in
L(¥).. Then there exists a separable (closed) subspace H_ of i
such that K reduces all the operators T and A(T |K ) = A(T ),
A(T [R ») c E(T 2 for all n, where T|M denotes the restriction
of}the operator T to the subspace M.

Proof. Let {xnm m=1 “ be a sequence with values in A(Tn) and
having A(T ) as its cluster set. Since A(T ) = H(T ) U H(T ®)%,
for every pair (n,m) there exists a sequence {xk(n m)}k 1 of’
unitary vectors such that lim(k+«) min {I QA _-T )x (m,m)l,

X - * =
X, - T, )X (n,m) i} = 0.
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Each of the sets A(T )\E(T ) consists of countably many components
which . are bounded open subsets of C. Let {u ax} be a subset of
A(T )\E(T ) having exactly one p01nt in common with every compo-
nent. It is well known (see [16]) that for every positive j,
ker(u -T ) and ker(unk-T*) are finite dimensional subspaces.
Define x to be the minimal subspace of ¥ containing all the vec-
tors X (n m) (n,m,k=1,2,...) and all the subspaces ker(u )
ker(u -T*) (n,k,j=1,2,...) which reduces every T . A stralght-
forward verification shows that ¥, has all the des1red properties,

COROLLARY 1, Let T € L(KH), dim ¥ = h > &o and aesume that A(T) =
= Ah(T). Then T = kgr Tk’ where ¢(I') = h, Tk acte on a separable

infinite dimeneional subspace Mk reducing T and A(Tk) = B(Tk) =
= A(T) for all k € I'. Furthermore, the result remains valid if
the operator T ie replaced by a denumerable family in L(X).

Proof. The proof will be given for the case of a single operator,

The general case follows by a formal modification of the same ar-
guments.

It is immediate that E(T) = A(T) = Ah(T). By Lemma 1, the family
® of all separable reducing subspaces ﬂ% such that A(Tlﬂ;) = A(T)
is nonempty. Let {J(.'} be a maximal orthogonal family of sub-

spaces in R and let ' = j%r'mﬁ" T' = T|K' = ;2 r‘T ' and

T = T|(#")'; then A(T;') = A(T') = A(T) and A(T") C A(T) .

" Suppose that A(T") = A(T); then Lemma 1 can be used to obtain a
new separable reducing subspace M 1l #', such that A(Tlﬂb) = A(T),
contradicting the maximality of the family {H '}. Hence, A(T")

is a proper subset of A(T).

Let XO € A(T)VA(T"). Since xo € Ah(T), either 8(ko~T) = h or
8(X°-T*) = h., On the other hand, (RO-T") is ipvertible and there-
fore there exists an n > 0 such that min{"(RO-T)x“,H(XO-T*)x“} >
2 nlxl for all x L 3'. Let 0 < ¢ < n/2 and assume that B(RO-T)=h.
Then there exists a subspace K of dimension h such that

H(K -T)xl < elxll for all x € x , X#0, and ﬂ(k -T)xI > elxll for
all x 1 Ke. It is completely apparent that ¥_ N @)t = {0},
therefore ¥ must be a subspace of X', whence we conclude that
S(RO-T') =-h. Hence, A € m,(T'). The case when 8(XO-T*) = h can
be similarly analyzed in order to obtain that S(X;-T'*) = h and
therefore )\o €n, (Tr*)*,

Since ko € A(Tj') and therefore S(RO-Tj') > 0 or 8({;-Tj'*) >0
(for each j), it follows that either S(Ro-Tj') > 0 for h different
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indices j or S(X TJ'*) > 0 for h different indices j. We conclude
that T' = Jer. T ', where ¢(I'') = h, Moreover, since h > N , We
can write I'' as a union of pairwise disjoint denumerable subsets.
re = Y. J,.. Let B, = e{Tj 1j € Jk}. It is immediate that A(Bk) =

keT
= E(B,) = A(T) for all k€T,

Let T" = ,8., Tp" be any decomposition of T" corresponding to an

orthogonal direct sum X" = Lgr" ﬂi” into separable reducing sub-

spaces. Clearly, ¢(I'"') < h and therefore there exists an injective
map ¢: ' — I, Define T, = B,, if k € rne(@"), and T, = B, ®T,",
if k = ¢(£&) for some £ in I''",

It readily follows that T = @ T , where A(T.) = E(T}) = A(T) =
= Ah(T), for all k € T, ’

With minor modifications of the same proof, we can obtain the fol-
lowing results

COROLLARY 2. Let T € L), dim # = h > No and assume that A(T) =

= Hh(T) (A(T) = nh(T*)*; A(T) = Hh(T) = Hh(T*)*). Then T = @, T,
where ¢(T) = h, T, acts on a separable reducing subspace and

A = E(T) = 1(T) = Iy (T,) = AT (AT = E(T) = 1(T*)* -

Ty ()* = A AT = BT = 1(T) = KIN* =y (1)

= Iy (Tk*)* = A(T), respectively.). Furthermore, the same results
o

remain valid if the operator T is replaced by a denumerable famZ
ly in L{H).

