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FREE SYMMETRIC BOOLEAN ALGEBRAS 

* Manuel Abad and Luiz Monteiro 

Our purpose is to give a construction of the symmetric Boolean 

algebras with a finite set of free generators, different from 
that given by A. Monteiro ([ 51). 

1. INTRODUCTION. 

We shall begin recalling sorne notions and results of the theory 

of symmetric Boolean algebras. 

DEFINITION 1.1. A symmetpia BooZean aZgebpa is a paip (A,T), 
whepe A is a BooZean aZgebpa, and T is an automopphism of A of 

pepiod two, that is, suah that TTx = x, fop aZZ x E A. (Gr. C. 
Moisil, [21,[ 31). 

Briefly, we shall say that A is a symmetric algebra. A.Monteiro 
has independent1y studied these algebras under the name of "alge­
bres de Boole involutives" ([ 41 ,[ SI). 

DEFINITION 1.2. A part S of a symmetpia aZgebpa A is said a sym­

metpia subaZgebpa of A if: 

S1) S ¡o! ~ 

S2) S is aZosed undep 11, v, - and T 

It is clear that a symmetric subalgebra of A is a Boolean sub­
algebra of A. 

Let G be a part of a symmetric algebra A; we shall represent by 

B(G) (respectively S(G)) the smallest Boolean (respectively sym­
metric) subalgebra of A containing G. B(G) (respectively S(G)) is 
calÍed the "Boolean (respectively symmetric) subalgebra generated 

by G. It is clear that B(G) ~ S(G). 

* This work has been done at the Instituto de Matemática, Univer­

sidad Nacional del Sur, 1974. 
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We sha11 represent by 1 = leA) the set of a11 e1ements x of A such 
that Tx = x. lt is c1ear that leA) is a Boo1eart subalgebra of A. 

DEFINITION 1.3. Let A and A' be symmetria aZgebras. A symmetria 

homomorphism from A into A' is a funation h from A into A' suah 

that: 

Hl) h(x v y) = h(x) v h(y) 

H2) he-x) 

H3) h(TX) 

-h (x) 

Th(x) 

for aZZ x and y E A. 

lf h is a surjective function, we say that A' is a homomorphic 
image of A. lf h is a bijective function, we say that A is isomor 
phic to A', and we sha11 note A ~ A' . 

From conditions Hl) and H2) fo11ows that h is a Boo1ean homomor­
phism. Therefore, a symmetric homomorphism is a Boo1ean homomor­
phism which verifies condition H3). 

The kernel of a symmetric homomorphism h from A into A', that is, 
the set Ker h = h- 1 (1), 1 E A', is a fi1ter which verifies the 
condition: 

D) If x E Kerh then Tx E Kerh . 

DEFINITION 1.4. A fiZter of a symmetria aZgebra A whiah verifies 

aondition D) wiZZ be aaZZed a deduative system or a T-fiZter. 

LEMMA 1.5. A prinaipaZ fiZter F(x) of A is a T-fiZter if and 

onZy if x E leA). 

Proof. Necessary condition: as x E F(x) and F(x) is a T-fi1ter, 
then Tx E F(x), that is, x ~ Tx; hence Tx ~ TTx = x. Therefore 
Tx = x, that is, x E leA). 

Sufficient condition: Let us suppose Tx = x, and 1et y be such 
that y E F(x), that is, x ~ y; then x = Tx ~ Ty. Hence Ty E F(x). 

lf F is a T-fi1ter of a symmetric a1geb!a A, and we define: 
a s b (mod F) iff (-a v b) A (-b v a) E F, for al1 a,b E A, then 
"s" is a congruence re1ation on the a1gebra A. ([ 11 ). Let us rep­
resent by ~' = A/s or A' = A/F the quotient set of A by the equi­
va1ence re1ation "s", and 1et us note by Ixl the equiva1ence c1ass 
containing the e1ement x E A. lf we define: 

Ixl A Iyl = Ix A yl -Ix I I-x I Tlxl = ITxl 

it is easy to prove that A' is a symmetric a1gebra. 

