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FREE SYMMETRIC BOOLEAN ALGEBRAS

Manuel Abad and Luiz Monteiro*

Our purpose is to give a construction of the symmetric Boolean
algebras with a finite set of free generators, different from
that given by A. Monteiro ([5]).

1. INTRODUCTION.

We shall begin recalling some notions and results of the theory
of symmetric Boolean algebras.

DEFINITION 1.1. A symmetric Boolean algebra is a pair (A,T),
where A is a Boolean algebra, and T <s an automorphism of A of
period two, that is, such that TTx = x, for all x € A. (Gr. C.
Moisil, [ 2],[3]).

Briefly, we shall say that A is a symmetric algebra. A.Monteiro
has independently studied these algebras under the name of "alge-
bres de Boole involutives' ([4],[5]).

DEFINITION 1.2. 4 part S of a symmetric algebra A is said a sym-
metric subalgebra of A if:

S1) s +# 4@

S2) S is closed under A, V, - and T

It is clear that a symmetric subalgebra of A is a Boolean sub-
algebra of A.

Let G be a part of a symmetric algebra A; we shall represent by
B(G) (respectively S(G)) the smallest Boolean (respectively sym-
metric) subalgebra of A containing G. B(G) (respectively S(G)) is
called the ‘Boolean (respectively symmetric) subalgebra generated
by G. It is clear that B(G) € s(G).

* This work has been done at the Instituto de Matemdtica, Univer-

sidad Nacional del Sur, 1974,
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We shall represent by I = I(A) the set of all elements x of A such
that Tx = x. It is clear that I(A) is a Boolean subalgebra of A.

DEFINITION 1.3. Let A and A' be symmetric algebras. A symmetric
homomorphism from A into A' is a funetion h from A into A' such
that:

H1) h(x vy) = h(x) v h(y)
H2) h(-x) -h(x)

H3) h(Tx) = Th(x)

for all x and y € A.

If h is a surjective function, we say that A' is a homomorphic
image of A. If h is a bijective function, we say that A is isomor
phic to A', and we shall note A = A'.

From conditions H1) and H2) follows that h is a Boolean homomor-
phism. Therefore, a symmetric homomorphism is a Boolean homomor-
phism which verifies condition H3).

The kernel of a symmetric homomorphism h from A into A', that is,
the set Ker h = h'1(1), 1 € A', is a filter which verifies the
condition:

D) If x € Kerh then Tx € Kerh .

DEFINITION 1.4. 4 filter of a symmetric algebra A which verifies
condition D) will be called a deductive system or a T-filter.

LEMMA 1.5. 4 principal filter F(X) of A is a T-filter if and
only if x € I(A).

Proof. Necessary condition: as x € F(x) and F(x) is a T-filter,
then Tx € F(x), that is, x < Tx; hence Tx < TTx = x. Therefore
Tx = x, that is, x € I(A).

Sufficient condition: Let us suppose Tx = x, and let y be such
that y € F(x), that is, x <y; then x = Tx < Ty. Hence Ty € F(x).

If F is a T-filter of a symmetric algebra A, and we define:

a=b (mod F)iff (-a v b) A (-b v a) € F, for all a,b € A, then
"='' is a congruence relation on the algebra A. ([1]1). Let us rep-
resent by A' = A/= or A' = A/F the quotient set of A by the equi-
valence relation "=", and let us note by |x| the equivalence class
containing the element x € A. If we define:

IxI a dyl = Ixayl 5 -lx| = |-x| 5 Tlx| = |Tx|

it is easy to prove that A' is a symmetric algebra.

The application h from A into A' defined by h(x) = |x|, for all
X € A, is a symmetric homomorphism from A onto A', that is, A' is
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a homomorphic image of A. h is called the natural homomorphism.

It is easy to prove that if A' is a homomorphic image of A, then
there is a T-filter F of A, such that A/F = A'.

Therefore, we obtain all the homomorphic images doing the quotiens
A/F , where F is a T-filter of A.

2. SIMPLE SYMMETRIC ALGEBRAS.

A symmetric algebra is called trivial if it has only one element.

DEFINITION 2.1. 4 symmetric algebra is called simple if:
1) A Zs non trivial.
2) All the homomorphic images of A are either trivial or isomor-

phic to A.

A. Monteiro ([5]) proved that the only simple algebras are those
whose Hasse diagrams and the corresponding automorphisms are
shown in the next figure:

B1 1 X Tx B2 1 X Tx
0 0 0 0

1 a b a b

0 0 b a

1 1

We shall next give another proof of this result. It is not diffi-
cult to prove the following theorem. ‘

THEOREM 2.2, In order that a non trivial symmetric algebra A be

simple <t is necessary and sufficient that I(A) = {0,1}.