LEMMA 2. Let T € L(H) and let A = AB\’(T), Al = AB\,+1(T) € F,

where F, ﬁ ﬁv+1 have the meaning of Theorem 2. Then there exists

a reduczng subspace K of dimension ﬁ such that, Zf T = BV®CV,
B, = T|ﬂ; and C T|(ﬂ ) then A(Cv) Ay = AB (c,),

= = v+1
A(Bv) = A(T) and ABV(BV) Av‘

Proof. Let N € A\A,,, then 8(\-T) < B, §(N-T*) < B, and at
least one of these two cardinals must be equal to ﬂv. Hence, if
e(), ﬂa, e*(\) and ﬂ%* are defined as in the Introduction, then
dimlﬂk+ﬂk*]_ =

Let DQA) = {z:|z-A| <minle(A),e*(A)]}; then ANA , C u{D(A):
kme A;\Av+1} and this covering admits a denumerable subcovering
m¥1 D(Xm). Define ﬂ;' to be the minimal reducing subspace of T

=1 It is clear from the above construc-

containing {¥, +m& *}
m m
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. . 'z
tion that dim ﬂ; Bv.

Let x 1 K ' and let X € A \A\,+1 Assume that A € D(R ); then it
is easy to see that | (A-T)xl > I, -T)xI - X=X | nxu = n(A).Ixl
and, similarly, | (X-T*)x| > n(}). qu, for some n(k) > 0, whence
we conclude that \ ¢ A(C,'), where c,' = T[(ﬂk’ l_It is completely

apparent that AB (C ') = A (C ") = +1. On the other hand, if
By+1
B ' = T]M ', then A(B,') D AB (B,") > A WAL

By considering the complex numbers A € A(T)\A and by a formal
repetition of the above arguments, we can f1nd a second subspace
W "c (M ') such that dim E " ﬁ and the decomposition

T = ”$C " with respect to the orthogonal direct sum
H = (K '$M ")O(R re ¥ ”) satisfies the properties: A(Bv") D>
> A(T)\A ACC)") = (€, = A

v+1? v Bv+1 v v+1

Now, by an easy adaptation of the arguments of the proof of Corol
lary 1, it is not difficult to see that C " can be written as
C "= ker C k" where ¢(') = h, Cvk" acts on a separable reducing

subspace for every k € I' and A(C ") for exactly ﬂ

= Av+1
different indices k. Let F be a subset of I' such that ¢(F )
and A(C ")

v
v+1 for all keTl v let ﬂ; be the separable redu-

cing subspace on which C . " acts and define B = B "9[ &
vk v

"
ke P vk l e

= " = "
€ L(H;), where ﬂ; = v 9[ker vk]’ and Cv Cv

Ike(I‘\I‘v) vk
I't readily follows that the decomposition T = Bec , ¥ = m;e(m;)l
satisfies all our requirements.

Now we are in a position to prove the main result of this section,

THEOREM 3. Let T € L(¥) and let F be the well-ordered decreasing
family of all different spectra of T. Then H admits a decomposi
tion H = Osvsy ﬂ; into pairwise orthogonal reducing subspaces of

T with respect to which T
are satisfied:

® , ,
0<S<y Tv and the following properties

(1) Unless ﬁl > No and AO = Al’ ﬂ; is a separable infznite dimen

stonal subspace such that A(To) = A(T) and A(T|M ) A If
Bl > No and Ab = A, then ﬂ; = {0} and T = 0.

(i) If w > 0 ¢s not a limit ordinal, then dim qu =B, AT =
= ABu(TH) = A u(053Su v) Av and A(TI[ S®<uﬂ;] ) =

= AB (TI[0 <\)<ch ] ) = u_’_lo

p+l
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(iii) If w Zs a limit ordinal and B = sup(v < ) Bv’ then ﬂ; = {0}
and Tu = 0. If ﬁu > sup(v < u) Bv’ then dim M = ﬁu and A(Tu) =

= ABu(Tu) = A . In either case, A.s (Osvsu v) = 1\.‘_l and

A8 1% = A | (Tl o \,<u3f-’\,]l) = A

(iv) If v > 0 and Tv # 0, then Tv = k%rv T 2 where ¢(Fv) = ﬁv

and Tvk is an operator on a separable infinite dimensional redu-
;k) = Av for all k € Fv' Moreo
ver, the analogue results are also true if A(Tvk)’ E(Tvk) and Av
are replaced by n(Tvk)’ HND(Tvk) and HBV(T) (or by H(Tvk*)*’

eing subspace such that A(Tvk) = E(T

Ty (Tvk*)* and qB (T*)*) respectively. In particular,
o v

(v) If, in addition, it <8 assumed that ind(A-T) = 0 for all com-
plex A, then A(To) = H(To) = K(TO*)* and A(Tvk) = ﬂ(T“k) =
= H(Tvk*)* for all v and k as <n (iv).

(Vi) The vepresentation is not unique, unless either H ig separ-
able or A(T) = Ah(T).