The app1ication h from A into A' defined by h(x) = Ixl, for a11 
x E A, is a symmetric homomorphism from A ontoA', that is, A' is 
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a homomorphic image of A. h is .called the natural homomorphism. 

lt is easy to prove that if A' i~ a homomorphic image of A, then 
there is a T-filter F of A, such that A/F ~ A' . 

Therefore, we obtain aH the homomorphic images doing the quotiens 
A/F , where F is a T-filter of A. 

2. SIMPLE SYMMETRIC ALGEBRAS. 

A symmetric algebra is called trivial if it has only one elemento 

DEFINITION 2.1. A symmetria algebrd is aalled simple if: 

1) A is non trivial. 

2) All the homomorphia images of A are either trivial or isomor­

phia to A. 

A. Monteiro ([5]) proved that the only simple algebras are those 

whose Hasse diagrams and the corresponding automorphisms are 
shown in the next figure: 

1: 
:r:rx 
O O 
1 1 

x 

O 

a 

b 

Tx 
O 

b 

a 

We shall next give another proof of this resulto lt is not diffi­
cult to prove the following theorem. 

THEOREM 2.2. In order that a non trivial symmetria algebra A be 

simple it is neaessary and suffiaient that leA) = {O,l}. 

This result can be stated as follows: "In order that a symmetric 
algebra A be simple it is necessary and sufficient that the 
Boolean algebra leA) be simple". Then, it is clear that the alg~ 
bras Bl and B2 shown in the above figure are simple algebras. We 
shall now prove that they are the only simple symmetric algebras. 

LEMMA 2.3 •. Let A be a aimple"aymmetric algebra with more than two 

elementa. If X E A - I(A), then Tx = -x. 

Proof. Consider y = x A Tx; then y E I(A). If y=l, then x=l which 
is a contradiction. Therefore (1) x A Tx = O. Consider z • x v Tx; 
then z E I(A). If z=O, then x-O, which is a contradiction. There­
fore (2) x v Tx = 1. 
From (1) .and (2) follows Tx = -x. 
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LEMMA 2.4. Let A be a simple symmetria algebra with more than two 

elements. If XI 'X 2 E A - leA) and XI #X 2 , then x I =-x 2 . 

Proof. By hypothesis, xl A X2 # 1. lf xl A X2 # O, then it fol­
lows from 2.3 T(X I A X2) -(Xl A X2), that is, TX I A TX 2 = 

= -Xl V -X 2 · Besides TX I -xl' TX 2 = -x 2 ; hence -xl A -X 2 = 

= -Xl V -X 2 ' and then -xl = -x 2 ' that is, Xl = x2 ' which is a 
contradiction. Therefore xl A X2 = O. lt can be likewise proved 

that xl V X2 = 1. 

lt irnmediately follows from lernmas 2.3 and 2.4 that if A is a sim 
pIe symmetric algebra which contains an element different from 
O and 1, then it contains exactly four elements O,a,b,l, with 
a = -b and TO = O, Ta = b, Tb = a, Tl = 1. 

3. T-FILTERS OF A SYMMETRIC ALGEBRA A ANO FILTERS OF I(A). 

Let T = T(A) be the set of all the T-filters of a symmetric alge­
bra A, and F = F(l) the set of all the filters of the Boolean al­
gebra leA). lt is clear that T and F are ordered sets if we order 
both by inclusion. 

LEMMA 3.1. The transformation~: T --+ F suah that ~(D) 

D E T, is an order isomorphism. 

D nI (A) , 

Proof. lt is clear that if DE T, then D n leA) E F. Given F E F, 
let D = FA(F) be the filter in A generated by the filter F of 
leA). Let us prove that D is a T-filter. D is a filter by con­
struction. lf X E D, then Tx E D. lt is well known that 
FA(F) = {X E A: there is f E F such that f ~ X}. Hence, if X E A, 
there is f E F such that f ~ x. Then Tf ~ Tx, and since f E I(A), 
Tf = f. Therefore, f ~ Tx, that is, Tx E D FA(F). 

