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INNER FUNCTIONS UNDER UNIFORM TOPOLOGY. II. 

Domingo A. Herrero 

The set of all inner functions in the unit .disc is a topological 
semigroup under pointwise multiplication in the open disc and the 
metric topology induced by the H""-norm. In this second article it 

is sho~n that, given any non-empty closed subset r of the unii 
circle aD, the set of components containing nothing but Blaschke 

products whose zeroes cluster exactly on r (i.e., Sp(b) n aD = r, 
in the notation of [,6] ,[ 7]) has the power of the continuum; more
over. the same resuft is true in (F-, T), thus answering in the 
strongest negative form a question raised by R.G. Douglas in [1] . 

The results also include a matricial version of the classic~l 
theorem of Otto Frostman ([ 2]) about the density of Blaschke pro
d~cts, which is used to extend some of the previous results to 
matrix-valued inner functions (i.e., the case when dim K < ~). 

This paper is a sequel of [6] and [7], and we shall continue 
using the notation introduced there without further reference. 

1. COMPONENTS OF (Fr,T). 

The aim of this section is to prove the following 

THEOREM 1.1. Let r be any non-empty alosed Bubset of aD and let 

{Sk}:=l be any arbitrary sequenae of arguments suah that 

r = n clos {e iSk : k ~ N} 
N=1 

If the sequenae 0 = r 1 < r 2 < .... < r k < ... < 1 aonverges to 

one rapidly enough, then there exist c sub-produats 
"" . S 

{be: 0 < e < r/4} of b(z) = n b(z,rke 1 k) suah that 
k=l 

b eH2 E F; n (det);; moreover, beH2 and be ,H2 belong to different 

aomponents of (F-,T) if e I s'. 

The idea of the proof is very simple and it is based on the fol
lowing result of O. Frostman: 
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THEOREM 1.2. ([ 2, §58, thm. 2, p. 107)). Let q E F and assume that 

q does not admit zero as a radial Zimit; then q is a Blaschke pro

duct. 

We are going to choose the sequence {rk}:=1 in such a way that, 

for each k, there is an Rk , r k < Rk < r k+1 such that Ib(z) 1 ~ 1 

for Izl = Rk and, moreover, for every element qH 2 of the component 

of bH2 in (F-,r), Iq(z)1 '" Ib(z)1 whenever R < Izl < 1, for some 
R depending on q. Then, by thm. 1.2, q is also a Blaschke product. 

For each pair of functions, f , g E Hoo , define 

[f,g) = sup {llf(z)1 - Ig(z)ll: zED} 

Similarly, we shall write {[f,g): z E A} when that supremum is 
taken on the subset A C D. 

It is apparent that for each non-denumerable A C D, (pH 2 ,qH2)A 
= {[p,q]: z E A} (p,q E F) defines a metric in F-. 

Let p,q E F satisfy r (pH2 ,qH2) < & < 1, then there exists o 
f E (N)1_& such that Hp-qfH oo < &; hence 

[p,q) .;;; [p,qf] + Hqll)f,l) "Hp-qfH .. + [f,1] < & + [(1-&)-1_1] 

& (2-&)/ (1-&). 

Since 0.;;; [p,q] .;;; 1, a simple computation shows that 

LEMMA 1.3. Let p,q E F; then 

[p,qj " (27/10)r (pH2 ,qH2). o 

We shall need some auxiliary results, which are contained in the 
following three lemmas: 

LEMMA 1.4. For each a E D, define 

{a' ED: [b(z,a) ,b(z,a')] < 1/2} 

and (by induction) 

An(a) = {a" E D: [b(z,a'),b(z,a")) < 1/2, for some 

a' E An_1 (al) , n=2,3, .... 

Then: 

i) A n (a) is an increasing family of open neighborhoods of a .. 
a smooth boundary, such that U An (a) = D and clos [An (al) 
for each n·· n=1 , 

ii) For fixed n, if lal~l, then diameter [An(a))~O. 

with 

C D, 
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LEMMA 1.5. The resuLts of Lemma 1.4 are aLso true for finite 

BLasahke produats up to a few minor modifiaations: instead of eLe

mentary BZasahke produats, aonside'r the raLements of (det)m (for 

eaah fixed m) and, instead of An(a), define An(al •..•• am) (where 

al •...• am are the zeroes of a given p E (det)m)' in the obvious way. 

