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UNSTEADY, LAMINAR, INCOMPRESSIBLE FLOW
THROUGH DUCTS OF ARBITRARY, DOUBLY
CONNECTED CROSS SECTION

Patricio A.A. Laura

ABSTRACT. The present investigation deals with the dynamic response
of an incompressible viscous fluid contained in a conduit of arbi-
trary cross section when subjected to an impulsive pressure gradient.
The results are generalized to include any arbitrary variation of the
pressure gradient with respect to time.

INTRODUCTION.

The analysis of unsteady flow in conduits of complicated cross sec-
tion is of interest from both academic and practical viewpoints.
Irregular shaped ducts are commonly used in space technology and nu-
clear engineering since they must be placed in the available space
between compactly arranged components and conduits of "exotic'" sha-
pe are then designed [1].

The unsteady flow of a viscous incompressible fluid in a circular
duct under a time-varying pressure gradient has been studied by
Mithal [ 2].

Following a similar approach, Mittal [3] investigated the same pro-
blem in the case of an annular duct. The Laplace transform techni-
que was used by both investigators.

The unsteady flow in a duct of rectangular cross-section due to a
sinusoidally varying pressure gradient was analysed by Drake [4].

The velocity was obtained in terms of a double Fourier series. Fan
and Chao [5] investigated the same configuration but for an arby-
trary prescribed pressure gradient .They obtained first the solution
for an impulse pressure gradient and then the solution for an arbi-
trary pressure gradient f(t) was calculated by the convolution in-
tegral
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where v: is the axial velocity corresponding to an impulse pressure
gradient.

In a recent paper [6], Daneshyar has extended Mithal's. A discussion
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of pertinent references has also been published [7].

Jeng [8] investigated the possibility of extending Fan and Chao's
analysis to ducts of arbitrary shape by using the point-matching me-
thod. The only shape considered in his interesting paper is the
square cross-section where he compared exact results obtained by
means of the double Fourier series approach and approximate values
calculated by use of the point-matching technique wherein a trunca-
ted series of cylindrical harmonics was used. The agreement was ex-
cellent in all cases.

Some of the advantages and disadvantages of the point-matching tech-
nique have been discussed by several investigators [9]-[12]. The
main advantage of the straight point matching technique is its in-
herent simplicity; the principal objection to the method is its lack
of sfability for truly complicated shapes [13]-[15].

It is important to point out that the original, straight point-match
ing method has been improved by several investigators [16]-[17].

Laura and Santamarina [ 18] have applied the conformal mapping tech-
nique to the problem of unsteady, incompressible flows in ducts of
non-conventional cross section. Since the governing partial differen
tial equation is not invariant under the transformation, a variatio-
nal method is used to solve the transformed differential equation.

The same approach has been used by the author to solve other eigen-
value and diffusion - type problems [20]-[24] and the results have
been quite satisfactory.

The present study is an extension of the analysis developed in Refe-
rence [ 18] where only simply connected cross sections are considered.
In the case of circular-annular cross sections the solution obtained
turns out to be the exact solution of the problem [ 3].

THE MATHEMATICAL MODEL.

The dynamic behavior of an incompressible, viscous flow is governed
by the Navier-Stokes' partial differential equations, which in vec-
tor form can be expressed as follows:
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where V: velocity vector; p: density; p: pressure; F: body force and
4 is the absolute viscosity.

Expressing (2) in cylindrical coordinates and assuming [ 8]:

v. =v, =0 ; =0 (3)

one obtains in the z - direction:
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where » is the kinematic viscosity.

Let - l.QR = §(t) where §(t) denotes the Dirac delta function.
p ot

The governing differential system is then:

ov 2

—Z - v Vi.v_ = §(t) (5a)

at 2

v, (r,8,t) =0 (5b)
t=0

vz[Li(r,¢)=0,t] =0 (i=1,2) (5¢)

where Li(r,¢) = 0 denotes the functional relations wich define the
boundaries of the doubly connected cross section.

The differential system (5) is equivalent to the more convenient
one [8]:

ov

—2 _».w¥v =0 (6a)

ot z

Vz(r’¢9t) =1 (Gb)
t=0

vz[Li(r,¢)=0,t] =0 (6¢c)

Since the governing system is linear, once (6b) is solved it is pos-
sible to extend the results to an arbitrary variation of the pressu-
re input using Eq. (1),

SOLUTION OF THE DIFFERENTIAL SYSTEM.

Taking
v, = U(r,8) T(t) (7

and replacing Eq.(7) in Eq.(6a) results in the following two differ-
ential equations:

v U(r,8) +v.U(r,8) = 0 (8a)
g_ziﬁl + v . T(t) =0 (8b)
t

where 7 is the separation constant.

