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MULTIPLIERS WITH RESPECT TO ABEL-BOUNDED SPECTRAL .MEASURES 

IN LOCALLY CONVEX SPACES 

* J. Junggeburth and R.J. Nessel 

1. INTRODUCTION. 

In this note, which can be regarded as Part II of [71 ,we would like to 
continue our previous investigations on multipliers in abstract spa­
ces. Whereas ([ 11, IIII) was concerned with Abel-bounded, discrete ex­
pansions in Banach spaces, ([ 21, I) with Riesz-bounded, continuous 
spectral measures in Banach spaces, and ([ 51;[ 71) with Ces~ro-bounded, 
discrete expansions in locally convex spaces, it is the purpose of 
this note to consider the more general situation of Abel-bounded spec­
tral measures in locally convex spaces. To this end, Section 2 pre­
sents the general theory. Section 3 deals with some examples of weight 
spaces in connection with the (continuous) Fourier spectral measure 
on ~2(R) as well as with (discrete) expansions into Hermite and ultra­
spherical polynomials. This would als~ enable one to discuss certain 
fundamental problems in approximation theory such as the comparison 
of processes, saturation, Bernstein-type inequalities etc. in connec­
tion with concrete examples of multiplier operators such as the 
Weierstrass or Picard means. However, in carrying out these applica­
tions one would proceed as in the Banach space frame so that one can 
refer the reader to [11, [21, [51, (7) and the literature cited there. 

The authors would like to express their sincere gratitude to Pr·ofes­
sor P.L. Butzer for a critical reading of the manuscript. 

2. GENERAL THEORY. 

Let (X,{p} J)' J being an arbitrary index set, denote a complete, r re: 

locally convex Hausdorff space whose topology Tis generated by a fa­
mily of filtrating seminorms Pr' Let [X) be the class of all conti­
nuous linear operators ·of X into itself. As in the Banach space frame 
(cL (1), I II; (2), I) it is appropriate to look for some auxiliary 
Hilbert space H with H n X nonempty and dense in X. The operators are 
then assumed to be generated by some spectral measure E on H via the 
following procedure: 

* Work suppor~ed in part by DFG grant Ne 171/1 which is gratefully 
acknowledged. 
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Let ~ be the family of Borel sets u in R, the set of real numbers, 
and let E be a spectral measure for H on R, i.e. E(u) E [H] for each 
u E ~ and(¢ being the void set, id the identity mapping) 

E (u 1 n u 2) E(u 1 )E{u 2 ) for all u 1 ,u 2 E ~ 

(2 . 1 ) E (¢) ° E(R) = id 

E(Uu.) I E (u . ) with u. E ~. u. n uk = ¢ for j#k • 
j = 1 J j=l J J J 

Let L~(R;E) denote the set of E-essentially bounded Borel measurable 

functions T on R. Then the integral JRT(U)dE(U) is well defined in 

the strong operator topology as an element of [H] (cL [3] ,II, p.900). 

A function T E L~(R;E) is called a multiplier on (X,{Pr}) if to each 
f E H n X there exists fT E H n X such that 

and to each r E J there exist t E J such that 

(f E H n X) 

with constant B(r,t;T) > 0 independent of f. Then the operator 
T:(H n X,{p }) -+ (H n X,{p }), defined via Tf:=fT, has continuous 

r r 
linear extension to all of X, thus T E [X]. The set of all multipliers 

T on (X,{Pr}) is denoted by M. In the same way, following the approach 
in .Banach spaces (see [1] ,111;[ 2],1), one may construct certain closed 
linear operators B~ defined on some subspace X~ C X corresponding to 
some function. E L1• (R;E) which is allowed to have e.g. polynomial 

oc 
growth at infinity. 

To derive a multiplier criterion based on Abel summability let us 

consider for f E H n X, y > 0 

P(f;y) .- C. exp{-ylul}dE(u)f 

The spectral measure E is called Abel-bounded on (X,{p }) if P(f;y) 
r 

belongs to H n X for all f E H n X,y > 0, and if to each r E J there 

exists t E J such that 

(2.3) (f E H n X y > 0) 

with constant A(r,t) > 0 independent of f and y. 