Proof. Preliminary decompoeition., If A # A = E(T) = A (T), then

we can use Lemma 1 to obtain a reducing subspace M ' such that, if

T,' = TIM% and C ' = T!(R ') then A(T ') = A(T) and A(C,") ©

C Al' Moreover, if 31 > No, then we set ﬂ% = ﬂ;', T, = To', C, =

= Co' and it follows that A(Co) = AB (Co) = Al; then we continue
1

our analysis with Co.

if 61 = No, then we can use Lemma 2 to obtain a (possibly larger)
separable reducing subspace ¥; D ¥ ' such that if T, = Tlﬂa, thef
A(T,) = A E(T) = A and A(Cl) = ABZ(CI) = A,, where c, = TIJC1 .
In this case we set ﬂ; = {0}, T° = 0 and continue our analysis
with C,

Finally, if A = A (= A(T) = E(T) = A (T)) and 6 > N , then we

use Lemma 2 to obtain a decomposition K HIQK with respect to

which T = TIOCI, A(Tl) = E(Tl) 81(Tl) = 1, A(C ) = A (Cl) =
= A2 and (as above) we define Mg = {0}, To = 0 and contlnue our

analysis with C1

Now we proceed by transfinite induction. Assume that Tv’ ﬂk have
been defined for every v < u < y so that the properties (1), (ii)
and (iii'):If v 28 a Llimit ordinal, then ezther T v? ﬂ; satisfy
(iii) or B = sup(e < v) By, A(T|[ @
than A,\’+1

02y H 1t ) s strzctly larger

’ dim ﬂb = Bv’ e<v Ae = Av > A(Tv) = Bv(Tv) > Av+l and
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1 1 .o
A(T|[92V ﬂ 17) Byuy (Tl[esv K 17) Av+1, hold for these indices.
(a) If @ = sup(v < u) B, < ﬁu, then dim[ o2 M;] =a < ﬂu and the
restriction c, ' o= T'[v<u ] satisfies A(C&) = B (C') = Au’ so
we can apply Lemma 2 to obtain a decomposition [vgu x, ]l M eH !
such that dim ML = ﬁu’ the restriction T = C'IR has the proper-
ties A(Tu) = AB (Tu) = A and the restr1ct1on C = 'IR ' has
the properties A(Cu) = AS (C ) = +1° This case 1nc1udes, in

"+l
particular, the one where u = v+1 for some ordinal wv.
(b) If ap'= Bu’ then u is necessarily a limit ordinal and ﬁu is

. . 1 s s R
an N°~1rregu1ar cardinal. Let Ah' = AB (Tll\)<u ﬂ;] ); it is imme-

diate that A C A 'cC A and very 51mp1e examples show that both
inclusions could be proper. If Ah' = A L4100 We simply set ?L = {0}
and T = 0 and continue our analysis w1th C = TI[v<u ) and
u+l (Roughly speaking, we "forget" u). If A 41 is a proper subset
of Au" then we proceed as in (a) in order to obtain a decompo-
sition of the usual type (via Lemma 2), which defines T and ﬂh,

i = = '
such that dim ML Bu, A(Tu) AB (T ) Au and A(Cu)

1
Tl g, %,

]

1]

= A = A
8u+1(Cu) ey where Cu

Now TV and Wb can be defined for all v, 0 < v < vy, and it is
clear from the above construction that the properties (i), (ii)
and (iii') are fulfilled.

Final decomposition. Let T = T ,®=_9o R be the decom
OSVSY v Osvsy
p051t10n obtained in the first part of the proof Assume that u
is a limit ordinal such that Tu and ﬂ; satisfy (iii'), but not
(iii). Then ﬁ = dim ﬂ; is No-irregular, SO we can write
ﬁu = Z B (u) for a suitable increasing sequence of cardinals
n=1

{ﬁv (u)}n:1 corresponding to a decreasing sequence of different
n
spectra {A  (u)} such that A.u = nnl A, (u). By replacing, if
n n
necessary, Vo by vt 1 we can directly assume that NONE OF THE
vn's IS A LIMIT ORDINAL. Moreover, according to this decomposi-

tion of Bu we can also write H as a denumerable'orthogonal di-

rect sum H = .8 ﬂhn, where d1m JC = (u)

We shall say that a p in the above cond1t1ons is "irregular".

Let uw be an irregular ordinal and let M = .2 ﬂh be as above.

Without loss of generality, we can assume that un reduces T
for every n=1,2,... . Let T =e Tun be the corresponding decom
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separable (then the Theorem is trivial) or Ah(T) = A(T) (then the
family F is triviall), this Corollary can be used to change the
definition on a large family of separable reducing subspaces.

The proof is complete now.

We shall give two examples to illustrate the need of a redefined
decomposition in the case when F is ''large".

EXAMPLE 1. Let E be the ellipse of vertices {z(1+1/n);zi/n}; let
N, be the normal operator '"multiplication by z" acting on Lz(En,
d|z|) (d|z| denotes the "arc length" measure on E ) and let

A = n§1(Nn®1n), where In is the identity map on a Hilbert space

Rn of dimension Nn, acting in the obvious way on ¥ = ngl(Lz(n)wﬁn).

(Since L2 is separable, it is clear that dim(Lz(n)eﬂn) =R,

(n) n

It is easy to see that: (1) h = dim ¥ = 8 = sup R (2) A =
w n n o

= A s ANO(A) B Aﬁl(A) = )

every m > 1, A = Ay (A) = { O E }7; (4) A (A) = 0, A = A (A)=
m n w n=1l n

= { YU E_}Ul-1,+1]; (3) For

n=m
m
=[-1,11; (5) Let A = | A dE(A) be the spectral decomposition of
Ai then E([-1,1]) = 0; (6) In the notation of Theorem 3, ﬂ; = {0},
¥ = o 12  eR , where & is a subspace of dimension 8
m nxm (n) n(m) n(m) m
n
of & , and & = &, ﬁn(m); therefore, A ' = a.

