Revista de la
Unidn Matemadtica Argentina
Volumen 28, 1976.

INNER FUNCTIONS UNDER UNIFORM TOPOLOGY. II.

Domingo A. Herrero

The set of all inner functions in the unit disc is a topological
semigroup under pointwise multiplication in the open disc and the
metric topology induced by the H”-norm. In this second article it
is shown that,. given any non-empty closed subset I of the unit
circle aD, the set of components containing nothing but Blaschke
products whose zeroes cluster exactly on T (i.e., Sp(b) naD =r,
in the notation of [6],[7]) has the power of the continuum; more-
over, the same result is true in (F~,T), thus answering. in the
strongest negative form a question raised by R.G. Douglas in [1].

The results also include a matricial version of the classical
theorem of Otto Frostman ([ 2]) about the density of Blaschke pro-
ducts, which is used to extend some of the previous results to
matrix-valued inner functions (i.e., the case when dim K < e ).

This paper is a sequel of [6] and [7], and we shall continue
using the notation introduced there without further reference.

1. COMPONENTS OF (F;,T).
The aim of this section is to prove the followiﬁg

THEOREM 1.1. Let T be any non-empty closed subset of 3D and let

{ek}:_l be any arbitrary sequence of arguments such that
r = n clos {eif: k > N}
N=1

If the sequence 0 = r, < r, <....<r

one rapidly enough, then there exist c sub-products

k < ... <1 converges to

by: 0 <o <7/4} of b(z) = T b(z,r,e*°%) such that
k=1

2 ~ ~
beH € Fr N (det)B; moreover, beH2 and be.H2 belong to different

components of (F~,7) <f 6 # 6°'.

The idea of the proof is very simple and it is based on the fol-
lowing result of 0. Frostman:
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THEOREM 1.2. ([ 2, §58, thm. 2, p. 107}1). Let q € F and assume that
q does not admit zero as a radial limit; then q is a Blaschke pro-
duct.

We are going to choose the sequence {rk}: ) in such a way that,
for each k, there is an R, 1, <R <71 such that |b(z)| =1
for |z| = Rk and, moreover, for every element qH2 of the component
of bH? in (F~,7), lq(z)| =~ |b(z)| whenever R < |z| < 1, for some.
R depending on q. Then, by thm. 1.2, q is also a Blaschke product.
For each pair of functions, f , g € H”, define

[£f,g] = sup {||£f(2)] - |g(2)||: z € D}

Simitarly , we shall write {[f,gl: z € A} when that supremum is
taken on the subset A C D.

It is apparent that for each non-denumerable A C D, (sz,qHZ)A
= {[p,ql: z € A} (p,q € F) defines a metric in F~.

Let p,q € F satisfy To(sz,qHz) < e < 1, then there exists
f e (N)l—e such that Hp-qfﬂw < e; hence

i

[p,al <I[p,afl + Iql_[£,1] < Ip-qfi_ + [£,1] <& + [(1-e)7'-1]
= e(2-¢)/(1-€).

Since 0 < [p,q] < 1, a simple computation shows that

LEMMA 1.3. Let p,q € F; then
[p,ai < (Z7/10)1°(pH2,qH2).

We shall need some auxiliary results, which are contained in the
following three lemmas:

LEMMA 1.4, For each a € D, define
A (a) = {a' &D: [b(z,a),b(z,a")] < 1/2}
and (by induction)
An(a) = {a" € D: [b(z,a"),b(z,a")] < 1/2 , for some
a' € An_l(a)} , N=2,3,...
Then:
i) An(a) i8 an increasing family of open neighborhoods of a with

a smooth boundary, such that U An(a) = D-and clos [An(a)] c D,
for each ny nel

ii) For fixed n, if |a|+1, then diameter [An(a)]+0.
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LEMMA 1.5. The results of lemma 1.4 are also true for finite
Blaschke products up to a few minor modifications: instead of ele-
mentary Blaschke products, consider the elements of (det)m (for

each fixed m) and, instead of An(a), define An(al,...,am) (where
S815...,a8 are the zeroes of a given p € (det)m), in the obvious way.
LEMMA 1.6. There exists an increasing sequence 0 < R1 < R2 < o0 <
< Rn <R, < ... < 1, such that for any Blaschke product b(z) =
= k? b(z,ak), where Rk <a < Rk+1’

=n+1

[b(z)| > 9/10

on the closed disc {z: |z]| < Rn}, for n=1,2,3,...