On the other hand, ~(FA(F)) 
~ is a surjective function. 

F, that proves that 

lt isclear that if Di ,D2 E T and DI f D2 , then ~(DI) f ~(D2)' 

Let us prove, if DI ,D2 E T and ~(DI) f ~(D2)' then Di ~ D2. 

lndeed, by.hypothesis, DI n leA) ~ D2 n leA). Let X be an element 
of DI' then Tx E DI and X A Tx E Di; moreover X A Tx E I(A), then 
X A Tx E DI n leA). But Di n leA) f D2 n leA). Therefore X A Tx E 
E D2 n leA). In particular X A Tx E D2 and then X E D2 . 

LEMMA 3.2. If DE T, I(A/D) El! I(A)/D n leA). 

Proof. Let us consider the natural homomorphism h: A __ A/D and 
h* the restriction of h to leA). lt is clear that h* is a Boolean 
homomorphism from leA) i~to I(A/D), with kernel leA) n D. Given 
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y E I(A/D), there is x E A such that h(x) = y. Then h(x A Tx) = 
= h(x) A Th(x) = y A Ty = y. But x A Tx E I(A), hence h*(x A Tx) 
= h (X A Tx) = y, that is. h* is an epimorphism from 1 (A) onto 
I(A/D). Therefore I(A/D) ~ I(A)/D n leA). 

PEFINITION 3.3. A T-fiLter D of a symmetria aLgebra A is said a· 

maximaL T-fiLter if 

1) D is a proper T-fiLter. 

2) If D' is a T-fHter suah that D ~ D' then D' = A or D' = D. 

THEOREM 3.4. If D is a maximaL T-fiLter of a symmetria aLgebra A, 
then A/D is a simpLe symmetria aLgebra. 

Proof. lf D is a maximal T-filter, then it follows from Lemma 1.1 
that D n 1 (A) is an ul trafilter (a maximal filter) of the Boolean 
algebra leA). Then I(A)/D n leA) is a simple Boolean algebra, 
hence, by Lemma 3.2, I(A/D) is a simple Boolean algebra, that is, 

I(A/D) = {O,l}. Therefore, it follows from Theorem 2.2 that A/D 
is a simple symmetric algebra. 

4. REPRESENTATION THEOREM. 

Given a family {A.}. 1 of symmetric algebras, the cartesian pro-1 1e 
duct P = .nI A. is defined in the usual way. 1e 1 

Given a symmetric non trivial algebra A, let M = {Mi}ieI be the 
family of all the maximal T-filters of A. A. Monteiro (1 SI) pro­

ved that A is isomorphic to a subalgebra A* of the cartesian pro­
duct P = .n A/M .. The isomorphism is defined in the following 1eI 1 
way: let m. be the natural homomorphism from A onto A/M .. Then, 

1 1 

if f E A, ~(f) = (mi(f))ieI E P. The subalgebra A* of P is ~(A). 

Moreover, if A is finite, then A is isomorphic to P. 

5. FINITELY GENERATED SYMMETRIC ~OOLEAN ALGEBRAS. 

We shall prove that if a symmetric algebra A has a finite set of 

generators, then A is finite, that is, if G is a finite subset 
of A with n elements (N(G) = n) such that S(G) = A, then A is fi­

nite. 

We know 
algebra 
maximal 

that A is isomorphic to a subalgebra A* of the symmetric 
P = .nI A/M., where M = {M.}. 1 is the ·set of al! the 1e 1· 1 1e . 
T-filters of A. Moreover we know that the quotiens A/M, 
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M E M are finite, more precisely, N(A/M) = 2 or N(A/M) = 4, be­
cause A/M ~ BI or A/M ~ B2 , It is sufficient then to prove that 
M is finite, 

Let us consider 

It is clear that MI n M2 = 0 and MI U M2 = M, 

Let uS note Epi(A,B I ) the set of all the epimorphisms from A on­
to BI , F(G,B I ) the set of all the functions from G into BI , We 
shall prove that: 