This result can be stated as follows: "In order that a symmetric
algebra A be simple it is necessary and sufficient that the

Boolean algebra I(A) be simple". Then, it is clear that the alge
bras B1 and B, shown in the above figure are simple algebras. We
shall now prove that they are the only simple symmetric algebras.

LEMMA 2.3, Let A be a simple symmetric algebra with more than two
elements., If x € A - I(A), then Tx = -X.

Proof. Consider y = x A Tx; then y € I(A). If y=1, then x=1 which
is a contradiction., Therefore (1) x A Tx = 0. Consider z = x Vv Tx;
then z € I(A). If z=0, then x=0, which is a contradiction. There-
fore (2) x v Tx = 1.

From (1) and (2) follows Tx = -Xx.
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LEMMA 2.4. Let A be a simple symmetric algebra with more than two
elements. If X;,X, € A - I1(A) and xl#xz, then X =-X,.

2
Proof. By hypothesis, x; A X, # 1. If X; A X, # 0, then it fol-
lows from 2.3 T(x1 A x2) = -(x1 A Xz)’ that is, Tx1 A sz =
= X,V ooX,. Besides Tx1 = =Xy, Tx2 = "X,; hence Xy A -x, =
= -X; Vo-X,, and then -x; = -x,, that is, X} = X, which is a
contradiction. Therefore X, A X, = 0. It can be likewise proved
that x; v x, = 1.

It immediately follows from lemmas 2.3 and 2.4 that if A is a sim
ple symmetric algebra which contains an element different from

0 and 1, then it contains exactly four elements 0,a,b,1, with
a=-band TO0 = 0, Ta = b, Tb = a, T1 =1,

3. T-FILTERS OF A SYMMETRIC ALGEBRA A AND FILTERS OF I(A).

Let T = T(A) be the set of all the T-filters of a symmetric alge-
bra A, and F = F(I) the set of all the filters of the Boolean al-
gebra I(A). It is clear that T and F are ordered sets if we order
both by inclusion.

LEMMA 3.1. The transformation ¥$: T —— F such that ¢(D) = DNI(A),

DET, 28 an order isomorphism.

Proof. It is clear that if D€ T, then D n I(A) € F. Given F € F,
let D = FA(F) be the filter in A generated by the filter F of
I(A). Let us prove that D is a T-filter. D is a filter by con-
struction. If x € D, then Tx € D. It is well known that

FA(F) = {x € A: there is f € F such that £ < x}. Hence, if x € A,
there is f € F such that f < x. Then Tf < Tx, and since f € I(A),
Tf = £. Therefore, f < Tx, that is, Tx € D FA(F).

F, that proves that

On the other hand, ¢(FA(F)) = FA(F) n I(A)
¥ is a surjective function.

It is clear that if DI’DZ € T and D1
Let us prove, if Dl,D2 € T and ¢(D1)

c D2, then W(Dl)
C

W(DZ), then D1

v(Dz).

c
cD

2°
Indeed, by hypothesis, D1 NnI(A) C D2 N I(A). Let x be an element
of Dl’ then Tx € D1 and x A Tx € Dl; moreover X A Tx € I(A), then
X ATx €D, N I(A). But D1 NI C D2 N I(A). Therefore x A Tx €

1
€ D2 N I(A). In particular x A Tx € D2 and then x € Dz.

LEMMA 3.2, If D€ T, I(A/D) = I(A)/D n I(A).

Proof. Let us consider the natural homomorphism h: A — A/D and
h* the restriction of h to I(A). It is clear that h* is a Boolean
homomorphi;m from I(A) into I(A/D), with kernel I(A) N D. Given
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~<

€ I(A/D), there is x € A such that h(x) =

= y. Then h(x A Tx) =
h(x) A Th(x) = y ATy =y, But x A Tx € I(A), hence h*(x A Tx) =

h(x A Tx) =y, that is, h* is an epimorphism from I(A) onto
I(A/D). Therefore I(A/D) = I(A)/D n I(A).

DEFINITION 3.3. 4 T-filter D of a symmetric algebra A is said a
maximal T-filter if

1) D is a proper T-filter.

2) If D' is a T-filter suech that D C D' then D' = A or D' = D,

THEOREM 3.4. If D <s a maximal T-filter of a symmetric algebra A,

then A/D is a simple symmetric algebra.

Proof. If D is a maximal T-filter, then it follows from Lemma 1.1
that D N I(A) is an ultrafilter (a maximal filter) of the Boolean
algebra I(A). Then I(A)/D N I(A) is a simple Boolean algebra,
hence, by Lemma 3.2, I(A/D) is a simple Boolean algebra, that is,
I(A/D) = {0,1}. Therefore, it follows from Theorem 2.2 that A/D
is a simple symmetric algebra.