The proof of lemmas 1.4 and 1.5 follow from some elementary argu-
ments based on the continuity of finite Blaschke products in the
closed unit disc and the properties of the inner functions in
F\F¢. Lemma 1.6 follows from the fact that lim b(z,a) = 1(|al|+1),
uniformly on compact subsets of D.

The definition of the sequence {r,} proceeds as follows: By induc-
tion, we shall construct a sequence of 4-tuples {rn,sn,tn,un}n=l
so that

1) r, <s, < t) <u

<r, < ...<r_<s <t <u_<r <...<1,
1 1 2 n n n n n

1 +1

n
2) if q (2) = kgl b(z,a,), where |ak| <r (k=1,...,n), and
Aps-++5q, € (det)n satisfy max([qj_l,qj] <1/2: j:1,...,n}, then

the zeroes of q  1lie on {z:]z] < s}

3) let q_ be as above; then an(z)l > 9/10 for |z| = t,

4) for all p € (det), having no zeroes in {z:|z| < u_} and no more
than one zero in the annulus {z: u < lz| < u .}, for men,n+1, ...,

[p(z)| > 9/10 for |z] < t,
5) A () niziz] < ul = ¢, for all n=1,2,...

Now, the 4-tuples are chosen as follows:

Set r, = 0 and s, = 1/2, Let t, be the greatest real zero of

[b(t,1/2)|= 9/10. If k, is the first index (in lemma 1.6) such

1 < 51 <t § u1

that t, < Rkl' then set u, = Rk1+1; clearly, r 1

and 2), 3), 4) can be easily checked for n=1,

Assume that r, < s

1 < e < r < Sa < tn <u < 1 have been chosen
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so that they satisfy 2), 3), 4) and 5). Now use lemma 1.4 to find

anr ., < 1 satisfying. 5); T4l > Une Next, use lemma 1.5 to find

< 1 so that 2) is verified; then S 41 } L Let tn+1 be

+1

n
a sn+1

+1 . .
the greatest real zero of |b(t,sn+1)|n = 9/10. Finally, if k__,

is the first index (in lemma 1.6) such that t <R , choose
n+1 kn+1
u = Re a1

n+l ntl

It is not difficult to check that the sequence of 4-tuples thus
constructed satisfies 1) to 5).

bk(z) and q € F satisfies ,
1

=R

CLAIM. If b(z) = I b(z,rkeiek) -
2 .2 k=1 k
7, (bH" ,qH ) < 1/54, then

q(z) =21 b(z,a
k=1

where A € 9D and a, € Al(rkeiek), k=1,2,...

k)

n-1

By 3) and 4), | T b, | = |br| > 9/10 for |z| > t__, (a fortiort
k=1 n n-

the same result is true for any subproduct) and

| I b | = [bu] >9/10 for |z| < t ; hence [b] > (9/10)% > 4/5

k=n+1

for |z| = t_ and |b/bn| > 4/5 on the annulus

A=zt ) < lz] < t }, for all n=1,2,... .(t = -1).

By lemma 1.3, [b,q]l < 1/20 and therefore |lq| > 4/5-1/20 = 3/4 for
|z| = t  and ]q(reien)| <1/20 < 3/4, n=1,2,... . Using thm. 1.2

we infer that q is a Blaschke product; moreover, q(z) # 0 for

|z] = t, (for all n) and q has at least one zero in An, for each n.
It follows from the inequality TO(bHZ,qHZ) < 1/54 that Ib-qfll_ <

< 1/54 for some suitable function f € (N)53/54. The last inequality
shows, in particular, that |b-qf| < |b| for [z| =t (n=1,2,...).
Thus, applying Rouché's theorem and using the fact that f is inver-
tible in Hm, we conclude that q has exactly one zero in An, for

each n=1,2,... . Hence,
= = = ] "
q(z) kkglb(z,ak) kkglqk(Z) Aqp a, a
where N\ € 0D, a € An (n=1,2,...) and q;, a, and q; denote the sub-

products corresponding to those zeroes lying in the regions

lz|] <t _;» t, ;< |z| <t, and |z| > t_, respectively.