EXAMPLE 2. Let A and ¥ be as above and define B € L (¥#®¥) by
B(x,y) = (Ax,Cy), where C is a normal operator such that A(C) =
= Ah(C) =1{0,1]. Then B has the properties (1) - (4) of Example
1, and (5') If B = N dF(A\) is the spectral decomposition of B,
then F([-1,1]) = F(J

and corank h; (6') ﬂ;, M; can be chosen as in (6) or ﬂ; can be

0,1]1) is an orthogonal projection of rank

replaced by M;' = ﬂ;eﬂ;", where {“Q"}mzl is a suitably chosen fa-
mily of subspaces of ¥ such that dim ﬂ;" = Nm (m=1,2,...) and
JC=m§1M;.In the first case we have Am' = [0,1] (properly contained

in Ah(B)) and the decomposition must be modified. In the second

one we have the desired kind of decomposition.

REMARK. Theorem 3 remains true if the single operator A is repla-
ced by a denumerable family of operators.

The next corollary affirmatively answers a question raised in [ 6]
for the case of an Ro—regular cardinal.

COROLLARY 3. Let A € L(H) and let Bo < a < h. Then:
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position of Tp. Now we are going to modify the preliminary decom-
position to obtain the final one. Recall that there are only coun
tably many different spectra of T and, a fortiori, there are only
countably many <rregular ordinals. Furthermore, each irregular
ordinal is associated with a denumerable family of subspaces.
Hence, the family of all subspaces {ﬂhn:u is irregular; n=1,2,...}
is countable.

The final decomposition is then defined as follows:

= Os%sy Lv , H= Os%sy Mv ? Lv € L(Mv)

where Mv = KvGIQ{HLn: Bv (u) = v}], whenever v is a non-irregular
n

ordinal for the first decomposition, and MV = {0} if v is an irre
gular ordinal, and L, = TVG[Q{Tun: an(u) = v}l, if v is not irre

gular, and Lv =0, if v is irregular.

It is straightforward to check that the final decomposition has
the properties (i), (ii) and (iii).

The first part of (iv) follows by applying Corollary 1 to L, ac-
ting on Mv’ for v > 0, v a regular ordinal. The remaining state-
ments of (iv) can be proved by proved by using Corollary 2. We
shall give here the proof for the case considered in (v) and the
other cases are left to the reader. Assume that ind(A-T) = 0 for
all complex A, It readily follows that ind(k-Lv) = 0 for all

A éEA If N € Av\A then ind(A-L = 0 and, by Corollary

k) N n(L*

v+1l? v+1)
L(v+1)k’ where A € n(L

v+l *

2, L @ * =
Ve § kerv+1 (v+l) (v+1)k)

i Hﬁo(L(v+1)k) n HNQ(L(v+1)k*)* for all ke, and ¢(T ) =

= ﬂv+1 > Bv' Thus, we can separate a subset of cardinal ﬂv of

the index set Pv+1 and use the corresponding L 's to re-

(v+l)k

define L, so that ind(h-Lv) = 0 for all A\ € Av By a double

+2°
process of transfinite induction we can redefine the final decom-
position of T so that ind(k-Lv) = 0 for all complex A and for

all v, 0 < v €y, (As in the re-definition of the preliminary
decomposition to obtain the final decomposition, there are only
countably many subspaces of dimension not greater than ﬁv which
contribute to the modification of ﬂ;; dim xv = Bv > No unless

v = 0 or v an irregular ordinal and M; = {0}, but in these cases
the original and the modified M; are both equal to {0}, because
it is trivially true that ind(R-Lv) = 0 for all complex A in
these cases ).

Finally, (vi) follows immediately from Corollary 1: unless ¥ is
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(i) If o Zs No-regular, there exiete K € Ja such that A(A+K) =
= Aa(A)‘

(ii) If o <8 No-irregular, given € > 0 there exists K€ € Ja such
that A(A+Ke) c (Aa(A))E, where (A (A)), = {k:dist[R,Aa(A)] < e},

(iii) In either case, A (A) =N {A(A+K):K € Ja 1.

Proof. (i) Let A = Os%sy Av be the decomposition of A given by
Theorem 3 and define K = [@{A :f < a}]®0. Clearly, K € J, because
Rank K < sup (B, <a) <o and A(A+K) = Au = Aa(A), where u is the
smaller index such that a < ﬁu.

(ii) In the case when a is No—irregular but sup(ﬁv <a) <a, we
still can find a K € J, such that A(A+K) = A (A).

Assume that sup (B, <a) =a = ﬁu' Then Theorem 3 shows that

Aa(A) =N {Av:v <.u}. Since (AV} is a decreasing family of compact
sets, it follows that Av C (Aa(A))s for all v > v(e). Defining

K = [G{Av:v < v(e)}l®0, it follows as in (i) that A(A+K ) =

= ANy © By @)

(iii) This is an immediate consequence of (i) and (ii).

In ([ 6] ,Theorem 4.6) it is claimed that the result of Corollary
3(i) remains true for No-irregular, provided A is a normal opera-
tor; however, our Examples 1 and 2 seem to contradict the proof
given there. Anyway, the result is actually true. In fact, we
have:

COROLLARY 4. Let A be a normal operator on a Hilbert space of
infinite dimension h, Let « be a cardinal, xo < a < h, Then there
exists a normal operator K € Jm such that K commutes with A and
A(A+K) Aa(A).