The solution .of Eq.(8b) is simply:
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T(t) = C.e V7t (9)

Equation (8a) is the well known Helmholtz equation and for convenien-
ce is written in complex variable form:

+ .U =0 (10)

where w = r.ei¢.
Let w = £(¢) be the analytic function which transforms the given do-
main in the w-plane onto a circular annulus in the £-plane. The go-

verning differential system becomes in the & -plane:

2 2
43U+~/.d—w|u=o (11a)
0t 9F dé¢
U(rl,él) =0 (11b)
1T f1,i 8 Tre
id,
where § = r.e (see Figure 1).

1
The transformed boundary configuration is quite simple now but it be-
comes evident the fact that it will be necessary to use an approxi-
mate method to solve the differential equation.

Let the solution of (11a) be expressed in terms of a double infinite
sum of cylindrical harmonics:

U(r,,8,) = nzo mZO A LI (o r)) Y (0

)

T
nm l,e

(12)

-J, (n ) Y (n_.7r;)] cos n é;

nmrl,e
where Jn and Yn are the Bessel functions of first and second kind
~respectively. The nnm's are the roots of the secular determinant

=0 (13)

Since only an approximate solution is sought it will be convenient
to simplify Eq.12 even further. It is obvious that only a finite num-
ber of terms will be taken, as is usual with most of the techniques
that follow a weighted residuals approach. The second approximation
assumes  that U(rl,ﬁl) is practically independent of the él coordina-
1= rl’e).The accu-
racy of this approximation has been previously demostrated in the
technical literature [20]-[22]. The solution of the transformed
Helmholtz equation becomes then

te (this is an actual fact for T, =T and r
’
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M
U(rl’qsl) = U(rl) = mZO Aom[Jo(nom'rl) Yo(nom'rl,e

(14)

- Jo(nom'rl,e) Yo(nom'rl)]

Replacing Eq.(14) in Eq.(11a) results in an error or residual func-
tion e(r1,¢1) which must be minimized by means of an appropriate cri
terium: Galerkin's method, least squares,etc. By using the corres-
ponding mathematical condition one obtains a homogeneous system of
(M + 1) equations in the A L's.

For a nontrivial solution, the determinant of the coefficients of
the unknowns must vanish and the eigenvalues vom's can then be eva-
luated. The A coefficients are now found from the initial condition
(6b) making use of the Fourier - Bessel expansion

M
1= Z Aom[Jo(nom'rl)Yo(nom'rl,e)_Jo(no

L nT1,e) Yo (Mop-Tp)] (15a)
where the A 's are given by [ 23]
J (n__.r. .)
Aom = - o_om 1.1 (15b)
Jo(nom'rl,i) * Jo(nom'rl,e)

The following approximate expression for the unsteady velocity pro-
file in the £-plane then results:

M
V, = mZO Aom[Jo(nom'rl) Yo(nom'rl,e) -

(16)

VY ot
- Jo(nom.rl’e) Yo(nom.rl)]e

It is important to point out that for practical engineering calcula-
tions only a few terms of Eq.(16) are needed.

APPLICATIONS.

Consider now- the doubly connected cross sections shown in Figure 1.
A complete discussion regarding the determination of the mapping
functions of such doubly connected cross sections is available else
where [24] and will not be repeated here. The eigenvalues Yom 2T€
also taken from Ref.24 where Galerkin's method was used and their
values are given in Table 1.

It is interesting to study the response of the fluid when f(t) is
equal to a step function, e.g.

1.% .k (17)
p 9z °

where U(t) is the unit step function. From Eqs.(1),(16) and (17) one
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obtains:
i Aom
Vz/% .aZ/V ~ 1 ) [Jo(nom'rl) Yo(nom'rl,e) -
o m=0o Ygp

(18)

-y T
- om
- Jo(.nom'rl,e)Yo(nom'rl)](1 € )

where 7 = v.g/az ; Y;m = a2.7°m and a? is the apothem of the polygon.

Figures 2 through 4 show the velocity profile in the £¢-plane for the
configurations of Figure 1 and for different values of 7.

One can immediately observe from the graphs that the value of the ra

tio T, i/r1 e has a very distinct effect on the shape of the profile.

One of the most important features of the approach presented in this
paper consists in the determination of unified solutions for any ty-
pe of doubly connected cross sections. For instance, the approximate
solutions, Eqs;(16) and (18) are valid regardless the shape, only
the eigenvalues are different for each individual configuration.
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v oo 2 v oo 2
Geometry rl,i/rl,e R/a | 7g;=(vg1-37) | 70y=(7g,-27)
CASE I Fig.l(a) 0.10 0.108 9.3697 43.0952
CASE II Fig.1(b) 0.10 0.105 9.9288 46.4878
CASE III Fig.1l(a) 0.40 0.432 22.4676 94.0124
CASE IV Fig.1(b) 0.40 0.42 24,0786 102.3132
TABLE I
W - plane & - plane
) i
w=re E=rne b
| |
|
) '! !,
i rl,B =1 1
|

FIGURE 1- Doubly Connected Cross Sections.-
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FIGURE 2~ Unsteady Flow in Duct of Doubly Connected Cross Section (CASE I)
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FIGURE 3 — Unsteady Flow
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