Then the previous estimates and the modulus maximum theorem imply
that |q! an| > 3/4 for z € A) and
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{[bn,qn]:z € D\An} < {[bn,1]:z € D\An} + ([l,qn]:z € D\Ah} <
<1/5 + 1/5 + 1/20 < 1/2

(to see this, observe that [b| > 4/5 for |z| = t_ and |z| =t

implies that |q_| > 4/5-1/20 for all z € D\A ).
n g n

Assume that {lb ,q l:z € A} > 1/2; then

[b,q] > ({[b,ql: z € An} >
> {[b,blq bV]: z €A} - {[blq bl,ql: z €A} >
> (min{{b'br|: z € A {lb_,q l: z € A} -

- {[b/bY,qlq"l: z € A} > (4/5)(1/2)-1/4 = 3/20 > [b,q]

nn

a contradiction.

Therefore [bn,qn] < 1/2 for all values of n and it follows that
q, € Al(rneie“) for n=1,2,... . Similarly, it can be proven that.
[bl,q;] < 1/2. Thus, by 2), the zeroes of q) lie in |z| < S-1°

n=2,3,...

Let pHZ(p € F) belong to the component of bH?2 in (F~,7); then, by
[6, Thms. 5.5 and 6.1] there exists a finite family ’
P, = b,pl,pz,...,pm = p of inner functions such that

max (ro(pj_lﬁz,ijz): 1<j<m}<1/54 .
By lemma 1.3, max{[pj_l,pj]: 1.<j <m} < 1/20. Now by induction
on j, it follows that p is a Blaschke product; moreover

p(z) = A1 b(z,a)
k=1

i@
where A € aD, |ah| <t for h=1,2,...,n, and a € Am(rne1 ny,

for all n >m.

Finally, choose a subsequence {ak }f
. 3 =1
1ek 3]

e i — A, €T as j — =, and write

of (ek} such that

L i6 . .
b(z) = { I b(z,e Xi)}.M{b(z,el%%): kfk,, for all j) =
_ j=1

b* (2)b 7 (2).

Then, if b (z) = bg(z).b'(z), where bg(z) is defined as in [9]

for 0 < ¢ <#/4, then the b,'s inherit all the properties that we’
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already proved for b. In particular:

The components of (F~,7) containing the beHz's are disjoint for
different values of 6, 0 < 6 < #/4 and, moreover, all these compo-
nents are contained in (det); n F;.

The proof of theorem 1.1 is complete now.

REMARKS. a) The only criterion that we know to decide whether or

not sz and qH2 belong to the same component of (F~,d) (and the
one that we already used in [7] and here is this: the distance

from the component of sz to the compénent of qH2 is 1§rger than
some positive number. According to [6, Tham.6.1] this is enough
for (F7,7); however, we do not even know whether or not all the
components of (F~,d) are arcwise connected or open subsets. We
conjecture that the results of [6, Tam.6.1] are also true for
(F7,d), but we were unable to prove or disprove it.

b)'The topology indiiced on F~ by the metric (.,.)D is strictly
weaker than the 7-topology. Moreover, as it follows from
Remark a) to [ 7, Thm.2.3}, if d(z) = d(z;0,1) and 0 < t < t',
then

o(ath?,at'n%) = eu?,at'"tu?) - 1.

On the other hand, the map t — d*H? from the positive reals
into (F~,(.,.)D) is continuous!.