Proof. Let A = J AdE(A) be the spectral decomposition of A. If
@ is not equal to the supremum of the cardinals ﬁv such that
ﬂv < a, then the answer is given by Corollary 3. On the other
hand, if a=Bu is the supremum of those cardinals, then Aa(A) =
=N {Av:v < u}. Hence, if Q@ is a Borel set such that

A“(A) N e = @, then E(R) is an orthogonal projection of rank
strictly smaller than a and therefore E(R) € Ja.

Let A = AagAlveAz', where Aa = [JAa(A)x dE(k)]]E(Am(A)),

Al = [jﬂ A dEQ)]|E(2) and @ = [C\ A_(A)] n (:]A] < JALD.
Decompose @ as a denumerable union ngl A of pairwise disjoint

Borel sets such that Au(A) a) An_ = ¢, diameter (A ) — 0 and
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dist[kn,An] — 0, as n — «, for a suitable sequence {Kn} with va
lues in Aa(A) (The construction of {An} and {Xn} follows by stan-
dard arguments).

Define B = Aae[ngl knE(An)]. Then A(B) = Au(B) = Aa(A) and K =
= A-B =0 e[ngl JAn(x-kn) dEQ@A)] belongs to Ja. It is clear that

A commutes with K.

3. CONSEQUENCES OF THE DECOMPOSITION THEOREM.

Theorem 3 is a very useful tool to obtain non-separable versions
of well-known separable results. Namely, we can obtain the follo-
wing extension of a result due to C.Pearcy and N.Salinas.

COROLLARY 5. Let T € L(H) be a hyponormal operator and let

N e L(H) be any normal operator such that A(N) = E(N) and A,(N) c
C HG(T) for all a, No < a s h, Then, given ¢ > 0, there exists

an operator K, Kl < e, such that T+K ~ T®N (the symbol =~ means
that the two operators are unitarily equivalent). Moreover, if h
i8 No-irregular, then K can be chosen to be an h-Hilbert-Schmidt
operator as defined in [ 6].

Proof. According to Theorem 3, T can be written as T = OS%SY Tv’
T, = 0if v is irregular and T, = kgrvTvk’ where T , acts on a
separable reducing subspace} A(Tvk) = E(Tvk) = Av, H(Tvk) =

= Iy (T,) = Mg (1), for all k€T and ¢(T).

Applying the separable theorem ([ 18], Theorem 1) to Tox for all
v and for all k in Fv’ we can find an operator K€ L(H), K = $va,

Kv = k:rvak’ where Kvk is a compact operator.of norm smaller

than e/2, such that T+K = e [e (T  +K )] ~@ [e (T .eN )] and
' ‘ = @

the va s are normal operators such that ey va N, and v N

is the given operator N. Since |KIl < €/2 < e, the proof of the
first statement is complete,

Now consider the case when h is No-irregular. Let {sv} be a fa-
mily of positive numbers such that Zv e, < €/2, where the sum
is extended over all v < y. For these values of v, instead of
1K, I < e/2 we require the inequality 1K, I <e, for all ke .
Thus we obtain “Kv“ < €, for all v < y, and it readily follows
that vgy Kv is an h-Hilbert-Schmidt operator of norm smaller
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than €/2. If y is an irregular ordinal (in the sense of the proof
of Theorem 3), then X = vgy ﬂ% and the result is immediate. If ¥y

is not irregular, then zv<¥ B < B = h and # can be written as

H =% 9&;', where dim ﬂ}' < h. By using that h is B -1rregu1ar,
it is not difficult to obtain a decomposition M} = 9 M into

reducing subspaces ¥, dim ¥ =a <h, such that Z -1 = h,

o

n

A(Tlﬂ;} = Aa (T|H ) = A. and H(TIK ) = IIu (T|I ) = I, (T), for all
2(n+1)

e K,

it is easy to see that K is actually an h-Hilbert-Schmidt opera-
tor of norm less than € and T+K ~ T @ N.

n=1,2,... . Now define K € L(W ) .such that 1K I < e/

n=1,2,..., and Ty+(9n Kn) ~ TYQNY. Then, if K = (V<Y

Our next result extends F.Wolf's theorem (see [41;018];[24]).

THEOREM 4. If h <s B —irregular and T € L(H) Zie not left inver-
tible modulo Jh, then given € > 0 there exists an h- Hilbert-
Sehmidt operator K of norm less than € such that dim ker (T+K)=h.
On the other hand, if h is No—regular, then there exists a non-
negative hermitian operator H € L(H) such that A(H) = Ah(H) =

= (0,1, but dim ker (H+K) < h for any K € J, (a fortiori, for
any h-Hilbert-Schmidt operator K).

Proof. Assume that h is No-irregular and let T = VH be the polar
decomposition of T.According to ([ 6] ,Theorem 5.6) and its proof,
there exists H' € L(¥), H' > 0 such that H'-H is an h-Hilbert-
Schmidt operator of norm smaller than e and dim ker H' = h. Then
the operator XK = V(H'-H) satisfies our requirements.

Conversely, if h is No-regular and H ~ ®{ql:q is rational and
0 <q< 1}, then A(H) = Ah(H) = [0,1], but dim ker (H+K) <h
for any K € Jh (see Example in [6]).

The following corollary is the non-separable version of a,
Theorem 2.2) and it can be proved by following the same arguments
and by using Theorem 4 instead of Wolf's theorem. The proof is
left to the reader.

