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UNSTEADY, LAMINAR, INCOMPRESSIBLE FLOW 

THROUGH DUCTS OF ARBITRARY, DOUBLY 

CONNECTED CROSS SECTION 

Patricio A.A. Laura 

ABSTRACT. The present investigation deals with the dynamic response 
of an incompressible viscous fluid contained in a conduit of arbi­
trary cr~ss section when subjected to an impulsive pressure gradient. 
The resultsare generalized to include any arbitrary variation of the 
pressure gradient with respect to time. 

INTRODUCTION. 

The analysis of unsteady flow in conduits of complicated cross sec­
tion is of interest from both academic and practical viewpoints. 

Irregular shaped ducts are commonly used in space technology and nu­

clear engineering since they must be placed in the available space 
between compactly arranged components and conduits of "exotic" sha­

pe are then des igned [11 . 

The unsteady flow of a viscous incompressible fluid in a circular 

duct under a time-varying pressure gradient has been studied by 
Mithal [2] • 

Following a similar approach, Mittal [31 investigated the same pro­

blem in the case of an annular duct. The Laplace transform techni­
que was used by both investigators. 

The unsteady flow in a duct of rectangular cross-section due to a 
sinusoidally varying pressure gradient was analysed by Drake [4). 

The velocity was obtained in terms of a double Fourier series. Fan 
and Chao [5) investigated the same configuration but for an arby­
trary prescribed pressure gradient .They obtained first the solution 

for an impulse pressure gradient and then the solution for an arbi­
trary pressure gradient f(t) was calculated by the convolution in­
tegral 

v z 
.Jt f(~) v* (t - q).dq 

O z 
(1) 

where v: is the axial velocity corresponding to an impulse pressure 
gradient. 

I~ a recent paper [6], Daneshyar has extended Mithal's. A discussion 
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of pertinent references has also been published (7) . 

Jeng [S) investigated the possibility of extending Fan and Chao's 
analysis to ducts of arbitrary shape by using the point-matching me­
thod. The only shape considered in his interesting paper is the 

square cross-section where he compared exact results obtained by 
rneans of the double Fourier series approach and approximate values 

calculated by use of the point-matching technique wherein a trunca­
ted series of cylindrical harmonics was used. The agreement was ex­

cellent in all cases. 

Sorne of the advantages and disadvantages of the point-matching tech­
nique have been discussed by several investigators (9) -[ 12). The 

main advantage of the straight point matching technique is its in­
herent simplicity; the principal objection to the method is its lack 
of stability for truly complicated shapes (13)-[ 15) . 

It is important to point out that the original, straight point-matc~ 
ing method has been improved by several investigators (16) -[ 17) . 

Laura and Santamarina [lS) have applieJ the conformal mapping tech­
nique to the problem of unsteady, incompressible flows in ducts of 
non-conventional cross section. Since the governing partial differe~ 
tial equation is not invariant under the transformation, a variatio­
nal method is used to solve the transformed differential equation. 

The same approach has been used by the author to solve other eigen­

value and diffusion - type problems (20) -[ 24) and the results have 
been quite satisfactory. 

The present study is an extension of the analysis developed in Refe­

rence (18) where only simply connected cross sections are considered. 
In the case of circular-annular cross sections the solution obtained 

turns out to be the exact solution of the problem (3) . 

THE MATHEMATICAL MODEL. 

The dynamic behavior of an incompressible, viscous flow is governed 
by the Navier-Stokes' partial differential equations, which in vec­
tor form can be expressed as follows: 

-+ 
p.D V 

D t 

-+ 2 -+ 
F - grad p + M.V V 

-+ -+ 

(2) 

where V: velocity vector; p: density; p: pressure; F: body force and 
~ is the absolute viscosity. 

Expressing (2) in cylindrical coordinates and assuming (8): 

o 
av 

z 

az 

one obtains in the z - direction: 

o (3) 



av 
z 
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where v is the kinematic viscosity. 

1.!E. (4) 
p az 

Let - 1.!E. = 6(t) where 6(t) denotes the Dirac delta function. 
pat 

The governing differential system is then: 

av 
z _ v ..,2 

v .v z 
at 

6 (t) (Sa) 

v (r,tII,t)! 
Z t=O 

o (Sb) 

(i=1,2) (Se) 

where Li(r,tII) = O denotes the functional relations wich define the 
boundaries of the doubly connected cross section. 

The differential system (S) is equivalent to the more convenient 
one [81 : 

av 
z 

v (r,tII,t)! 
Z t=O 

O 

v [L.(r,tII)=O,tl = O 
Z 1 

(6a) 

(6b) 

(6c) 

Since the governing system is linear, once (6b) is solved it is pos­
sible to extend the results to an arbitrary variation of the pressu­
re input using Eq. (1), 

SOLUTION OF THE DIFFERENTIAL SYSTEM. 

Taking 
Vz = U(r,tII) T(t) (7) 

and replacing Eq.(7) in Eq.(6a) results in the following two differ­
ential equations: 

'\12 U(r,tII) + ~.U(r,0) O 

d T(t) + ~,v.T(t) O 
d t 

where ~ is the separation constant. 

The solution,of Eq.(Sb) is simply: 

(Sa) 

(Sb) 
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T(t) = C.e-v.'Y.t (9) 

Equation (Sa) is the well known Helmholtz equation and for convenien­

ce is written in complex variable form: 

+ 'Y.U o (10) 
aw.a\? 

where w = r.e id . 