4. REPRESENTATION THEOREM,

Given a family {Ai}i of symmetric algebras, the cartesian pro-

el
duct P = igI Ai is defined in the usual way.

Given a symmetric non trivial algebra A, let M = {Mi}iEI be the
family of all the maximal T-filters of A. A. Monteiro ([5]) pro-
ved that A is isomorphic to a subalgebra A* of the cartesian pro-
duct P = igI A/Mi. The isomorphism is defined in the following

way: let m, be the natural homomorphism from A onto A/Mi. Then,
if £ € A, ¢(f) = (mi(f))isl € P. The subalgebra A* of P is ¢(A).
Moreover, if A is finite, then A is isomorphic to P.

5. FINITELY GENERATED SYMMETRIC BOOLEAN ALGEBRAS.

We shall prove that if a symmetric algebra A has a finite set of
generators, then A is finite, that is, if G is a finite subset

of A with n elements (N(G) = n) such that S(G) = A, then A is fi-
nite.

We know that A is isomorphic to a subalgebra A* of the symmetric

algebra P = igI A/Mi, where M = {Mi}ieI is the set of all the

maximal T-filters of A, Moreover we know that the quotiens A/M,
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M € M are finite, more precisely, N(A/M) = 2 or N(A/M) = 4, be-
cause A/M = B, or A/M = B,. It is sufficient then to prove that
M is finite.

Let us consider M {M e M: A/M

1

My

1R

B}

MeM: AM= BZ}

It is clear that Ml N M2 = @ and M1 u M2 =M.

Let us note Epi(A,Bl) the set of all the epimorphisms from A on-
to Bl’ F(G,Bl) the set of all the functions from G into Bl' We
shall prove that:

I) N(M,) = N(Epi(A,B;)) < N(F(G,B))) = 2"

Consider the function s: Epi(A,Bl) — M1 defined by s(h) = Ker h,
where h € Epi(A,Bl). It is clear that Ker h € Ml} Let be M € Ml;
then A/M = B,; if o: A/M — B, is the isomorphism and

hM: A — A/M is the natural homomorphism, then h = O+ hM is an
epimorphism from A onto Bl’ whose kernel is M, that is, s(h) = M.

Hence s is a surjective function.

Let be hl,h2 € Epi(A,Bl), M, = Ker hl’ M2 = Ker hz' and suppose
M1 = Ker h1 = Ker h2 = M2. Let be x € A. If x € M1 = MZ’ then
hl(x) = hz(x) = 1; if x ¢ M, = M2, then hl(x) = hz(x) = 0. Hence
h1 = h2, that is,s is an injective function. Hence, N(Ml) =

= N(Epi(A,B))).

Consider now r: Epi(A,B;) — F(G,B;) the application which maps
each epimorphism h: A — B, into its restriction to G: f = h/G.

This is an injective application,because if h/G = h'/G, then
{x € A: h(x) = h'(x)} is a symmetric subalgebra of A which con-
tains G, and therefore h = h'.

Therefore N(Epi(A,B;)) < N(F(G,B;)) = 2",

We shall now prove that:

N(Epi(A,B,) N(Epi(A,B,) N(F*(G,B,)
II)  N(M,) = = <
N(Aut(B,)) 2 2

N(F(G,B,)) n
< e’ _ 4
2 2
where Epi(A,Bz) is the set of all the epimorphisms from A onto
Bz, Aut(Bz) is the set of all the automorphisms of Bz, F*(G,B,)

the set of all the functions £ from G into B2 such that S(F(G)) =
= Bz, and F(G,B,) the set of all the functions from G into B2'

Consider s: Epi(A,BZ) — M2 the mapping defined by s(h) = Ker h,
h e Epi(A,Bz). It can be proved as in I) that s is a surjective
function. If s(h) = M, then it is easy to see that

s'l(M) = {a&d o h: « € Aut(Bz)}. But there are only two automor-
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phisms in BZ: the automorphism Tx = x, for all x € B2, and the
automorphism T (TO = 0, T1 = 1, Ta = b, Tb = a).

Then, for-all M € MZ’ sfl(M) has exactly two elements. Hence

N(Epi(A,B,))  N(Epi(A,B,))
NM,) = -
) N(Aut (B,)) 2

Consider now the mapping r: Epi(A,Bz) —_— F*(G,Bz), which maps
each . epimorphism h: A — B, into its restriction to G: f = h/G.
As h is an epimorphism, then S(h(G)) = B hence, S(£f(G)) = B

that is, £ € F*(G,B,).

