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MULTIPLIERS WITH RESPECT TO ABEL-BOUNDED SPECTRAL .MEASURES 

IN LOCALLY CONVEX SPACES 

* J. Junggeburth and R.J. Nessel 

1. INTRODUCTION. 

In this note, which can be regarded as Part II of [71 ,we would like to 
continue our previous investigations on multipliers in abstract spa
ces. Whereas ([ 11, IIII) was concerned with Abel-bounded, discrete ex
pansions in Banach spaces, ([ 21, I) with Riesz-bounded, continuous 
spectral measures in Banach spaces, and ([ 51;[ 71) with Ces~ro-bounded, 
discrete expansions in locally convex spaces, it is the purpose of 
this note to consider the more general situation of Abel-bounded spec
tral measures in locally convex spaces. To this end, Section 2 pre
sents the general theory. Section 3 deals with some examples of weight 
spaces in connection with the (continuous) Fourier spectral measure 
on ~2(R) as well as with (discrete) expansions into Hermite and ultra
spherical polynomials. This would als~ enable one to discuss certain 
fundamental problems in approximation theory such as the comparison 
of processes, saturation, Bernstein-type inequalities etc. in connec
tion with concrete examples of multiplier operators such as the 
Weierstrass or Picard means. However, in carrying out these applica
tions one would proceed as in the Banach space frame so that one can 
refer the reader to [11, [21, [51, (7) and the literature cited there. 

The authors would like to express their sincere gratitude to Pr·ofes
sor P.L. Butzer for a critical reading of the manuscript. 

2. GENERAL THEORY. 

Let (X,{p} J)' J being an arbitrary index set, denote a complete, r re: 

locally convex Hausdorff space whose topology Tis generated by a fa
mily of filtrating seminorms Pr' Let [X) be the class of all conti
nuous linear operators ·of X into itself. As in the Banach space frame 
(cL (1), I II; (2), I) it is appropriate to look for some auxiliary 
Hilbert space H with H n X nonempty and dense in X. The operators are 
then assumed to be generated by some spectral measure E on H via the 
following procedure: 

* Work suppor~ed in part by DFG grant Ne 171/1 which is gratefully 
acknowledged. 
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Let ~ be the family of Borel sets u in R, the set of real numbers, 
and let E be a spectral measure for H on R, i.e. E(u) E [H] for each 
u E ~ and(¢ being the void set, id the identity mapping) 

E (u 1 n u 2) E(u 1 )E{u 2 ) for all u 1 ,u 2 E ~ 

(2 . 1 ) E (¢) ° E(R) = id 

E(Uu.) I E (u . ) with u. E ~. u. n uk = ¢ for j#k • 
j = 1 J j=l J J J 

Let L~(R;E) denote the set of E-essentially bounded Borel measurable 

functions T on R. Then the integral JRT(U)dE(U) is well defined in 

the strong operator topology as an element of [H] (cL [3] ,II, p.900). 

A function T E L~(R;E) is called a multiplier on (X,{Pr}) if to each 
f E H n X there exists fT E H n X such that 

and to each r E J there exist t E J such that 

(f E H n X) 

with constant B(r,t;T) > 0 independent of f. Then the operator 
T:(H n X,{p }) -+ (H n X,{p }), defined via Tf:=fT, has continuous 

r r 
linear extension to all of X, thus T E [X]. The set of all multipliers 

T on (X,{Pr}) is denoted by M. In the same way, following the approach 
in .Banach spaces (see [1] ,111;[ 2],1), one may construct certain closed 
linear operators B~ defined on some subspace X~ C X corresponding to 
some function. E L1• (R;E) which is allowed to have e.g. polynomial 

oc 
growth at infinity. 

To derive a multiplier criterion based on Abel summability let us 

consider for f E H n X, y > 0 

P(f;y) .- C. exp{-ylul}dE(u)f 

The spectral measure E is called Abel-bounded on (X,{p }) if P(f;y) 
r 

belongs to H n X for all f E H n X,y > 0, and if to each r E J there 

exists t E J such that 

(2.3) (f E H n X y > 0) 

with constant A(r,t) > 0 independent of f and y. 