LEMMA 1.6. There exists an inareasing sequenae 0 < Rl < R2 < ... < 

< Rn < Rn+l < ... < 1, suah that for any BZasahke produat b(z) = 

IT . b(z.ak), where Rk ';;; ak < Rk+l , 
k=n+l 

Ib(z) I > 9/10 

on the aZosed disa {z: Izl .;;; Rn}, for n=1,2,3, ... 

The proof of Zemmas 1.4 and 1.5 follow from some elementary argu
ments based on the continuity of finite Blaschke products in the 
closed unit disc a~d the properties of the inner functions in 
F\F,' Lemma 1.e follows from the fact that lim b(z.a) = 1 (Ial+l). 
uniformly on compac't subsets of D. 

The definition of the sequence {rk} proceeds as follows: By induc-. 

tion. we shall construct a sequence of 4-tuples {r .s .t .u }m n n n n n=l 
so that 

1) 

2) 
n 

if q (z) = n b(z a) where la I .;;; r (k=l •...• n), and 
o k=l • k'· k n 

ql •.••• qn E (det)n satisfy max([qj_l.qj] < 1/2: j:l , ...• n}. then 

the zeroes of q lie on {z: Izl < s } . 
n n 

3) let q be as above; then Iq (z) I > 9/10 for Izl > tn 
n n 

4) for all p E (det)B having no zeroes in {z: Izl < un} and no more 

than one zero in the annulus {z: um .;;; Izl < um+1 }. for m=n.n+l •..•• 

Ip(z)1 > 9/10 for Izl.;;; tn . 

Now. the 4-tuples are chosen as follows: 

Set r l = 0 and 51 = 1/2. Let tl be the greatest real zero of 

Ib(t,1/2)1= 9/10. If kl is the first index (in Zemma 1.6) such 

that tl .;;; Rkl • then set u l Rk1+1; clearly. r 1 < 51 < t1 ~ u 1 

and 2). 3). 4) can be easily checked for n=l. 

Assimte that r l < s1 < ... < rn < sn < tn < un < 1 have been chosen 
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so that they satisfy 2). 3). 4) and 5). Now use lemma 1;4 to find 

an rn+l < 1 satisfying. 5); rn+l > un' Next. use lemma 1.5 to find 

an sn+l< 1 so that 2) is verified; then sn+l > r n+1 . Let tn+l be 

t·he greatest real zero of Ib(t.sn+1)l n+1 = 9/10. Finally. if kn+1 

is the first index (in lemma 1.6) such that tn+1 ...;;; Rk • choose 
n+l 

un+1 = Rk . +1' 
n+l 

It is not difficult to check that the sequence of 4-tuples thus 
constructed satisfies 1) to 5). 

CLAIM. If b(z) = ~ b(z.r e i6k) 
k=1 k 

To(bH2.qH2) < 1/54. then 

IT bk(z) and q E f satisfies 
k=1 

q(z) A IT b(z.ak) 
k=1 

, '" ( i6k) where A ~ uD and ak E Al rke • k=1.2 •... 
n-l 

By 3) and 4). Ik~1 bkl = Ib~1 > 9/10 for Izi ~ t n_1 (a fortiori 

the same result is true for any subproduct) and 

I Ii bkl = Ibltl > 9/10 for Izl ...;;; t ; hence Ibl > (9/10)2> 4i5 
k=n+l·n n 

for Izl = t and Ib/b I > 4/5 on the annulus 
n n 

'\ = {z:tn_1 ...;;; Izi ...;;; tn}' for all n=1.2 ..... (to = -1). 

By Lemma 1.3. [b.q] < 1/20 and therefore Iql > 4/5-1/20 = 3/4 for 

Izl = t and Iq(re i6n)I < 1/20 <'3/4. n=1.2 ..... Using thin. 1.8 
n 

we infer that q is a Blaschke product; moreover. q(z) 1 0 for 
Izl = tn (for all n) and q has at least one zero in An' for each n. 