1) N(M I ) = N(Epi(A,B I )) ~ N(F(G,BI )) = 2n 

Consider the function s: Epi(A,B I ) --+ MI defined by s(h) = Ker h, 
where hE Epi(A,B I ), It is clear that Ker h E MI' Let be M E MI; 
then A/M ~ BI ; if aM: A/M --+ BI is the isomorphism and 
hM: A --+ A/M is the natural homomorphism, then h = aM, hM is an 
epimorphism from A onto BI , whose kernel is M, that is, s(h) = M, 
Hence s is a surjective function, 

Let be h l ,h2 E Epi(A,B I ), MI = Ker hl , M2 = Ker h2 , and suppose 
MI = Ker h l = Ker h2 = M2 , Let be x E A, If x E MI = M2 , then 
hl(x) = h2 (x) = 1; if x ~ MI = M2 , then h l (x) = h2 (x) = O, Hence 
hl = h2 , that is, s is an injective function, Hence, N(M I ) = 
= N(Epi(A,B I )), 

Consider now r: Epi(A,B I ) --+ F(G,B I ) the application which maps 
each epimorphism h: A --+ BI into its restriction to G: f = h/G, 

This is an injective application,because if h/G h'/G, then 
{x E A: h(x) = h' (x)} is a symmetric subalgebra of A which con­
tains G, and therefore h = h', 
Therefore N(Epi(A,B I )) ~ N(F(G,B I )) = Zn, 

We shall now prove that: 

Il) 
N(Epi(A,B2) 

N (M 2) = 
N (Aut (B 2)) 

N(F(G,B 2)) 4n 
~ ----=--

2 2 

where Epi (A,B 2) is the set of 
B2 , Aut (B 2) is the set of aH 
the set of all the functions 
= B2 , and F(G,B 2) the set of 

N(F*(G,B 2) 
~ -----=-

2 

all the epimorphisms from A onto 

the automorphisms of B2, F*(G,B 2) 
f from G into B2 such that S(F(G)) 
all the functions from G into B2 , 

Consider s: Epi(A,B 2) --+ M2 the mapping defined by s(h) = Ker h, 
hE Epi(A,B2), It can be proved as in 1) that s is a surjective 
function, If s(h) = M, then it is easy to see that 

l " ' 
s- CM) = {a o h: a E AutCB2)}, But there are only two automor-
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phisms in Bz: the automorphism Tx = x, for all x E Bz ' and the 
automorphism T (TO = 0, T1 = 1, Ta = b, Tb = a). 

Then, for all M E M2 , s~I(M) has exaetly two elements. Henee 

N(Epi(A,Bz)) N(Epi(A,B2 )) 
N (M z) 

2 

Consider now the mapping r: Epi(A,Bz) --+ F*(G,B z)' whieh maps 

eaeh . epimorphism h: A --+ Bz into its restrietion to G: f = h/G. 

As h is an epimorphism, then S(h(G)) = Bz ' henee, S(f(G)) = Bz ' 

that is, f E F* (G ,Bz) . 

It can be proved as in 1) that r is an injeetive funetion. Then 

N(Epi(A,B z)) ~ N(F*(G,Bz)).It is elear that N(F*(G,Bz) ~ 
~ N(F(G,B z)) = 4n . Then we have: 

N(M Z) 
N(Epi(A,Bz)) N (Epi (A,Bz)) 

~ 
N(F* (G ,Bz)) 

~ 

N(Aut(B z)) 2 2 

N(F(G,Bz)) 4n 
< ~ 00 

2 2 

From 1) and 11) it follows that M MI U Mz is finite, and then 

A is finite, that is: 

THEOREM 5.1. Every finitely generated symmetric algebra is finite. 

It follows from the above, that if A is a finitely generated sy~ 

N (M l) N (M z) 
metrie algebra, then A ~ BI X Bz . 

6. SYMMETRIC ALGEBRAS WITH A FINITE SET OF FREE GENERATORS. 

DEFINITION 6.1. Given a cardinal number e > 0, we shall say that 

L is a symmetric algebra with e free generators if: 

L1) There is a subset G of L, of power e, such that S(G) = L. 