In this connection let us consider the following class of functions 
(cf. [1], II I) : 

(2.4) CBV : = 0.. E C[ 0,00] , A (x) -A (00) = J: exp{ -xy}db (y) 

for some b E BV[O,oo]} 
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II~IICBV:= J: Idb(y)1 + 1~(00)1 

where ~(oo) :=lim ~(x), and C[O,oo] and BV[ 0,00] are the sets of func-
x ..... 

tions which are continuous and of bounded variation on [0,00], respec-

tively. 

THEOREM. If E is an Abet-bounded speatpaZ measupe fop (X,{Pr}) and 

if ~ E CBV, then ~(Iul) EM. 

Ppoof. For each f E H n X set (cf. [l],III; [2],1) 

fA := I: P(f;y)db(y) + ~(oo)f 

. As {Pr}r£J is filtrating, it follows by (2.3) that to each r E J 

there exist t E J and s=s(r,t) E J such that 

P (fl.) ~ Joo p (P(f;y)) Idb(y) I + I~(oo) Ip (f) ~ r 0 r r 

Fu!thermore, we have for f E H n X by (2.1), (2.2) and (2.4) that 

:fA = J:J~~exp{-Ylul}dE(U)f db(y) + ~(~)f = 

= J" dE(U)f(JooeXP{-Ylul}db(Y) + ~(oo)) 
-.. 0 

which completes the proof. 

3. APPLICATIONS. 

As already indicated in the introduction, we shall here confine our
selVes 'to a short description of how to construct suitable locally 
convex spaces X in connection with classical orthogonal expansions. 
Let us commence with some general remarks (see also [6] ,17]). 

The complete locally convex Hausdorff spaces (X,{Pr}r£J) to be con

sidered are representable as projective or inductive limits of 
Banach spaces. Thus let 

X .- LP(a,b;U (x)) 
r r 

1 ~ P < 00, -~ ~ a < b ~ 00, 

un u .= Pr (f) 
p, r 

.- {rlf(X) fPU r (X)dX}l/ p 
a 

denote the usual Banach space of measurable functions, pth power 
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integrable with respect to the weight Ur(x) > 0, r E J. If e.g. ] is 
some open set in R, one may define complete locally convex Hausdorff 

spaces via 

n 
rE] 

X and Xu ] := U 
r , rE] 

X 
r 

If, furthermore, f can be replaced by a countable set without affec

ting the topology, Xp ,] is a countably normed space if the norms 

{Pr}rE] are in concordance (cf. [4], p.S). Concerning Xu,]' this would 

lead to an analogous study of countable union spaces (of distribu

tions) (cf. [4], p. 20). However, we shall confine ourselves in the 

following to product sp~ces Xp ,]' 

3.1. CONTINUOUS SPECTRA. 

Let H : = L 2 (-00,00; 1) . - L 2 (R) and define the Fourier transform F[ f] 

of f E H by 

lim lIF[f] (v) - 1 fN f(u)e-ivuduIi H = 0 
N+oo 121T -N 

Let F- 1 be its inverse and Pa' a E E , be the multiplication projec

tion 

P a f (u) : = Pa (u) f (u), Pa (u) . _ { 1, 

0, 

u E a 

u fF. a 

Setting, for arbitrary a E E, 

(3.1) 

it is a familiar fact (cf. [3],III, p.1989) that E is a spectral mea

sure on H. 

In order to construct suitable locally convex spaces X, let .us consi

der spaces LP(-oo,oo;U (x)) in connection with the Poisson integral. 
r 

f(x,y) := ~ foo f(U~ 2 du 
-00 (x-u) +y 

(y > 0) 

Then a result of Muckenhoupt [10] asserts: 

Let ~ and v be Borel measures and 1 ~ P < 00; y > O. There exists a 

constant C(~,v) > 0 independent of f such that 

(3.2) 

if and only if for each interval I C R with length III there exists 

a constant B, independent of I. such that 
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( dV (X))-l 
ess sup _a __ · .;;; B 

xe:I dx 
(p 1 ) 

(3.3) 

/.1(1) 1 f rdVa(X)]-l/(P-l) p-l 
A := (--)(- dx) .;;; B 

P I I I I I I I dx 
(1 < p < (0) , 

Va denoting the absolute continuous part of v. A similar version holds 

f?r 211"-periodic functions. 