It follows from the inequality T (bH2.qH2) < 1/54 that Ilb-qfn < o ~ 

< 1/54 for some suitable function f E (N)53/54' The last inequality 

shows. in particular. that Ib-qfl < Ibl for Izl = tn (n=1.2 ••.. ). 

Thus. applying Rouahe's theorem and using the fact that f is inver

tible in H~. we conclude that q has exaatly one aero in An' for 

each n=l. 2 •..•. Hence, 

q(z) = A IT b(z.ak) 
k=1 

where A E 3D, an E An (n=1.2 ••.. ) and q~. qn and q~ denote the sub

products corresponding to those zeroes lying in the regions 

Izl < tn_I' t n_1 < Izl < tn and Izl > tn' respectively. 

Then the previous estimates and the moduLus maximum theorem imply 
that Iq' q"l > 3/4 for z E A and 

n n n 
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{(bn.qnl:z E D\An}';;; {(bn.ll:z E D\An} + {(l.qnl:z E D\An} < 

< 1/5 + 1/5 + 1/20 < 1/2 

(to see this. observe that Ibl > 4/5 for Izl = tn and Izl t n_ l 

implies that Iqn l > 4/5-1/20 for all z E D\An). 

[b.ql ;;;. {(b.ql: z E An} ;;;. 

- {[b~b~.q~q~l: z E An} > (4/5)(1/2)-1/4 = 3/20> (b.ql 

a contradiction. 

Therefore [bn.qnl < 1/2 for all values of n and it follows that 

q E Al(r e iOn ) for n=1.2 •.... Similarly. it can be proven that 
n n 

[b~.q~1 < 1/2. Thus. by 2). the zeroes of q~ lie in Izl < sn_l' 

n=2 .3 •... 

Let pH2(p E F) belong to the component of bH2 in (F-.T); then. by 

[6. Thms. 5.5 and 6.1] there exists a finite family 

Po = b.Pl.P2.···. Pm = p of inner functions such that 

max {T (p. lH 2.p.H2): 1.;;; j .;;; m} < 1/54 . 
o J- J 

By temma 1.3, max{[p. 1.p.l: 
J- J 

.;;; j .;;; m} < 1/20. Now by induction 

on j. it follows that p is a Blaschke product; moreover 

where A E aD, lahl 

for all n ;;;. m. 

p(z) = A n b(z.ak) 
k=l 

.;;; t for h=1,2, ... ,n, and a E A (r e iOn), n n m n 

Finally. choose a subsequence {Ok'}~ of {Ok} such that 
J J=l iO k · 

e J -+ AO Eras j -7 00 • and write 

b (z) { n 
i6 k . 0 

b(z.e j)}.n{b(z.~~ k): kik .• for all j} 
J j=l 

b+(z)b-Cz). 

Then. if ba(z) = b;Cz) .b-Cz). where b;Cz) is defined as in [91 

for 0 ~ 0 ~w/4. then the bo's inherit all the properties that we 
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already proved for b. In particular: 

The components of (F~,T) containing the b eH2,s are disjoint for 
different values of a, 0 .,;; a .,;; 1r/4 and, moreover, all these compo

nents are contained in (det)i n F;. 

The proof qf theorem 1.lis complete now. 

REM'ARKS. a) The only criterion that we" know to decide whether or 

not pH2 and qH 2 belong to the same component of (F~,d). (and the 
one that we already used in [7] and here is this: the distance 

from the component of pH 2 to ~he component of qH 2 is larger than 
some positive number. According to [6, Thm.6.1] this is enough 
for (F~,T); however, we do not even know whether or not all the 
components of (F~,d) are arcwise connected or open subsets. We 
conjecture that the results of [6, Thm.6.1] are also true for 
(F~,d), but we were unable to prove or disprove it. 

b) The topology induced on F~ by the metric (. ")D is strictly 
weaker than the T-topology. Moreover, as it follows from 

Remark a) to [7, Thm.2.3], if d(z) = d(z;O,1) and 0 <t < t', 
then 

On the other hand, the map t -_ d t H2 from the positive reals 

into (F~'("')D) is continuous!. 