COROLLARY 6. If h <s No—irregular and T € L), given € > 0
there exists an h—Hilbert-Schmidt operator K of norm less than
e and a subspace ﬂ of dimension h such that (T-K )M C R ,

T, = (T- K€)|JCE is normal and A(TE) A (T ) =1 ‘T)
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The next step will be a non-separable version of Propositions 3.2
and 3.3 of [23] (Corollary 7, below) about bi-quasitriangular ope
rators. Quasitriangular and bi-quasitriangular operators are de-
fined in ([1];[10]). According to the celebrated characterization
of quasitriangularity given in [1], an operator A is bi-quasitrian
gular if and only if ind(A-A) = 0 for all complex A.

We shall need the foilowing elementary result,

LEMMA 3, ILet {A } be an arbitrary family of nonempty compact sub-
sets of the compZex plane, contained in a fized compact A 02 and
let ¢ > 0 be given., Then there exists a finite family
{Gl,Gz,...,G } of open sets such that A c G c (A )E for at
least one value of j depending on v.

Proof. Let {Dn}n=1N be a finite covering of Ao by open discs of
radii €/2., Then to each Av we associate the open set

G, = U{Dn:DnrmAv # @}. Clearly, the family {G,} cannot have more

than ZN-1 different elements, whence the result follows.

The following result was conjectured by the author in [15]. The
proof follows easily from [ 23].

THEOREM 5. Let A € L(R) be a bi-quasitriangular operator acting
on the separable infinite dimensional Hilbert space R and let

€ > 0 be given. Then there exists A' € L(R) such that A-A' is q
compact operator of norm smaller than € such that for a suitable
orthogonal direct sum decomposition R = ﬁ Qﬁ into two infinite

dimensional subspaces, A' = [g g], where N is normal, B is bi-
quasitriangular and A(N) = E(N) = E(B) = E(A). Furthermore, there
also exists a bi-quasitriangular operator A" = [g g,] such that

IB-B'Il < e, E(B') € E(A) and ®, admits an algebraic complement
Rl' invariant under A" such that, with respect to the algebraic
(not necessarily orthogonal) dirvect sum R = ﬁl + ﬁl', A" = N + B"
with B" similar to B'.

Proof. According to ([23],Proposition 3.2), there exists a compact
operator K € L(R) of norm smaller than ¢ and an orthogonal direct

8
sum decomposition R = jzl ﬁj into eight infinite dimensional sub-

spaces with respect to which A+K can be written as the upper
triangular operator matrix
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N, 0
0 D,
N, 0 *
0 o,
A' = A+X = N, 0 (D
0 0 D,
Ny
L 0 D4-

where Nk is a normal operator and Dk is’ a block-diagonal operator
such that E(Dk) C E(Nk) = E(T), k=1,2,3,4. (The * denotes unspe-
cified entriesy see ([ 23] ,Proposition 3.2) for the proof and de-
finition of block-diagonal operators). Block-diagonal operators
are particular cases of bi-quasitriangular operators. It %s clear
that, with respect to the orthogonal direct sum & = R19[j22 Rj],

N
A' = [01 g], where B is bi-quasitriangular and E(B) = E(N;) = E(T).

This proves the first statement.

Since B is bi-quasitriangular, it follows from ([ 23] ,Proposition
3.3) that B is a norm limit of algebraic operators. Hence, there

8
exists an algebraic operator B' € L(&,') (where &,' = j22 ﬂj)

such that |B-B'| < €/3; moreover, B' can be chosen so that E(B')C
C E(B). Since A(B') is finite, we can use the spectral decomposi-
tion of N, to obtain a normal operator M, such that “Nl-Mlu <
< €/3 and A(Ml) = B(Ml) is a finite set disjoint from A(B').
Then, by Riesz' decomposition theorem ([ 19], Chapter XI), the ope

M
0

rator L' =

C . . .
1 '] admits two complementary invariant subspaces
B

Rl and Rl' such that, with respect to the algebraic direct sum

R = & + ® ', L' can be written as L' = M; + B", with B'" similar

to. B'.

Finally, let A" = N + B", where N is a normal operator in L(Rl),

N =~ Nl’ such that “N-Nlﬂ < €/3 (i.e., A" is the operator obtained

from L' by replacing M; by N). Then JA-A"| < e and A'" has the de-
sired properties. The proof is complete now.

Now we are in a position to prove a very important consequence
of Theorem 3.

COROLLARY 7. The set of all operators in L(H) with only finitely
many different spectra is norm dense. Furthermore, given T € L ()
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and € > 0, there exists T' € L(H) such that IT-T'l < e and

(1) A(T) cA(T") C (A(T)), and A (T) C A (T') c (A (T)), for all
a, No <a<h,

m
ii ' = te[ @ ! ! (H,), K, = H, oI,
(ii) T T, [JI=1 TJ 1, where TJ € L( J), 5 5,1%%; 20
dim ¥, ) = dim ¥; , = B,, B, <) <By < ... <f, =h, and

(iii) with respect to the above orthogonal divect sum, T, is the
"
2x2 operator matriz Tj = Nj le , where Nj" i8 a normal opera-
0 52
tor of uniform multipliecity ﬂj such that A(Nj) = AB (Nj) = Gj_
for some open neighborhood Gj of L (T) bounded by finitely many
]
pairwise disjoint rectifiable Jordan curves, j=1,2,...,m.