L2) Given ci symmetric algebra A and an application f from G into 

A, there is a homomorphism f, necessarily unique, from L into A 
such that f is an extension of f. 

If it is so, we shall say that G is a set of free generators 
of L. A symmetrie algebra is said to be free if it has a set of 
free generators. We shall note L = L(e). Sinee the syrnmetrie alg~ 
bras are defined by equations. we can state, by a theorem of uni­
versal algebra of G.Birkhoff ([11), the existenee and uniqueness, 
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up to isomorphisms, of L(c). 

In view of the preceding paragraph, we can state that L(n) is fi­
nite, for every natural number n > O. Furthermore, 

N(M ) 
L(n) ~ Bl 1 

LEMMA 6.2. Let G be a set of free genera.tors of L(n). and B(n) = 

= B(G). Then G is a set of free generators of the Boolean algebra 

B(n). 

Proof. We must prove that if A is a Boolean algebra, and f is an 
application from G into A, then f can be extended to a Boolean 
homomorphism from B(n) into A. Indeed, let A be a Boolean algebra 

and f: G --+ A. Consider the transformation T: A --+ A defined by 
Tx = x for all x E A. Then (A,T) is a symmetric algebra. Then f 
can be extended to a symmetric homomorphism h: L(n) --+ A. Consi­
der h = h/B(n). It is clear that h is a Boolean homomorphism from 
B(n) into A and h(g) = n(g) = f(g), which proves that G is a set 
of free generators of the Boolean algebra B(n). 

COMPUTATION OF N(M l ). We know by paragraph S, 1) that 

N(M l ) = N(Epi(L(n),B l )) ~ N(F(G,B l )) = 2n . 

We now prove that N(Epi(L(n),B l )) = N(F(G,B l )). The function 
r: Epi(L(n),B l ) --+ F(G,B l ) which maps each epimorphism 
h: L(n) --+ Bl into its restriction to G, is injective. Let us see 
that it is surjective. If fE F(G,B l ), it is clear that S(f(G) 
= Bl' Since L(n) is free, f can be extended to a homomorphism 
I: L(n) --+ Bl ; I is an epimorphism because Bl = S(f(G)) 
= S(I(G)) ~ S(I(L(n))) = I(L(n)), that is, I(L(n)) = Bl' Moreover, 

r(I) = IIG = f. Therefore, N(M l ) = 2n . 

COMPUTATION OF N(M 2). 

LEMMA 6.3. If X e B2 and S(X) = B2, then B(X) = B2 · 

The application r: Epi(L(n),B2) --+ F*(G,B 2) SU eh that r(h) = h/G, 

hE Epi(L(n),B2), is injective, and it is easy to prove that r is 

onto. Then.N(Epi(L(n),B2)) = N(F*(G,B2))· 

Consider B(n), the Boolean algebra generated by G. By Lemma 6.2, 

G is a set of n free generators of B(n). Consider X the set of 
all the Boolean epimorphisms from B(n) into B2 . Let us see that 

N(F*(G,B 2)) = N(X). 

If fE F*(G,B 2), we note I the extension epimorphism from L(n) 
onto B2' and f' the restriction of 1 to B(n). W~ know that f' is 
a Boolean homomorphism. Moreover, B2 = S(f(G)) = S(fl(G)) = 

= »(f'(G)) e f'(B(n)), that is, f' is a Boolean epimorphism. We 
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define ~(f) = f'. ~ is a mapping from F*(G,B2) into U. It is 
clear that ~ is biyective. Since B(n) has 2n atoms, and B2 has 
two atoms ,it is well known that N(U) = V 

• 2n , 2 
([ 6], [7]). 

N(Epi(LCn),B 2)) 

N(Aut(B2)) 

Therefore L(n) 

N (L (n)) 

N (U) 

2 

V 

~ 
2 

22n 
2 . Which coincides wi th the 

resul ts obtained by A. Monteiro [5] . 
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