Let w f(e) be the analytic function which transforms the given do­
main in the w-plane onto a circular annulus in the ~-plane. The go­
verning differential system becomes in the ~-plane: 

a2 
U 1 1

2 
4 a ~ a f + 'Y. :; • U O (11 a) 

O (11 b) 
r1,e 

illl 1 
where ~ = r1e (see Figure 1). 

The transformed boundary configuration is quite simple now but it be­

comes evident the fact that it will be necessary to use an approxi­
mate method to solve the differential equation. 

Let the solution of (lla) be expressed in terms of a double infinite 

sum of cylindrical harmonics: 

(1 2) 

- J (~ r 1 ) y (~ r¡)] cos n ~l n nm ,e n nm 

where J and Y are the Bessel functions of first and second kind 
n n 

respectively. The ~nm's are the roots of the secular determinant 

O (13) 

J (~ . r¡ ) n nm ,e 

Since only an approximate solution is sought it will be convenient 
to simplify Eq.12 even further. It is obvious that only a finite num­
ber of terms will be taken, as is usual with most of the techniques 
that follow a weighted residuals approach. The second approximation 
assumesthat U(r 1 ,01) is practically independent of the 01 coordina­

te (this is an actual fact for r 1 = r1,i and r 1 = r1,e).The accu­
racy of this approximation has been previously demostrated in the 
technical literature [20] -[22]. The solution of the transformed 
Helmholtz equation becomes then 
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(14) 

Replacing Eq.(14) in Eq.(lla) results in an error or residual func­

tion E(rl'~I) which must be minimized by means of an appropriate cr! 
terium: Galerkin's method, least squares, etc. By using the corres­

ponding mathematical condition one obtains a homogeneous system of 
(M + 1) equations in the A 's. om 
For a nontrivial solution, the determinant of the coefficients of 

the unknowns must vanish and the eigenvalues 'om's can then be eva­
luated. The A coefficients are now found from the initial condition 

m 
(6b) making use of the Fourier - Bessel expansion 

M 
"" L A [J (r¡ .rl)Y (r¡ .r l )-J (r¡ .r l )Y (r¡ .r l )] m=O om o om o om ,e o om ,e o om 

(1 Sal 

where the Aom's are given by [23] 

A om 7f • (1 Sb) 

The following approximate express ion for the unsteady velocity pro­
file in the ~-plane then results: 

v z 

M 
L A [J (r¡ .r l ) y (r¡ .r l )-

m=O om o om o om ,e 
(16) 

It is important to point out that for practical engineering calcula­
tions only a few terms of Eq. (16) are needed. 

APPLICATIONS. 

Consider now- the doubly connected cross sections shown in Figure 1. 

A complete discussion regarding the determination of the mapping 
functions of such doubly connected cross sections is available els~ 

where [24] and will not be rep.eated he re . The eigenvalues , om are 
also taken from Ref.24 where Galerkin's method was used and their 
values are given in Table 1. 

It is interesting to study the response of the fluid when f(t) is 
equal to a step function, e.g. 

p 
~ = K .U(t) 
3z o 

( 1 7 ) 

where U(t) is the unit step function. From Eqs.(1),(16) and (17) one 



obtains: 

where T v • ti a 2 ; 

M 
¿ 

m=o 

A om 

l' om 
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[J (r¡ • r¡) Y (r¡ • r¡ )-o om o om ,e 

-1' . T 
- J (r¡ .r¡ )Y (r¡ .r¡)] (l-e om ) o om ,e o om 

(1 8) 

1 '= a 2 .1 and a 2 is the apothem of the polygon. om om 

Figures 2 through 4 show the velocity profile in the ~-plane for the 
configurations of Figure 1 and for different values of T. 

Qne can immediately observe from the graphs that the value of the ra 

tio r 1 ./r1 has a very distinct effect on the shape of the profile. 
,1 ti e 

Qne of the most important features of the approach presented in this 

paper consists in the determination of unified solutions for any ty­

pe of doubly connected cross sections. For instance, the approximate 

solutions, Eqs. (16) and (18) are valid regardless the shape, only 

the eigenvalues are different for each individual configuration. 
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Geometry r 1 . Ir 1 R/a 
,1. ,e 

Fig.1(a) 

Fig.1(b) 

Fig.1(a) 

Fig.l(b) 

! 

0.10 0.108 

0.10 0.105 

0.40 0.432 

0.40 0.42 

TABLE I 

W - p/ane 
it w= re 

-c-$--+-
j 

I 

I 

~ a 
I 

~ a 
I 

I 
I 
I 

~ 

w- plane 
W= réct> 

(a) 

( b) 

"Y01=("Y01·a2) , _ ( 2) "Y 02 - "Y 02 ·a 

9.3697 

9.9288 

22.4676 

24.0786 

43.0952 

46.4878 

94.0124 

102.3132 

~ - plane 

é_re i +,. 
., - 1 

5 - plane 
~ = r1 et"l 

fIGURE 1 - Doubl~ ConnBcted Cross Sedions.-
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fl6URE 2 - Unstead~ flow in Dud of Doubl~ Connected Cross Section 
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FIGURE 3 - Unstead!:j flnw ;n Duct of Dnubly Connected [ross Sedion 
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