In this connection let us consider the following class of functions 
(cf. [1], II I) : 

(2.4) CBV : = 0.. E C[ 0,00] , A (x) -A (00) = J: exp{ -xy}db (y) 

for some b E BV[O,oo]} 
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II~IICBV:= J: Idb(y)1 + 1~(00)1 

where ~(oo) :=lim ~(x), and C[O,oo] and BV[ 0,00] are the sets of func-
x ..... 

tions which are continuous and of bounded variation on [0,00], respec-

tively. 

THEOREM. If E is an Abet-bounded speatpaZ measupe fop (X,{Pr}) and 

if ~ E CBV, then ~(Iul) EM. 

Ppoof. For each f E H n X set (cf. [l],III; [2],1) 

fA := I: P(f;y)db(y) + ~(oo)f 

. As {Pr}r£J is filtrating, it follows by (2.3) that to each r E J 

there exist t E J and s=s(r,t) E J such that 

P (fl.) ~ Joo p (P(f;y)) Idb(y) I + I~(oo) Ip (f) ~ r 0 r r 

Fu!thermore, we have for f E H n X by (2.1), (2.2) and (2.4) that 

:fA = J:J~~exp{-Ylul}dE(U)f db(y) + ~(~)f = 

= J" dE(U)f(JooeXP{-Ylul}db(Y) + ~(oo)) 
-.. 0 

which completes the proof. 

3. APPLICATIONS. 

As already indicated in the introduction, we shall here confine our­
selVes 'to a short description of how to construct suitable locally 
convex spaces X in connection with classical orthogonal expansions. 
Let us commence with some general remarks (see also [6] ,17]). 

The complete locally convex Hausdorff spaces (X,{Pr}r£J) to be con­

sidered are representable as projective or inductive limits of 
Banach spaces. Thus let 

X .- LP(a,b;U (x)) 
r r 

1 ~ P < 00, -~ ~ a < b ~ 00, 

un u .= Pr (f) 
p, r 

.- {rlf(X) fPU r (X)dX}l/ p 
a 

denote the usual Banach space of measurable functions, pth power 
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integrable with respect to the weight Ur(x) > 0, r E J. If e.g. ] is 
some open set in R, one may define complete locally convex Hausdorff 

spaces via 

n 
rE] 

X and Xu ] := U 
r , rE] 

X 
r 

If, furthermore, f can be replaced by a countable set without affec­

ting the topology, Xp ,] is a countably normed space if the norms 

{Pr}rE] are in concordance (cf. [4], p.S). Concerning Xu,]' this would 

lead to an analogous study of countable union spaces (of distribu­

tions) (cf. [4], p. 20). However, we shall confine ourselves in the 

following to product sp~ces Xp ,]' 

3.1. CONTINUOUS SPECTRA. 

Let H : = L 2 (-00,00; 1) . - L 2 (R) and define the Fourier transform F[ f] 

of f E H by 

lim lIF[f] (v) - 1 fN f(u)e-ivuduIi H = 0 
N+oo 121T -N 

Let F- 1 be its inverse and Pa' a E E , be the multiplication projec­

tion 

P a f (u) : = Pa (u) f (u), Pa (u) . _ { 1, 

0, 

u E a 

u fF. a 

Setting, for arbitrary a E E, 

(3.1) 

it is a familiar fact (cf. [3],III, p.1989) that E is a spectral mea­

sure on H. 

In order to construct suitable locally convex spaces X, let .us consi­

der spaces LP(-oo,oo;U (x)) in connection with the Poisson integral. 
r 

f(x,y) := ~ foo f(U~ 2 du 
-00 (x-u) +y 

(y > 0) 

Then a result of Muckenhoupt [10] asserts: 

Let ~ and v be Borel measures and 1 ~ P < 00; y > O. There exists a 

constant C(~,v) > 0 independent of f such that 

(3.2) 

if and only if for each interval I C R with length III there exists 

a constant B, independent of I. such that 
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( dV (X))-l 
ess sup _a __ · .;;; B 

xe:I dx 
(p 1 ) 

(3.3) 

/.1(1) 1 f rdVa(X)]-l/(P-l) p-l 
A := (--)(- dx) .;;; B 

P I I I I I I I dx 
(1 < p < (0) , 

Va denoting the absolute continuous part of v. A similar version holds 

f?r 211"-periodic functions. 

