Revista de la Unión Matemática Argentina Volumen 27, 1975.

CORRIGENDUM: "NORM LIMITS OF NILPOTENT OPERATORS AND WEIGHTED

SPECTRA IN NON-SEPARABLE HILBERT SPACES"

Domingo A. Herrero

There is a mistake in the proof of *Theorem* 5 and its non-separable analog *Corollary* 8 of [1]. The author was unable to obtain fair proofs of these two results. However, the other results of the paper remain true, after a few minor modifications of their proofs.

Proof of Corollary 7. Replace the sentence "By ([1], Theorem 2.2), it can be obtained that $\Pi_{\aleph}(T_{\nu k,2}) = \Lambda(N_{\nu k})$." by the following:

By ([1], Theorem 2.2), there exist operators $T_{\nu k}' \in \mathcal{L}(\mathcal{H}_{\nu k})$ such that $T_{\nu k} = T_{\nu k}$ is a compact operator of norm smaller than $\varepsilon/4$ and $\mathcal{H}_{\nu k}$ admits the decompositions $\mathcal{H}_{\nu k} = \mathcal{H}_{\nu k,1} \oplus \mathcal{H}_{\nu k,2}' \oplus \mathcal{H}_{\nu k,2}'' =$ $\mathcal{H}_{\nu k,1} \oplus \mathcal{H}_{\nu k,2}$ with respect to which

	1	N _{vk}	0	T _{vk,1}				
	T., '=	0	N.,,	T., , '	=	^{/ N} vk	$T_{vk,1}$	
i di Ref	VK	0	0.	νκ, Ζ Τ יי		0	$T_{vk,2}$	
3 <u>11</u>	- · ·	Ū	U	'vk,2 /				

where $N_{\nu k}$ is a normal operator such that $\Lambda(N_{\nu k}) = E(N_{\nu k}) = \prod_{0}^{N} (T) = \prod_{N_{\nu}}^{N} (T_{\nu k,2})$, and

$$\Gamma_{\nu k,2} = \begin{pmatrix} N_{\nu k} & T_{\nu k,2}' \\ 0 & T_{\nu k,2}'' \end{pmatrix}$$

cascto ina

with respect to the decomposition $\mathcal{H}_{\nu k,2} = \mathcal{H}_{\nu k,2}' \oplus \mathcal{H}_{\nu k,2}''$.

Also, replace the last two sentences "Moreover, Theorem 5 ... for all λ ." by:

Moreover, it is clear that, in this case, $T_{\nu k,2}$ is also bi-quasitriangular and $E(T_{\nu k,2}) = E(N_{\nu k})$. Then, our previous arguments show that T' actually satisfies the condition (vi) too. In fact, $ind(\lambda-T_o)=0$ for all λ .

Finally, replace the section "Sufficiency for the case (ii)" by this new one:

Sufficiency for the case (ii). In this case the proof follows exactly as in the case (i). We only have to observe that if $ind(\lambda-A)=0$ for all complex λ and $\Lambda(A)$ and $\Lambda_{\alpha}(A)$, $\aleph_{0} \leq \alpha \leq h$, are connected sets containing the origin, then the A' of (i') satisfies the following property: $\Lambda(N_{j}) = \Lambda_{h}(N_{j})$ is connected and contains the origin. Hence, N_{j} (and a fortiori $N_{j} \oplus D_{j}$) can be uniformly approximated by nilpotent operators in $\mathcal{L}(\mathcal{K}_{j})$, j=1,2,3,4, whence it follows exactly as in the *Proof* of (i') that A' \in

 $\in N(\mathcal{H})^-$. Therefore, A also belongs to $N(\mathcal{H})^-$.

REFERENCES

 HERRERO D.A., Norm limits of nilpotent operators and weighted spectra in non-separable Hilbert spaces, Rev. Un. Mat. Argentina 27 (1975), p. 83-105.

> Departamento de Matemáticas Universidad Nacional de Río Cuarto Río Cuarto, Córdoba, Argentina

Recibido en agosto de 1975