(iv) H(sz) = HB.(TjZ) C interior A(Nj), j=1,2,...,m.
(v) ABI(T) C A“(T) C A(Nl) U ABj(le) C (ABI(T))E for all a < ﬂl’

and Agj(T) cA(T) c A(Nj)4U ABj(sz) C (ABj(T))e for all a,

B,y <a<By, 3=2,5,....m

(vi) If, in addition, it is assumed that ind(A-T) = 0 for all
A e C, then ind(A-T') = 0 for all N € C,

Proof. Let T = T, T T K be the decomposition of

Osgsy v oty T k%rv v
T given by Theorem 3. If either A(T) # E(T) or A(T) = E(T) and
ﬁl = 30, then the decomposition's first term (To, or Tl, if

T, = 0) is kept unchanged: T,' =T, (or To' =T, if T, = 0).
Thus, we can restrict our attention to the case when T =

A(T) = E(T) = Al and Bl > No.

®
OsstTv'

By ([ 1] ,Theoren 2.2), there exist operators Tvk' € L(ﬂ%k) such
that Tvk - Tvk' is a compact operator of norm smaller than €/4

7 . s - ® .
and ¥, admits a decomposition ka MQk,l H;k’z with respect
Yor Tuk,1
to which Tvk' is the 2x2 operator matrix Tvk' = v VK, ,
0 T
vk, 2

where va is a normal operator such that A(va) = E(va) =
= HNO(T) D HNO(Tvk,Z); moreover, with a minor modification, it

can be obtained that My (T = A(N Let R =
o

vk, 2) vk) 1s%sy(k2rv Tok')s
then |T-RI < €/4, Aa(T) C AQ(R) for all « and (by the upper semi-
continuity of the spectrum; see, e.g., [9]) we can assume that
IT-RI is small enough to insure that A(R) C (A(T))E/4 and Ah(R) C
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A, (M), ,, for alla, B <a <h,

By Lemma 3 there exists an increasing finite family {Gl,Gz,...,

G,} of open sets such that for every a, [na(T)e/4]' c Gj c

C [na(T)e/ZI for some j=j(a) and j=j(«) for at least one value

of a, Moreover, G,  is bounded by finitely many pairwise disjoint
rectifiable Jordan curves. To .every G, we associate a normal ope-

rator Mj of uniform multiplicity No‘such that A(Mj) = E(Mj) = Gj .

Let Tvk" be the operator obtained from Tvk' by replacing va by

Ny = My (where A (T) = A1) such that IN L =N, "1 < 3 ¢/4

(The existence.of such operators va" is guaranteed by standard
arguments based on the spectral theorem for normal operators;

see [8])., Let T' = Gv[®k T "]+ It readily follows that IT-T'l <
<e,

Observe that N = ‘Bv[@k ka 1] is invariant under R and, with res-
’

. L .
pect to the orthogonal direct sum £ = N @ N°, R can be written

0 T

N T
as the operator matrix R = [ 1]. With respect to this decompo-
2

m
N."and T, = .. T
h| 2 =

.
e B

s N" T
sition, T' = [ 1], where N" = 1

0 T,
is a normal operator uniterily equivalent to the direct sum of

B. copies of M, such that n, (T, .,) = n(T, .) is contained in the
3 j 2,j 2,3 :

B.
interior of Gj_ = A(Nj"), jo=1,2,...,m.

(=1

It is not difficult to check that T' satisfies the conditions (i)-
v).

Finally, consider the case when ind(A-T) = 0 for all complex A,

Then, by Theorem 3, the operators To, T can be chosen so that

vk

ind(K—To) =0, ind(X—Tv = 0 for all complex A, i.e., T, and Tv

1) K
are bi-quasitriangular operators. Since the class of all bi-quasi
triangular operators is invariant under compact perturbations

(see [10]1) it follows that ind(R-Tvk') = 0 for all complex A and,
a fortiori, the same result holds for R. Moreover, Theorem 5 shows

that Tvk' can be chosen sao tnat TVk 2 is also bi-quasitriangular
’

and E(Tvk 2.‘) = E(va). Then, our previous arguments show that T'
’

actuaily satisfies the condition (vi) too. In fact, ind(k-Tz) =0
for all A,

REMARK. If dim = h > Nm, then we have the following 'converse'
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to Corollary 7: The set of all operators with infinitely many dif
ferent spectra is norm dense. The proof can be carried out by
using the same arguments as in Corollary 7, and Example 1,

L, PROOF OF THEOREM 1,

Necesgsity. First of all, observe that the conditions of (i) and
(ii) are necessary., In fact, if A is an algebraic operator , then
ind(A-A) = 0 for all complex A. By the stability properties of

the Fredholm index, it readily follows that, if T € A(¥)", then
ind(A-T) = 0 for every N such that A-T is a semi-Fredholm operator,
On the other hand, T must satisfy the following property: The

left and the right spectra of HG(T) in L(K)/Ja coincide, i.e.,
Au(T) =n,(T) =0 (T*)* for all «, N, <a < h. It is clear from
the results quoted in the Introduction that this property is equi
valent to say that § (A\-T) = 8({-T*) for every A (These very simple
necessary conditions have been proved by several authors; see [ 2];
(121;0131;015]1;020]1). Thus,we conclude that if T € A(X)™, then
ind(A-T) = 0 for all complex A,

If, moreover, T € N(¥X)~, then A(T) and Ad(T) (No <« < h) must be
connected sets containing the origin (see [13], Theorem 3). Hence,
the conditions given in Theorem 1 (i) and (ii) are necessary.