To give an example, (3.3) is true with d/.l(x) = Ur(x)dx, 
dv (x) = Ut(x)dx, and Ur(x) = (l+lxl)r for r';;; t and r,t E ] = 
=](p) := (-1,p-1) if l.;;;p <00, and additionally for r=O if pi=1. 
Obviously, the Hilbert space H = L2(R) is dense in LP(-oo,oo; (l+lxl)r), 

1.;;; p < 00 and r E ](p), and therefore in X n LP{-~,oo;(l+lxl)r). 
re:] 

Moreover, for the operator P(f;y) in (2.2) we have for all f E H nX 

P(f;y)(x) f (u) du 
y2+(x_u)2 

so that the Fourier spectral measure (3.1) is Abel-bounded on X by 

(3.3) . 

3.2. DISCRETE SPECTRA. 

Let H be an arbitrary Hilbert space and {Pk}ke:P C [HJ , P being the 

set of all non-negative integers, a complete system of mutually ortho 

gonal projections of H into itself, so that each f E H admits an ex­

P!lnsion 

f 

Then a spectral measure E on H may be defined by 

(3.4) E(a) := l Pk 
ke:a 

(f E H) 

a being an arbitrary Borel set of R. Given a locally convex space 

(X,{Pr}) such that H n X is dense in X, the operators T to be consi- . 
dered are then generated via expansions of type 

Tf = l r(k)Pkf 
k=O 

(f E H n X) 

To treat concrete examples, let Hk(x) denote the kth Hermite polyno­

mial given via 

l 
k=O 

On H := L2 (-00,00;exp{-x 2}) 

jections Pk via 

.- L2 with w(x) .- exp{-x 2} we define pro­
w 
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(3.5) (k E P) 

Note that Pk is in general not defined on L;, pi2. However, the pro~ 
jections {Pk}kEP belong to [L;] and are mutually orthogonal. Indeed, 

a well known result of Pollard [11] states that for each f E H 

and this fails to hold for pi2. Furthermore, Pk(H) C L! and the set 
n of all finite linear combinations of the Hermite polynomials Hk(x) 
is dense in L~, 1 .;;; p < 00 (cf. [1] ,III and the literature cited 
there). With 

J"" 2 
f(x,v) .- _""P(v,x,u)f(u)exp{-u }du 

P(v,x,u) := 

it follows that for fEn (cf. [8]) 

"" 
Af(x,v)1 = U I Vk(Pkf) (x)U .;;; nfH 

p,W k=O p,W p,W 
(1 .;;; p < 00) 

Thus the spectral measure (3.4) corresponding to (3.5) is Abel­
bounded on the complete locally convex space X = n LP for some 

pEl W open J C [ 1,00) • 

Analogous results are true for expansions into Laguerre polynomials. 

Finally We examine expansions into ultraspherical polynomials C~(x), 
n 

). > 0, where 

I (x E (-1 ,1)) 
n=O 

Given the Hilbert space H := L2(O,w;sin2~e) := L! with m~(e) :=sin2~e, 

each f E H has an ultraspherical expansion (in H)~ 

(3.6) f(e) I (P~f) (e) 
k=O 

:= [r().l] 2 (k+).)k! 
21-2~1frck+2)') 

By a condition similar to (3.3) it follows for the Abel means 
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that for f(O) sinZAO integrable on [0 ,1f] one has (cf. [9]) 

(1 . ..;;; p <;,.,) 

for c.g. the weights 

(3.7) for 
Il r E ](p):=(-1,p-1) , 

r E ](1) :=(-1 ,0] 

1<p<00 

p=1 

(3.8) (tan 0/2)r for { r = ° 
r E ](p):=(-1,p-1) n (1-p,1) 

Defining the Banach spaces 

xl. .- {f;f(0)sin2A O integrable on [O,1f] such that 
r 

p=1 

1<p<00 

P~(H) C X; and the set IT of all finite linear combinations of the 

ultraspherical polynomials C~ (cos 0) is dense in X;, 1 ~ p < 00. 

Therefore the spectral measure (3.4) corresponding to (3.6) is Abel­
bounded (with r=t) on the complete locally convex Hausdorff space 

Xp ]:= n X; for each open set] C ](p) according to (3.7) or (3.8}, 
, .re:] 

respectively. Thus again our theorem may be applied .. 
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