2. EXTENSIONS OF THE RESULTS TO THE CASE WHEN K IS FINITE
DIMENSIONAL .

Throughout this section we shall assume that 2 < dim K = N < o ,
As for dim K = 1, we have (det)R = FR (where R denotes the sub-

index of a given subclass). If U € F, then U(z) can be represen-
ted by an N x N matrix with entries in H” such that the non-
tangential limits U(A) are unitary matrices for almost every

A € 9D and det U(z) is an inner function with the same kind of
singularities as U(z) (see [4;5;10]); in particular

(det U)Hé c uni and Sp (det U) = Sp (U).

The canonical form of an element of F or FN can be found in
[3;8].

The mappings U — det U (from H”(K) onto H”) and UHE — (det U)H?
(from F7(K) onto F~(C) with d-topologies or 7-topologies in both
sides) are continuous.



29

Partof the results of section 1 and [7] can be extended to the case
when 2 < dim X = N < « with minor changes; for example, if
{by: 0 <8 < w/4} is defined as in the proof of thm. 1.1, and

b, 0
® CI PR
N-1

then the component of Be in (F~,r) is contained in F; n (det);

and B, B belong to different components of (F~,f) for o # 6'.

e‘
The proof follows from [6, Thms. 5.5, 6.1], Thm. 1.1 and the fol-
lowing

LEMMA 2.1. If U,V € F and TO(UHi,vni) <e<1/2, then

TO[(det U)Hz,gdet V)HZ] < c(N)e, where N = dim K and c(N) Zs a
positive constant depending on N.

Proof. If TO(UHE,Vﬂi) < e, then there exists a C € (N)l_E such

that |U-VCI < e; i.e.,

ess sup {HI-V(R)C(A)U*(R)“K: ANeddD <e < 1/2

and therefore det C € (N)G' where & = (1-9)C'(N).

ldet U - det V det Cll = I1 - det(VCU*)Il_ < c'(N)e
for a suitable constant c'(N) > 0.

Hence

7 [ (det u)H?, (det VIHZ] <7 [ (det U)HZ, (det VIH?] <
<2 Mg - c)e . qed.

Our first partial extension of the results of [7] is a generali-
zation of Frostman's theorem. The following theorem is contained
in the author's thesis (see [5, p. 85]); its proof is based on a
result due to W. Rudin ([ 8; 9]).

Since the proofs are the same for one or for several complex va-
riables, we shall state the results for the most general setting.
Some definitions are needed:

DEFINITION. Let f(zl,...,zn) be an analytic function defined in
the unit polydisc

D" = {z=(2;,...,2,)" z; €D, j=1,...,n}

the n-dimensional torus (dD)" is the distinguished boundary of p®
and dmn is the normalized Lebesgue measure on (3D)™. f belongs to
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N*(D“) (the Universal Hardy Class) if given any e > 0, there exists
8 > 0 such that if m (A) <& (A a measurable subset of (3D)™) then

J 10g+|f(rw)|dmn <e, we D"
A

uniformly with respect tor, 0 <r < 1.

For f € N, (D"), the radial limits £(w) do exist a.e. (dm ) on
(d3D)™. The inequalities

log*|a+b| < log*|a| + log'|b| + log 2
log)|ab| < log*|a] + log*|b| (a,b € C)

show that N*(Dn) is actually an algebra under pointwise operations

(rsn.

DEFiNITION.([S]). £(z) € H*(D™) is an inner function if |f(w)| = 1
a.e. (dmn) on (dD)™. If, in addition, the minimal n-harmonic func-
tion ul f] such that log |f(z)| < ul f] (z) is identically zero on
D", f is said to be a good inner function.

According to this definition, we shall say that the analytic N x N
matrix of functions F(z) = (ij(z))?,k=1 is an inner (good inner,
resp.) matrix if IIF(z)IIK < 1, for z € D® and det F(z) is an inner
(good inner, resp.) function.

Observe that if F(z) is an inner matrix, then F(w) is unitary a.e.

For n=1, the good inner functions are just the Blaschke products
(see [2], [8], [9]).