To give an example, (3.3) is true with d/.l(x) = Ur(x)dx, 
dv (x) = Ut(x)dx, and Ur(x) = (l+lxl)r for r';;; t and r,t E ] = 
=](p) := (-1,p-1) if l.;;;p <00, and additionally for r=O if pi=1. 
Obviously, the Hilbert space H = L2(R) is dense in LP(-oo,oo; (l+lxl)r), 

1.;;; p < 00 and r E ](p), and therefore in X n LP{-~,oo;(l+lxl)r). 
re:] 

Moreover, for the operator P(f;y) in (2.2) we have for all f E H nX 

P(f;y)(x) f (u) du 
y2+(x_u)2 

so that the Fourier spectral measure (3.1) is Abel-bounded on X by 

(3.3) . 

3.2. DISCRETE SPECTRA. 

Let H be an arbitrary Hilbert space and {Pk}ke:P C [HJ , P being the 

set of all non-negative integers, a complete system of mutually ortho 

gonal projections of H into itself, so that each f E H admits an ex

P!lnsion 

f 

Then a spectral measure E on H may be defined by 

(3.4) E(a) := l Pk 
ke:a 

(f E H) 

a being an arbitrary Borel set of R. Given a locally convex space 

(X,{Pr}) such that H n X is dense in X, the operators T to be consi- . 
dered are then generated via expansions of type 

Tf = l r(k)Pkf 
k=O 

(f E H n X) 

To treat concrete examples, let Hk(x) denote the kth Hermite polyno

mial given via 

l 
k=O 

On H := L2 (-00,00;exp{-x 2}) 

jections Pk via 

.- L2 with w(x) .- exp{-x 2} we define pro
w 
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(3.5) (k E P) 

Note that Pk is in general not defined on L;, pi2. However, the pro~ 
jections {Pk}kEP belong to [L;] and are mutually orthogonal. Indeed, 

a well known result of Pollard [11] states that for each f E H 

and this fails to hold for pi2. Furthermore, Pk(H) C L! and the set 
n of all finite linear combinations of the Hermite polynomials Hk(x) 
is dense in L~, 1 .;;; p < 00 (cf. [1] ,III and the literature cited 
there). With 

J"" 2 
f(x,v) .- _""P(v,x,u)f(u)exp{-u }du 

P(v,x,u) := 

it follows that for fEn (cf. [8]) 

"" 
Af(x,v)1 = U I Vk(Pkf) (x)U .;;; nfH 

p,W k=O p,W p,W 
(1 .;;; p < 00) 

Thus the spectral measure (3.4) corresponding to (3.5) is Abel
bounded on the complete locally convex space X = n LP for some 

pEl W open J C [ 1,00) • 

Analogous results are true for expansions into Laguerre polynomials. 

Finally We examine expansions into ultraspherical polynomials C~(x), 
n 

). > 0, where 

I (x E (-1 ,1)) 
n=O 

Given the Hilbert space H := L2(O,w;sin2~e) := L! with m~(e) :=sin2~e, 

each f E H has an ultraspherical expansion (in H)~ 

(3.6) f(e) I (P~f) (e) 
k=O 

:= [r().l] 2 (k+).)k! 
21-2~1frck+2)') 

By a condition similar to (3.3) it follows for the Abel means 
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that for f(O) sinZAO integrable on [0 ,1f] one has (cf. [9]) 

(1 . ..;;; p <;,.,) 

for c.g. the weights 

(3.7) for 
Il r E ](p):=(-1,p-1) , 

r E ](1) :=(-1 ,0] 

1<p<00 

p=1 

(3.8) (tan 0/2)r for { r = ° 
r E ](p):=(-1,p-1) n (1-p,1) 

Defining the Banach spaces 

xl. .- {f;f(0)sin2A O integrable on [O,1f] such that 
r 

p=1 

1<p<00 

P~(H) C X; and the set IT of all finite linear combinations of the 

ultraspherical polynomials C~ (cos 0) is dense in X;, 1 ~ p < 00. 

Therefore the spectral measure (3.4) corresponding to (3.6) is Abel
bounded (with r=t) on the complete locally convex Hausdorff space 

Xp ]:= n X; for each open set] C ](p) according to (3.7) or (3.8}, 
, .re:] 

respectively. Thus again our theorem may be applied .. 
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