2. EXTENSIONS OF THE RESULTS TO THE CASE WHEN K IS FINITE 

DIMENSIONAL. 

Throughout this section we shall assume that 2 .,;; dim K = N < 00 • 

As for dim K = 1, we have (det)R FR (where R denotes the sub-

index of a given subclass). If U E F, then U(z) can be represen
ted by an N x N matrix with entries in HOO such that the non
tangential limits utA) are unitary matrices for almost every 

A E 3D and det U(z) is an inner function with the same kind of 
singularities as U(z) (see [4;5;10]); in particular 

(det U)Hi C UHi and Sp (det U) = Sp (U). 

The canonical form of an element of F or FN can be found in 
[ 3; 8] . 

The mappings U -+ det U (from HOO(K) onto HOO) and UHi -+ (det U)H2 

(from F-(K) onto F-(C) with d-topologies or T-topologies in both 
sides) are continuous. 
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Partof the results of section 1 and [7] can be extended to the case 
when 2 ~ dim K = N < 00 with minor changes; for example, if 
{be: 0 ~ e ~ 7r/4} is defined as in the proof of. thm. 1.1, and 

(*) Be = [
b
O 

e 

then the component of Be in (F-,T) is contained in F; n (det); 

and Be' Be' belong to different components of (F-,T) for e # e'. 

The proof follows from [6, Thms. 5.5, 6.1], Thm. 1.1 and the fol
lowing 

2 2 LEMMA 2.1. If U,V E F and To(UHK,VI\) < E < 1/2, then 

T [(det U)H2 ,(det V)H2] < C(N)E, where N = dim K and c(N) is a o • 
positive constant depending on N. 

Proof. If T o(UH~,VH~) < E, then there exists aCE (N)l_E such 

that OU-VCO < E; i.e., 

ess sup {OI-V(l)C(l)U*(l)OK: 1 E aD} < E < 1/2 

and therefore det C E (N)o' where ~ = (l-E)c' (N). 

Iidet U - det V det CO = 01 - det(VCU*)II", < c' (N)E 

for a suitable constant c' (N) > o. 

Hence 

T o[ (det U)H2 , (det V)H2] ~ T o[ (det U)H2, (det V)H2] < 

< c'(N)2 c ' (N)E = C(N)E qed. 

Our first partial extension of the results of [7] is a generali
zat.ion of Frostman's theorem. The following theorem is contained 
in the author's thesis (see [5, p. 85]); its proof is based on a 
result due to W. Rudin ([ 8; 91). 

Since the proofs are the same for one or for several complex va
riables, we shall state the results for the most general setting. 
Some definitions are needed: 

DEFINITION. Let f(zl" .. ,zn) be an analytic function defined in 
the unit polydisc 

Dn = {z=(zl'" .,z ): z. E D, j=l, ... ,n} 
n . J 

the n-dimensional torus (3D)n is the distinguished boundary of Dn 

and dmn is the normalized Lebesgue measure on (3D)n. f belongs to 
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N,.!Dn) (the Universal Hardy Class) if given any e: > 0, there exists 
Ii > 0 sblch that if mn CA) < Ii (A a measurable subset of (3D) n) then 

J log+\f(rw)\dm < e:, WE (3D)n 
A n 

uniformly with respect to r, 0 ~ r < 1. 

For f E N ... (Dn), the radial limits few) do exist a.e. (dmn) on 
(3D)n. The inequalities 

log+\a+b\ ~ log+\a\ + log+\b\ + log 2 

log,+\ab\ ~ log+\a\ + log+\b\ (a,b E C) 

show that N ... (Dn) is actually an algebra under pointwise operations 
([ 8]) • 

DEFINITION. ([ 8) ). f (z) E H"" (Dn) is an inner funation if \ f (w) I = 1 
a.e. (dm ) on (3D)n. If, in addition, the minimal n-harmonic func-. n 
tion u[f) such that log \f(z) \ ~ u[f) (z) is identically zero on 
Dn, f is said to be a good inner funation. 

According to this definition, we shall say that the analytiC N x N 

matrix of functions F(z) N (F jk (Z))j,k=1 is an inner (good inner, 

resp.) matrix if UF(z)D K ~ 1, for z E Dn and det F(z) is an inner 

(good inner, resp.) function. 