N-

1
Ve T £ (2008, £ (2) € N DY),
k=0 ‘

THEOREM 2.2. Let f(z,a) = «
k=20,.,...,N-1, and let A C C be a compact set such that
-cont log cap A is positive (see definition in [8], [9]). Then
there exists o« € A such that
i¢, i¢

n
f(e 3e0es€ noa) I P(rjsej'¢j)dmn(¢1’-°"¢ )

ul f(z,a)] = J
@p)" j=1 n

i0
where z = (r e 1,...,rne M, 0<r, &1, and

P(r,0-¢) = (1-r2)/[1+r2-2r(cos(e—¢)] 18 the Poisson kernel for D.
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THEOREM 2.3. Let F(z) = (F, (2))] ., z € D", be an N x N inner
matrix, Then for all a € D, except a subset of continuous loga-
rithmic capaceity zero,

F,(2) = [F(2)-aIl[ I-@F(z)] "}

i8 a good inner matrix.

For N=n=1, this is Frostman's theorem. For N=1 and arbitrary fini-
te n, both results are due to W. Rudin.

LEMMA 2.4, Let A be a compact set of positive continuous Llogarith-

mic capacity and let # be a positive Borel measure with supp(r) C A,
such that

g(u) = JAlog+([a—u|_1)du(a)

18 continuous on C. Then

N-1 -
+ N k
G(So’sl""’sN—l) = I log (Ja™ + 7} S, & |
A k=0

1
Ydu (o)

t8 a bounded uniformly continuous function on cN.

.,u., € C

. n .
Proof. Given (So’sl""’SN—l) € C" we can find u,,u X

PIER
(the roots of the polynomial) such that

(a—uj).

The function g(u) has compact support in C. Therefore g(u) attains
its maximum in C. Now, the continuity of G follows from the conti-
nuity of g and the inequality

N

+ N + .
log' | I ¢c.|] < ] log|c.|, c.€C.
j=1 J j=1 J J

This also shows that
max (G(So’sl""’SN—I):(so"'"SN—l) € CN} = N.max{g(u):u € C},

The proof will be completed by showing that

N-1
lim G(s_,.:.,8y_,) = 0, as k£0|sk| — o

Actually, if the sum of the modulus of the sy's tends to infinity
then (by an elementary algebraic fact) at least one of the roots
uj must tend to infinity. Let R > 0, large enough so that |a| <R,
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for all « € A; then

Lim {G(S_yuee,Sy 1) L Isp| => e} =

. k=0
. N _1 N
= lim {J log (| I (a-u,)| dde(a): § |u.| — =} <
A j=1 J j=1 3
N
< lim J log+(|(|ull-R) 1 (a-u.)l-l)du(a) =0
[uy [+ j=2 3 : qed.

Let f(z,ax) be as in tim. 2.2: then defining

Br(a) = J(a )nlog+(|f(rw,a)|—1)dmn(w); B(a) = 1lim inf Br(a),(r+1)
’ D

we have (following Rudin's proof)

(1) (2)
J B(a)dpe(¢) < 1lim inf j Br(a)du(a) =
A A

r+1
. o (3)
= llT+;nf J . G(fo(rw),...,fN_l(rw))dmn(w) =
(3D)
(f)
- j(an)“ 6L, ()50 By, () dm () =

. ) )
[ ] s 1estUema ™ a0 @@ < [ B@w@
A 7 (3D) A

(1) dand (5) are justified by Fatou's lemma; (2) and (4) are conse-
quences of Fubini's theorem;.(3) follows from Lebesgue's theorem
on majorized convergence and lemma 2.4.

We conclude that

lim inf

, + -1 L+ -1
log* (|£(rw,a) |~ 1)dn_ = J log* (|£(w,a) | 1)dnm
r+1 J(an)“ "o lem® "

for almost every a € A,with respect to du.

Now the proof of t#m. 2.2 follows as the proof of tim. 3.6.2 in
[8].

If U(z) is an inner function-operator and o € D, then it is easy
to see that

U,(2) = (U(z)-al)(I-aU(z))"}

is also an inner function-operator and
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1 (z)-U (2)l, < 2|al/(1-]el).

Let F(z) be as in ¢tZm. 2.3. Then (—1)Ndet(F(z)-aI) has the same

form as f(z,a) in thm. 2.2, with fo,...,fN_1 bounded functions.

