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INVERTING A COVARIANCE MATRIX OF TOEPLITZ
TYPE BY THE METHOD OF COFACTORS

Radl Pedro Mentz

SUMMARY. A matrix is said to be of Toeplitz type if it has equal
elements along diagonals. These matrices, with the additional pro
perty of symmetry, arise frequently in statistical work, as cova
riance matrices of wide-sense stationary stochastic processes, in
nonparametric theory, etc. The inverse is often of interest, and
a method is used to find its components when the TxT matrix has
only 5 nonvanishing central diagonals. The method is to express
the cofactors of the components of the given matrix in terms of
some determinants, that are shown to satisfy certain linear dif-
ference equations, and to solve these explicitly. The complexity
of the resulting expressions for the components of the inverse is
comparable to those known in the literature.

1. INTRODUCTION.

A matrix A = (aij) is called a Toeplits matriz if ;4 = ai_j.

In mathematical statistics Toeplitz matrices arise in several con-
texts; see, for example, Grenader and Szego [ 3] . They appear as
covariance matrices of wide-sense stationary stochastic processes,
in which case they are symmetric and positive semidefinite. In the
present paper we assume. throughout that they are positive definite
and symmetric (i.e. are covariance matrices in nonsingular cases),
even when some of our results hold for nonsingular symmetric ma-
trices in general.

If zZ= (oij) = (o | i-j |) is the given matrix, the underlying assump
tions often imply that the components vanish if |i-j| > m, where
m» 0 is an integer. We may call the corresponding processes fini-
tely correlated of order m, and m=0 is the case of lack of correla
tion. This occurs, for example, in the moving average model of

' ‘ L i -
order m, X, = Ve + 83V, . & Veom? the Ve being uncorre

lated random variables with common means and (finite) variances.
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There exists wide interest in finding either exact or approximate
forms for the components of the inverses of these Toeplitz matri-
ces, since that knowledge can be used to derive the statistical
theory of procedures defined in terms of them. For example, the
author's interest in the inverse matrix studied here stems from
the analysis of Walker's [ 12] estimation procedure for the moving
average time-series model.See Mentz [ 6] .

For the case of m=1, explicit forms for the components of §;1 ob-
tained by means of the method of cofactors are well known; see,
for example, Shaman [8]. It has been conjectured that it would

be feasible to extend the procedure to m > 1. In the present work
we deal with the case of m=2 in detail.

In the case of m=1 several other approaches also solved the pro-
blem of finding the components of E;l. For higher values of m the
problem proved difficult. Shaman [ 9] exhibited a close-form expres
sion for the components of the inverse matrix when m=2, and for
that case also Mentz [ 5] has an expression. For general Toeplitz
matrices there is a paper by Calderon, Spitzer and Widom [ 1], but
it appears as a hard problem to deduce from their solution an

useful explicit form for the components of E;l for finite T.
m
Lo . ‘ (k) _
A useful notation is z = kEO akgk’ where gk has components gij 1
for |i-jl = k, and otherwise equal to 0. For a solution of a simi-

lar problem with different Gj see Mustafi [7]. In this notation

m
z =0, kzo pkgk, where pj = aj/a0 (00 > 0 because Z is positive

definite),and we see that there is no loss of generality in takihg
the coefficient of G, to be equal to 1, as will be done below.

In Section 2 we show that the cofactors of the components of E;l
can be written in terms of some determinants that in turn satis-

fy linear difference equations that we propose to solve explicitly.
Then in Section 3 we use the analysis of Section 2 to derive some
close-form and recursive expressions that are comparatively easy

to apply analitically and computationally. However, we do not
study the computational merits of the proposals as compared with
computer rutines prepared for certain Toeplitz matrices; see, for
example, Trench [10].

2, THE INVERSE OF I+ plgl + ngz BY EVALUATION OF COFACTORS.