Observe that if F(z) is an inner matrix, then F(w) is unitary a.e. 

For n=l, the good inner functions are just the Blaschke products 
(see [2), (8), (9)). 

N-1 
THEOREM 2.2. Let f(z,a) = aN + L fk(z)a k , fk(z) E N~(Dn), 

k=o 
k = 0,., .•. ,N-1, and let A c C be a aompaat set Buah that 

. cont log cap A is positive. (see definition in [8) , (9)). Then 

there e~istB a E A suah that 

J i~ 1 i~ n 
u[f(z,a)) = fee , ... ,e n,a) n P(r.,e.-~.)dm (~1'''''~ ) 

(3n) n . j =1 J' J J n .n 

and 

P(r,e,~l = (1-r 2)/[ 1+r2-2r(cos(a-+)) is the' Poisson kernel for D. 
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N N ' 
THEOREM 2.3. Let F(z) = (F jk (Z))j,k=I' zED, be an N x N inne~ 

mat~i~. Then' fo~ a~~ a E D. e~cept a subset of continuous ~oga

~ithmic capacity 2e~0. 

[F(z)-aI][ I-aF(z)]-1 

is a good innep mat~i~. 

For N=n=l, this is Fpostman's theopem. For N=l and arbitrary fini
te n. both results are due to W. Rudin. 

LEMMA 2.4. Le,t A be a compact set of positive continuous ~ofJapith

mic capaaity and ~et p be a positive Bope~ measupe with supp(p) c A. 
such that 

is continuous on e. Then 

is a bounded unifopm~y continuous funation on eN. 

P~oof. Given (5 0 .5 1 ..... sN_l) E en we can find u l .u 2 ..... uN E e 
(the roots of the polynomial) such that 

N 
n (a-u.). 

j=l J 

The function g(u) has compact support in e. Therefore g(u) attains 
its maximum in e. Now, the cQntinuity of G follows from the conti
nuity of g and the inequality 

This also shows that 

The proof will be completed by showing that 
N-l 
~ Iskl 

k-o 

N.max{g(u),:u E e}. 

-+- co • 

Ac tually. if the sum of the modulus of the sk' s tends to infinity 
then (by an elementary algebraic fact) at least one of the roots 
Uj must te.nd to infinity. Let R > O. 'large enough so that la I < R, 
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for all a E A; then 
N-I 

lim {G(so •...• sN_I): I Iskl ~ 00 } = 
k=o 

J + N I N 
lim { log (I II (a-u.) 1- )dlL(a): L lu.1 -+- 00 } .;;;; 

A j=l J j=l J 

.;;;; lim J log+(1 (Iull-R) ~ (a-u.)I-I)dlL(a) 0 
lUll· ... ' A j=2 J qed. 

Let f(z.a) be as in thm. 2.2: then defining 

we have (following Rudin's proof) 

J (1) J 
A 

B(a)dlL (a) .;;;; lim inf 
r-+-l A 

(2) 

lim inf 
r-+-l 

J G(fo(rw), ...• fN_1(rw))dmn(w) 
(an) n 

(3) 

J J + 1 (5) f 
- log (If(w.a)I-)dm (w) dlL(a)';;;; B(a)dlL(a) 
- A (3n)n n A 

(1) and (5) are justified by Fatou's lemma; (2) and (4) are conse
quences of Fubi~i's theorem; (3) follows from Leb.sgue's theorem 
on majorized convergence and lemma'2.4. 

We conclude that 

for almost every a E A.with respect to dlL. 

Now the proof of thm. 2.2 follows as the proof of thm. 3.6.2 in 
[ 8] . 

If U(z) is an inner function-operator and a E D. then it is easy 
to see that 

U (z) = (U(z) -aI) (I-aU(z))-l 
a 

is also an inner fUllction-operator and 
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Let F(z) be as in thm. 2.3. Then (-l)Ndet (F(z)-aI) has the same 
form as f(z,a) in thm. 2.2, with fo, ... ,fN_1 bounded functions. 