On the other hand, log |det(I-&F(z))| is bounded and n-harmonic
in D®. Hence thm. 2.3 follows from thm. 2.2 as thm. 5.3.3 in'[8].

The above acotation gives the following

COROLLARY 2.5. The family of all good (Blaschke, for n=1) matrices
forms a dense subset in the family of all inner matrices, in the
norm-topology c¢f Hm(K).

Now we are in a position to "translate" the results of [7] to the
case when 2 < dim K = N < ., All these results are included in
the following theorem; the details of the proof are left to the
reader.

THEOREM 2.6. i) Let Ur € F be defined by (*) with dF(z;0,1)
instead of be. Then the component of U1 18 isometric to the com-
peonent of Ur, even though U1 and Ur belong to different compo-

nents for every r#1. If 0 <r < 1, the subsets {QU € component

l-r
of Ul} and {Ul—rQ € component of U,} are isometric to the whale

component of Ul'

ii) For each r > 0, and for each Q € (det)s in the component of
Ur’ det Q(z) N d%(z;0,1), for some A € dD. Moreover, if .

V e (det)s and Sp(V) N 8D Zs countable, then det Q = N det V, for
all Q € (det)S in the component of V.

iii) There exists a component of F containing cC elements of
(det)s whose determinants are pairwise coprime. If for some a#0,
Q = PS and Qa = PR, where P,S,R € F, then P € (det)o.

iv) (det)s is8 closed and nowhere dense in F. (det)B is dense, but
not open in F.

V) The "To—diameter" of each component of (F~,T)\{H§} 8 2 and
no component of (FN,T)\{HE} (or F\(det)o) <8 compact.

vi) 1F Bt(Be’ resp.) € (det)B and det Bt = bt’ as defined in

[7, thm.2.1] (det Be = be, as defined in [7, thm. 2.2], resp.),
then the component of Bt (Be, resp.) in F is contained in (det)B.
Moreover, if 0 St < t'< e (0 <0 <o' <n/4, resp.), then B,
and Bt' (B9 and Be,, resp.) belong to different components.

However, the direct analog of [7, thm. 1.3] is false; in fact we
have:
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PROPOSITION 2.7. If U € (det)s is8 non-constant, then the component
of UH; in (F~,d) contains c elements of (det);.

Proof. If U does not have the form qX for some inner function q
and X € (det)o, then for each Y € (det)b we write UY(z) = YU(z)Y*.

Clearly, U, is arcwise connected with U in F and therefore UYHE

Y
is arcwise connected with UH; in (F7,d); moreover det U = det UY.-
Thus, it only remains to show that Y =+ UYH§ is not a constant map-
ping from (det)o into F~.

The set of all A € 3D such that the non-tangential limits U(A)
are well-defined and unitary has Lebesgue measure (dm) one; let
Ir = T(U) denote such set. Clearly, r(UY) = r(U), for all

Y € (det)o.

2 _ 2 . 2 _ 2
Assume that UYHK -,UHK for all Y € (det)o. Since UHK = UXHK for.
any X € (det)o, without loss of generality we can assume that

U(Xo) = I, for some ko € r. Then UYHi = UHE implies that, for all

Aer, YON) U)X, for some X = X(Y) € (det)o, independent of
A E€r. For N = ko, the above equality implies: X(Y) = Y* = Y_l,
i.e., U(N) commutes with Y for all Y € (det)o. Therefore, U(A) =

u(X)I for some inner function u and for A € r, contradicting

n

our assumption about U. We conclude that Y - UYHE is a non-
constant map.

Finally, if U = gX, then U = UIUZX’ where

Il 0
(N = din X > 1)
0 aly,

c
-
L}
—
o L0
- o
=z
1
—
—_—
o
=]
(=9
(=]
N
L}

and the result follows by applying the previous argument to

Uy = (YU, Y*)UX, Y € (det) . qed.

Replacing '""Blaschke products" by '"good inner functions", many of
our results are still true for inner functions . (or inner matrices)
of several complex variables in the unit polydisc of C".
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