Let ET =(0;.) =1+p.G +0p G # 0, and E_l =W, = (w§§)).
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The components of W, can be computed from

cofactor of 0.,
w(T) =

13
1j
g

(z,1)

In this section we use the following notation, where a subsgript
denotes the order of the corresponding matrix or determinant, and
we omit the superscripts in the components to simplify the writing.
We also use the notation of partitioned matrices:

(2.2) T, =12
P, 1 Py Py 0 ... 0 0 0] p1= W
Py Pyl PPy s O 00 Py
) 0 pyPyl Py .. 0 00 . o: Ze1
~S . . . . . . . . .
oo A o
. . . . . . . . |
0 0 0 0 0 ...pP,HR 1 ol
e ——n— ————
P 0 0 0 0 L0 Py Py P 10 ... 0 Py py
(2.3)
L =1L
s ~S
Py P,0 0 0 ...0 0 0 1 ?IL ”2_0_’L‘_9W
Py 1 P, Py o ... 0 0 O 1
) PyPy L Py Py e o 0 O ) p2=
e st ° | Ze-1
00 0 0 0 ...pPp L1 py . =
0 0 0 0 0 ...p,pP, 1 0
(2.4) a 2P0 ] U '

K = 1K/
s ~8

By expanding ET in terms of the components in its first row,
Durbin ([ 2], p. 315) found that the determinants satisfy the li-
near, homogeneous, fifth-order difference equation

2 2 3
(2.5) -En+(1-pz)En_1+(p2-p1)En_2+pz(pl-pz)En_3+p2(p2-1)2n_4+

+p;2n_5 =0

The associated polynomial equation

5 b, 293 2 2,3 5
(2.6) =22+ (1-p,)z '+ (P,-P])2 +p,(P1-P,)z2 05 ,-)z4py = 0

can be written in a symmetric way using the substitution +p,X = Z;
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after division by p; we obtain

2 2
1-p pi-p pi-p 1-p

(2.7) x5+ 2 4,0 22 NI 22 <2 2 L4120
Py Py Py Pay

Zero is not a root of (2.7), and if x* is a root so is 1/x*. Since
there must be five roots, +1 or -1 must be one of them. (They are
the only "self inverses'.) By inspection we see it is -1. Then

-p -2p
2 T 2
z2, =p, , 2z, =—=(d, + /d7-4) 2, = e
152 2 g1 1T d,+vai-u
(2.8)
-p -ZP
—2r3. Z _ 2
z, = (dp+vd5-4) |, 2y = ——pe
2 d,+/d;-4
where
-1
(2.9) d,dy = (20))7020,- 12 /(2 p,+1)7-4 07 ]

In general the roots (2.8) can be real or complex, and some or all
can be identical. Hence the solution of (2.5) will take different
forms depending on this fact. As an example, which will be also
used as illustration in subsequent derivations, if all roots are
distinct then (2.5) has solution

5
(2.10) z = 7§ c,z%

where the z, are the roots given in (2.8).

Since En is defined only for n > 1, (2.5) holds for n > 6, and the
sequence satisfying the difference equation and for which (2.10)
is the general solution is 21,22,... . The boundary conditions to
determine Ci’ i=1,...,5, can be taken to be (2.10) for
n=1,...,5 with the left-hand sides evaluated explicitly as

z =1
z, = 1-02
(2.11) T, = (1-p,) (1+0,-20%)
z, = 23-(pf+p§)+(pf+pg)+2pfp2-2pfp§
z = 24-pf23+29f02(1-pf-p2+p§)-p§(1-pf—p§)

Following the same approach we expand LT in terms of the components
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in its first row and find that

4

2 -
(2.12) L= Pyl oy * Pyl 5 - PpgL o * Pl . =0

n 17n-1 n-2
The polynomial equation is

' 4 3 2 2 4 _
(2.13) Y om Py Py - PPy Py =0

and after replacing pPx =y it becomes

4 4 3.3 3.2 3 4 _
(2.14) PoX" = P PLXT + pOX PLPyX + P, = 0

which has symmetric coefficients and can be studied in the same

way as equation (2.7). The roots Ygr S = 1,2,3,4, of (2.13) are
obtained from

= 2 2 - /a2 2
4 = 73;{91+“%1'4P2+8pz) 4y = 7,0 7p1-4p,*80))

p 20
2 —— 2
(2.15) y, = 5=(d, +/d7-4) Yo = e ,
121 T2 qevata
P 2p
2 7 2
= 52(d, +vd2-4 -2
Y3 = 7t Ly, aye it

The particular case of all roots distinct leads to solving (2.12)
by the sequence

(2.16) L =

=]
o~

. ngz n=1,2,... .

i
The four boundary conditions needed to determine the Cg's can be
taken to be (2.16) for n = 1,2,3,4 with the left-hand sides eva-
luated explicitly as

Ly =/
2
L, = p7-p
(2.17) 2 ; g
Ly = py+p5p =200,
L, =p,L,-p [(pz—p )-p (pz-pz)]
4 17370l WP 7P )PP y7F,

Expanding KT by the components in its first row we have

(2.18) Kn = pIEn_l—szn_1 , n=2,3,...