On the other hand, log Idet(I-irF(z)) I is bounded and n-harmonic 
in DU • Hence thm. 2.3 follows from thm. 2.2 as thm. 5.3.3 in'[8]. 

The above acotation gives the following 

COROLLARY 2.5. The family of an good (BZaschke. for n=1) matrices 

fOl'ms a dense subset in the famiZy of aZZinner matrices. in the 
norm~topoZogy of H~(K). 

Now we are in a position to "translate" the results of [7) to the 
case when 2 ~ dim K ~ N < = . All these results are included in 
the following theorem; the details of the proof are left to the 
reader. 

THEOREM 2.6. i) Let Ur E F be defined by (*) with dr (z;O,l) 
instead of be. Then the component of U1 is isometric to the com

ponent of Ur • even though U1 and Ur b/fZong to different compo

nents for evel'Y nl1. If 0 < r < 1. the subse,ts {QU1_r E component 

of U1} and {U1_rQ E component of U1} are isometric to the whole 

component of U 1. 

ii) For each r > 0. and for each Q E (det)s in the component of 

Ur • det Q(z) = ~ dr (z;O, 1). for some ~ E aD. MOl'eover.if ' 

V E (det)s and Sp(V) n aD is countabZe. then det Q = ~ det V, for 

aZZ Q E (det)s in the component of V. 

iii) There exists a component of F containing c eZements of 

(det)s whose determinants are pairwise coprime. If for 80me a~O, 

Q = PS and Qa = PRJ where P,S,R E F. then P E (det)o. 

iv) (det)s is cZosed and nowhere den8e in F. (det)B is dense. but 
not of/en in f. 

v) The "To-diameter" of each component of (F-,T)\{H~} is 2 and 
- ' 2 no component of (F ,T)\{HK} (01' F\(det)o) i8 compact. 

vi) If Bt(Be , resp.) E (det)B and det Bt = bt , a8 defined in 

[7, thm.2.1] (det Be be' as defined in [7. thm. 2.2]. re8p.). 

then the component of Bt (Be' re8p.) ir F i8 contained in (det)B. 
MOl'eover. if 0 ~ t < t' < = (0 ~ e < e' ~ w/4, re8p.). then Bt 

and Bt' (Be and Be" re8p.) beZong to different components. 

However, the direct analog of [7, thm. 1.3] is false; in fact we 
have: 
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PROPOSITION 2.7. If U E (det)s is non-aonstant. then the aomponent 

of UH~ in (F-,d) aontains c eZements of (det);. 

Proof. If U does not have the form qX for some inner function q 
and X E (det)o' then for each Y E (det)o we write Uy(z) = YU(z)Y*. 

Clearly, Uy is arcwise connected with U in F and therefore UyH: 

is arcwise connected with UH: in (F-,d); moreover det U = det Uy . 
2 Thus, it only remains to show that Y ~ UyHK is not a constant map-

ping from (det)o into F-. 

The set of all X E 3D such that the non-tangential limits U(X) 
are well-defined and unitary has Lebesgue measure (dm) one; let 
r r(U) denote such set. Clearly, r(Uy ) = r(U), for all 

Y E (det)o' 

Assume that UyH: = .UH~ for all Y E (det)o' Since UH~ = UXH: for 

any X E (det)o' without loss of generality we can assume that 

U(X o) I, for some Xo E r. Then UyH~ = UH~ implies that, for all 

X E r, YU(X) = U(X)X, for some X = X(Y) E (det)o' independent of 
X E r. For X = X , the above equality implies: X(Y) = y* = y- 1 , 

o 
i.e. ,. U(A) commutes with Y for all Y E (det)o' Therefore, U(X) 
= u(X)I for some inner function u and for X E r, contradicting 
our assumption about U. We conclude that Y ~ UyH: is a non
constant map. 

Finally, if U = qX, then U U1U2X' where 

(N dim K > 1) 

and the result follows by applying the previous argument to 

U~ = (YU 1y*)U2X, Y E (det)o' qed. 

Replacing "Blaschke products" by "good inner functions", many of 
our results are still true for inner functions (or inner matrices) 
of several complex variables in the unit polydisc of en. 
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