2° 2°
It can be proved as in I) that r is an injective function. Then
N(Epi(A,B,)) < N(F*(G,B,)).It is clear that N(F*(G,B,) <

< N(F(G,B,)) = 4". Then we have:

Nony - NEPLGALB))  N(EPI(AB,)) N(F*(S,B,))
2 N(Aut (B,)) 2 2

=

N(F(G,B.)) n
<___l_=i < oo
2 2

From I) and II) it follows that M = Ml U M2 is finite, and then

A is finite, that is:

THEOREM 5.1. Every finitely generated symmetric algebra is finite.

It follows from the above, that if A is a finitely generated sym
| N(M)  N(My)

X B

metric algebra, then A = B, 5

6. SYMMETRIC ALGEBRAS WITH A FINITE SET OF FREE GENERATORS.

DEFINITION 6.1. Given a cardinal number ¢ > 0, we shall say that

£ is a symmetric algebra with c free generators if:
L1) There is a subset G of £, of power c, such that S(G) = £.

L2) Given & symmetric algebra A and an application f from G <Znto
A, there is a homomorphism T, necessarily unique, from £ into A
such that T 7s an extension of f.

If it is so, we shall say that G is a set of free generators

of £. A symmetric algebra is said to be free if it has a set of
free generators. We shall note £ = L(c). Since the symmetric alge
bras are defined by equations, we can state, by a theorem of uni-
versal algebra of G.Birkhoff ([1]1), the existence and uniqueness,
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up to isomorphisms, of L(c).

In view of the preceding paragraph, we can state that L(n) is fi-
nite, for every natural number n > 0. Furthermore,

N(M,) N(M,)
L(n) = B, x B, . We shall now compute N(M;) and N(M,).

LEMMA 6.2. Let G be a set of free generators of L(n), and B(n) =

= B(G). Then G is a set of free generators of the Boolean algebra
B(n).

Proof. We must prove that if A is a Boolean algebra, and f is an
application from G into A, then f can be extended to a Boolean
homomorphism from B(n) into A. Indeed, let A be a Boolean algebra
and f: G —> A. Consider the transformation T: A — A defined by
Tx = x for all x € A. Then (A,T) is a symmetric algebra. Then f
can be extended to a symmetric homomorphism h: L(n) — A. Consi-
der h = h/B(n). It is clear that h is a Boolean homomorphism from
B(n) into A and h(g) = h(g) = £(g), which proves that G is a set
of free generators of the Boolean algebra B(n).

COMPUTATION OF N(Ml). We know by paragraph 5, I) that
N(M,) = N(Bpi(L(n),B})) < N(F(G,By)) = 2",

We now prove that N(Epi(L(n),B,)) = N(F(G,Bl)). The function

T Epi(L(n),Bl) —> F(G,B,) which maps each epimorphism

h: L(n) — B, into its restriction to G, is injective. Let us see
that it is surjective. If f € F(G,B,), it is clear that S(£(G) =

= Bl' Since L(n) is free, £ can be extended to a homomorphism

f: L(n) — B; T is an epimorphism because B, = S(£(G)) =

S(T(6)) € S(F(L(n))) = F(L(n)), that is, T(L(n)) = B;. Moreover,
r(F) = /6 = £. Therefore, N(M;) = 2".

COMPUTATION OF N(MZ).

LEMMA 6.3. If X C B, and S(X) = B,, then B(X) = B,.
The application r: Epi(L(n),Bz) — F*(G,Bz) such that r(h) = h/G,
h € Epi(L(n),B,), is injective, and it is easy to prove that r is
onto. Then N(Epi(L(n),B,)) = N(F*(G,B,))).

Consider B(n), the Boolean algebra generated by G. By Lemma 6.2,
G is a set of n free generators of B(n). Consider ¥ the set of
all the Boolean epimorphisms from B(n) into Bz' Let us see that
N(F*(G,BZ)) = N@) .

If £ € F*(G,B,), we note T the extension epimorphism from L(n)
onto Bz’ and f' the restriction of T to B(n). We know that f' is
a Boolean homomorphism. Moreover, B2 = S(f(G)) = S(£'(G)) =

= B(£f'(G)) c £'(B(n)), that is, f' is a Boolean epimorphism. We
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define ¢(f) = f'. ¢ is a mapping from F*(G,BZ) into 3. It is
clear that ¢ is biyective. Since B(n) has 2" atoms, and B, has
n
two atoms, it is well known that N() =V =2 (rel, 171).
©2%,2 (2R-2):

N(Epi(L(n),B,)) N(F*(G,B,)) NGO V,n, ,n
Then N(Mz) = = = = 28 = (2 )
N(Aut (B,)) 2 2 2
Zn 4n_2n
n (5 ) n —
Therefore L(n) = Bf x B2 = B2 X B—7 and
2 1 2
n n
2" 42_2 4" 2%n
N(L(n)) = 24 x 4 = 2 = 2 . Which coincides with the

results obtained by A. Monteiro [5].
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