In the special case that En is given by (2.10),
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(2.19) Kn+p2K

2 n-1
ne1 =Py L Cy2)
i=1

which is a first-order, inhomogeneous, linear difference equation.

Provided that only one root (for ET) equals Py

- 5
- n 1 1 ,n 1 .2
2 iv2

The second summand corresponds to the root z, = P,; no other Z;
can be equal to P, in (2.20); if more than one root equals Pys
instead of the factor 1/(zj+p2) we have to use 1/2p2.

The new constant C in (2.20) will be evaluated from (2.20) for
n=2, with K, = p,. Note that

Ky, =0,(1-0,)
2
- _ = - _2p2y -
K, =22y - p,Kg =0, (1-p,) (140 ,-2p7) - p,K,

With this background we now find expressions for the components

wij of ET = E;l. Since ET is symmetric we restrict attention to

the components on and above the main diagonal.

1st case: i=j. Then w;, = B, /Z,, where B;, is the cofactor of
0;;- In terms of submatrices
%1
21—1 pZE
(2.22) Bii =
*
ng ET—1

where E* has its upper right-hand element equal to 1 and all other
elements equal to zero. We use Laplace's expansion in terms of
minors of the first i-1 columns; then

_ n2

(2.23) Bis = Zi1Proi7P 2% 0%
To make (2.23) valid for all i, we define 20 =1, E_l = 0.
2nd case:r i < j.

Z;.1 E 9

-1yiti = *
(2.24) -1 Bij p,E L. s F
%
0 B I
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where F has its lower left-hand element equal to p,, the two ad-
jacent elements equal to Py and all other elements equal to 0.
We expand (2.24) by Laplace's formula in terms of minors of the
first i-1 columns. In these columns there are three non-vanishing
minors with non-zero complementary minors, namely

(2.25) 1z, 41 =2,
- o]
: :
z. Pyl
(2.26) =i-2 = 2| = p,Z; ,
1
_0 . 0 | P2
and
I | 0]
: :
K* p
(2.27) Ri-2 : 2| = p,K,_,
I 1
AR
L . L) | 2-

where K; is Ks flipped about its secondary diagonal, so that
IE:I = Ks. If we denote by As(i,j), s = 1,2,3, the corresponding
cofactors, then

(2.28) (-D* JBij = zi_lAl(1,3)-pzzi_2A2(1,3)+p2Ki_2A3(1,3)

The As(i,j)'s are computed using Laplace's expansion in terms of
the last T-j columns. Then

s oAy L . 3
Ay (i,3) = By Lo -poKp gLy s 1*Po%r 5 1ly-i-2

o 2 _ 2
Ap(is3) = By s(pyLy_; 1 -Poly g p) PoKp 5 (Pyly 5 p=Poly 5 3)*

(2.29)
+032 (L -p2L )
2%7-5-1Y1%5-i-3"P2"5-i-4

C iy o L2 4

Ay(i,3) = PpZp 5Ly 5 1Py 3y 5 2*P2%r jo1ly-1-3
For j = [T/2]+1,...,T, say, these formulas are valid for all i<ij,
provided we define 20 = L0 =1, K, =0, E_s =L = K = 0 for

0 -8 -8
s > 0. For j <[T/2]+1 similar arrangements could be made. In fact,
due to the structure of ET'we only need to compute those components

of the last [ (T+1)/2] columns on and between the principal and sec-
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ondary diagonals, and then deduce the remaining components using
the symmetry of W, and its persymmetry (symmetry with respect to
its secondary diagonal). They lead for example to

(2.30) W = Wp_ gy opoger 0 iTheeen, TR §=1,2,.00,0T/20

We summarize these results as follows:

PROPOSITION 2.1. Let Z, = I+p,G +p,G,, with p, # 0, and EEI =
= WY, phen T
ET = (wij ). en

n

.. B..
(2.31) w§§> = (-1)itd sEL,img, L Teiety elT/2040, 0T
T

where the Bi' are given in {(2.23) when i=j and in (2.28) and
(2.29) when i < j, in terms of the determinants ES,LS,KS, which
are defined in (2.2)-(2.4) and satisfy the difference equations
(2.5), (2.12) and (2.18), respectively. The remaining elements of

, , (T) _ (T)
ET are obtained using wij = Wiy and (2.30).
= = 58 = _q1yi+]
If Py, =0 but Py # 0, then Ls =P KS = plzs_l,( 1) Bij

= 2, A (i,5), A (i,))

1
©

i_lzT—j’ and the solution reduces to

(2.32) w(T)

ij

[}

PR D
(-p )31 i-1"T-j
1 ZT

Here En satisfies the corresponding version of (2.5), namely

(2'33) Z -2 + pz z =0

with boundary conditions Z, =1, Z, = 1 - pf instead of (2.11),

3. ALTERNATIVE FORMS OF THE COMPONENTS OF THE INVERSE MATRIX.

In this section we want to use the analysis of Section 2 to obtain
other forms for the w§§) that can be of greater use. We shall find

useful the following result:

DEFINITION. 4 matrixz A = (aij) ig8 said to be "diagonal of type r"

if a5 = 0 whenever |i-jl > r.



114

PROPOSITION 3.1. Let A = (a ) be a TxT symmetrie and posttzve de-
finite matrix. A necessary and sufficient condition that A be
diagonal of type T i8 that there exist constants bta such that

for t = 1,2,..,,T-r+1

(3.1) a +b + ...+ Db =0, t'=t+1,...,T

tt' tlat+1,t' t,r-lat+r-1,t'
This result was apparently originated with Guttman [ 4] and Ukita

[11], and a detailed proof is given in Mentz [5].

Condition (3.1) states the existence of a linear relation between

succesive sets of r adjacent rows of é; an equivalente formulation
(to be used below) is to relate the first r-1 rows to each of the

remaining ones.

We now proceed to derive a closed-form expression for the w§§).
From (2.28) and (2.29) we derive the components in rows 1 and 2

(or columns T and T-1,respectively) of ET = EEI, as follows:

j+1
- _ (it 3
(3:2) WpyWp_ 54,1 = z, Zp_sly17PoXp Ly 2P 2% 5 1b-3)
j=z,
i (-1)i*2
w2j_wT—j+l,T—1_L_z)___{ ZrojlyoaPp (P By y+Kp )Ly 5
T
(3.3) 020, 5 40,5 . +p K. L, ,-p%(p Z,. . .+
y 2¥ 2% P %511ty )Rl P ¥y
+K, L. +p82 L, .] j=3 T
T-j7"5-5"P2%r-5-115-61 srees

Since ET is "diagonal of type 3", it follows that there exist cons
tants 6.. and 6,. such that
1i 21

(3.4) Wig T eliwlj + 02iW2j , i=3,...,T; j =1

Using these relations for j = T-1, T we form the systems

LTS SRS FLI S PTAPI
(3.5)

wi,T = oliwlT + oz:i_wz'r ’ i=3,...,T
that can be solved for the eli and 0 i replacing the resulting

values in (3.4) we obtain the follow1ng.
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PROPOSITION 3.2. Under the conditions of Proposition 2.1,

CIIMAPR ST SV AP S OA BTSSR LT S A T AL S TSR S
i WitWa, -1 © Y1,1-1%2r
(3.6)
W 1% il TV re 1Y 7o 1Y T WonYy i1 T pYs  ro i ) Vo
Yit¥2,1-1 T Ya2r¥i,1-1

i<j
where the necessary components are given in (3.2) and (3.3).

It is easily checked that (3.6) holds for all i < j. As in the
case of (2.31), it suffices to compute Wij for i = j,...,T-j+1,
j=1T/21+1,...,T.