Sufficitency for the case (i). Now we are going to prove the suf-

ficiency of those conditions. First we consider the case (i). Ob-
serve that many of the arguments used in([ 15];[23])do not depend
on the separability of the underlying Hilbert space. We can say

even more: (With the notation of [15]). Let T € L(X) be an opera-
tor such that A(T) c @, where @ is an open set bounded by finite-
ly many pairwise disjoint rectifiable Jordan curves and let MT be

the Rota subspace of T (M; C &Kz and T is similar to SHﬁI(MT)l);
then M, = (z-T*)Rm? and therefore leMT is actually similar to

84 acting on the whole space &Kz. This result can be proved by
using the same kind of arguments as in [ 21] or in [23] and it in-
troduces strong simplifications in the results of [15]. Namely,
in (I 15] ,Theorem 3), "simply connected" can be replaced by 'con-
nected", etc., etc. (There is a second way to prove our results:
instead of the generalized universal model given in [ 14] , we can
use the equivalent model given in [ 23]). This shows, in particu-
lar, that if N,B € L (), where N is a normal operator such that
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AN) = Ah(N) D A(B), then N @ B e A(¥ @ H)~. 1f, in addition, it
is assumed that A(N) is a connected set containing the origin,
then N @ B is actually a norm limit of nilpotent operators (see
[2]1;[15], Theorem 3; [ 23], Proposition 3.3).

Let T € L(¥) be such that ind(A-T) = 0 for all complex A and let
T = To®{®v[e k]} be the decomposition given by Theorem 3, such

that ind(k-To) = 0 and ind(A-T 0 for all v, for all k in F

vk)
and for all complex A.

Given ¢ > 0, let T' € L() be such that IT-T'l < e and T' satis-
fies the conditions (i) - (vi) of Corollary 7. It will be enough
to prove that T' € QGK)_. (Then we can use this result to show
that dist[T,A(¥)] < e; since € > 0 can be taken arbitrarily small,

it will follow that T € QGK)_). Moreover, T' has the form
m
T, o] el

tor on a separable Hilbert space and Tj € L(ﬂ}), where dim H} =

Tj], where To' is either 0 or a bi-quasitriangular opera

= = = = *) %
ﬁj > B and A(Tj) AB.(Tj) HB_(Tj) HB.(Tj )*. Therefore,

it suffices to show that T ',T,,...,T are norm limits of alge-
o 1 m

braic operators in their respective spaces. Now, Proposition 3.3
of [23] takes care of T '. Thus, we have reduced our problem to
show that:

(i') If A€ L@, dim ¥ = h > 8 _. A(A) = A (A) and ind(A-A) = 0
for all complex A, then A € QGK)'

The proof of (i') follows as in [23}. In fact, by using once again
Proposition 3.2 of [23], we can proceed as in the proof of Corol-
lary 7 to show that, given e > 0, there exists A' € L(¥) such that
IA-A'l < e, A(A) C A(A') = Ah(A') C (A(A))e, A(A') is the closure
of an open set bounded by finitely many pairwise disjoint recti-
fiable Jordan curves and ¥ can be decomposed as an orthogonal di-

1
pect to which A' has the form (1), where Nk is normal, A(Nk) =
= Ah(Nk) = A(A') and A(Dk) C interior (A(Nk))' Therefore

8
rect sum of eight subspaces of dimension h, i = jg ﬂ} with res-

Nlenl

where the diagonal entries are norm limits of algebraic operators.
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It readily follows (see [ 2];[15];[20];[23]) that A' € &(K)‘. This
proves (i').

By applying (i') to Ty,Tysene, Ty it follows that T' € A()™.

Suffieiency for the case (ii). Theorem 1 (i) yields the following
result: '

COROLLARY 8. Let T € A(H)—. Then T <8 the norm limit of operators
T' of the form T' = N + T", where N is normal, A(N) = E(N) and
Ad(T") = Ah(N) = Ah(T) for all o, No <a <h,

The proof is a.formal repetition of the one given for Theorem 5,
by using Theorem 1 (i) and Corollary 7 instead of (I 23] ,Proposi-
tion 3.2 and 3.3).The details are left to the reader.

Let T € A()” and assume that A(T), Aa(T) are connected sets con-
taining the origin. As in the prpof of the case (i), we can res-
m

trict our attention to the case when T has the form T=TO‘®[j21Tj],

"where TO’ acts on a separable reducing subspace and Tj S L(H}),

i = = = = _**
dim M} ﬂj > No, and A(Tj) AB.(Tj) HB.(Tj) HB-(TJ )*,

. J J 1
jo=1,2,...,m.
Then it suffices to show that To',Tl,...,Tm are norm limits of

nilpotents. The result of [ 2] takes care of To'and we have redu-
ced the problem to show that:

(ii') If A€ L), dim ¥ = h > 8, A(A) = A, (A) is a connected
set containing the origin and ind(A-A) = 0 for all complex A,
then A is a norm limit of nilpotents.

Assume that A satisfies (ii'). Then, by Corollary 8, given ¢ > 0
there exists A' similar to N @ A", where N is a normal operator
such that A(A) = A(N) = Ah(N) D A(A"). By the previous comments
in the proof of sufficiency for the case (i), N@ A" € N(I)™,
whence it readily follows that A € N(¥)™.

Applying this result to TI’TZ""’Tm’ it follows that T € Q(K)'
and the proof of Theorem 1 is complete,
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