Expression (3.6) exhibits the components of the inverse matrix as
functions of the components in columns T and T-1 (or rows 1 and 2),
and in turn, using (3.2) and (3.3), as functions of the roots of
(2.6), (2.13) and Py the latter being the root of the polynomial
equation associated with the sequence of Kn's.

While (3.6) may be useful for analytic purposes, the following re-
cursive approach may be 51mp1er, since the w(T) will be given as
functions of the determinants 213 and X_ only, not of the L

The components along the diagonals near the main diagonal give rise
to some interesting simplifications. In effect from (2.28) we have
that

DBy 5417801 Byl Ly oKy s g Lg) oy pZq 5 1P Lg *

(3,7) s, K

2 K

i-2Po¥rogoy = T P Zp 5 1 PoKp i)

K

T PPE DT g pz i-2%7-i-1

using the explicit values for some Ls's given in (2.17). Similarly

2 _ 2 3 -
1By 427 Zi gl (0PI 5 5P P oKy P i 31 7P %5

(3.8)
2 2
N R PO L IPEPRL PLPYCNPIPY B DY SR CIT PR Ry szT i-2)
1By 1437250 1[(” +“’1"’ 2P Ep g pchl PRy 3 *
3 2 2 _ 2 2 _
(3.9 ML SIS BT PO S CRR PRI TP L PR S PACERIPOR S SPR

3 2_ )
P1P %4 *P Ry plP 5 (P1-P ) Zp 5 3
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2 4
- PPy 3PP 4]
For the present case of r=3 expression (3.1) reads

(3.10) Wiy = -bilwi+1,j—b12wi+2,j , 1i=1,...,T-2; j =i

using this expression for columns i+2 and i+3 we form the systems

= -b

Wi,i+2 i1Wi+1, 427D

LW, .
(3.11) 127i+2,1i4+2

= -b b

Wi,i+3 1141, 143 Pio%i42,443 2 1 = Thee,T03

From these systems we derive bi1 and biz’ substitute them back in
(3.10) and obtain

(Wipg i43%i, 142 Wit i+2%i, 143 V441, 5

wW..
ij
Wisl,i+2%i+2,i+3 T Wi+, i+3Vi+2,i42

(3.12)

_ (wi+1,i+3wi,i+2_wi+llj+2Wi,i+3)wi+2,j

Wil i+2%i+2,i43 ~ Wi+l,i+3%i42,i42

The components of the inverse matrix are then computed as follows:

PROPOSITION 3.3. Under the conditions of Proposition 2.1, the com

ponents wij ig) of the inverse matrix NT = EEI are determined
as follows:
(a) Determine Vii+s for s = 0,1,2,3 according to
(3.13) w o o_ 1 2 .
ii T Ty Gy 1% PR 0%og) > B = 1T
T
_ (-1 ) 2 )
(3.14) Wi 441 = Lg—l{zT-i-l(plzi—l P1P 335 2% oK )P oKy s 1% ),
i=2,...,T '
_ 1 2_ ) 2 2 2
Yi,iv2 T3 [Zp_ 5 o T(R1-P )T, 1P, (P1-PR)E; o+ PRk o)
(3.15) T
+ 032 Z. +K {-0,p,Z, +p P 03K, .}
2%7-i-3%i-1""r-i-2' 71 2% 171 2%i-27 2 27 s
i=3,...,T
Wiie3 ———){ET ie 3{(p +p p -2pp, Z, P (”1 P,-P P, )E ot

2,2 3 4 5
(3.16) +py PR By (P15 1P 1PRT p*P oKy p)”
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2 2.2 2 3
* Ky g3l-pp (Py-p)E, 1405 (P1-P)Z; 5-p POk L],
i=4,...,T

(b) For column j, [T/2]1+1 € j < T, find in succession W
s =4,...,2j-T-1, using (3.12).

j-s,3 7OF

(c) Determine the remaining wij using the symmetry and persymmetry
of HT‘

Expression (3.13) is derived from (2. 23), and expressions (3. 14)-
(3.16) from (3.7)-(3.9), respectively.

As was remarked above, Proposition 3.3 solves the problem of spe-
cifying the wi; as functions of the determinants En and K of dif
ferent orders. Also note [ for example, see equation (2.19)] that
once the Zn are available the Kn are easily determined. '
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