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MULTIPLIERS WITH RESPECT TO ABEL-BOUNDED SPECTRAL MEASURES
IN LOCALLY CONVEX SPACES

J. Junggeburth* and R.J. Nessel

1. INTRODUCTION.

In this note, which can be regarded as Part II of [7] ,we would like to
continue our previoué investigations on multipliers in abstract spa-
ces. Whereas ([ 1], III) was concerned with Abel-bounded, discrete ex-
pansions in Banach spaces, ([ 2], I) with Riesz-bounded, continuous
spectral measures in Banach spaces, and ([5];[7]) with Cesaro-bounded,
discrete expansiohs in locally convex spaces, it is the purpose of
this note to consider the more general situation of Abel-bounded spec-
tral measures in locally convex spaces. To this end, Section 2 pre-
sents the general theory. Section 3 deals with some examples of weight
spaces in connection with the (continuous) Fourier spectral measure

on LZ(R) as well as with (discrete) expansions into Hermite and ultra-
spherical polynomials. This would also’ enable one to discuss certain
fundamental problems in approximation theory such as the comparison

of processes, saturation, Bernstein-type inequalities etc. in connec-
tion with concrete examples of multiplier operators such as the
Weierstrass or Picard means. However, in carrying out these applica-
tions one would proceed as in the Banach space frame so that one can
refer the reader to [1], [2], [5], [7] and the literature cited there.

The authors would like to express their sincere gratitude to Profes-
sor P.L. Butzer for a critical reading of the manuscript.

2. GENERAL THEORY.

Let (X,{p_}

. reJ), J being an arbitrary index set, denote a complete, -
locally convex Hausdorff space whose topology T is generated by a fa-
mily of filtrating seminorms p, . Let [X] be the class of all conti-
nuous linear operators of X into itself. As in the Banach space frame
(cf£. [1],III; [2],I) it is appropriate to look for some auxiliary
Hilbert space H with H n X nonempty and dense in X. The operators are
then assumed to be generated by some spectral measure E on H via the

following procedure:

. )
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Let Z be the family of Borel sets ¢ in R, the set of real numbers,
and let E be a spectral measure for H on R, i.e. E(¢) € [H] for each
¢ € T and (¢ being the void set, id the identity mapping)

E(o1 n 02) = E(al)E(oz) for all 0,0 €z,

2
(z.1) E(¢)

E( U
j=1 k|

0o, E(R) = id ,

E(oj) with o € z, o5 Nay = ¢ for j#k.

Q
~—
"
ne—g
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Let L™(R;E) denote the set of E-essentially bounded Borel measurable
functions t on R. Then the integral J t(u)dE(u) is well defined in
the strong operator topology as an element of [H] (cf. [31,II, p.900).

A function v € L®(R;E) is called a multiplier on (X,{pr}) if to each
f € HN X there exists f' € H N X such that

£f' = Jm t(u)dE(u)f

and to each r € J there exist t € J such that
p, () < B(r,t;t)p, (f) (f € HNX)

with constant B(r,t;t) > 0 independent of f. Then the operator

T:(H nX,{p }) — (HnNX,{p.}), defined via Tf:=f", has continuous
linear extension to all of X, thus T € [X]. The set of all multipliers
T on (X,{pr}) is denoted by M. In the same way, following the approach
in Banach spaces (see [1],III;[2],I), one may construct certain closed
linear operators BY defined on some subspace x¥ c x corresponding to
some function ¢ € L;OC(R;E) which is allowed to have e.g. polynomial
growth at infinity.

To derive a multiplier criterion based on Abel summability let us
consider for f e HNn X, y >0

(2.2) P(f;y) := J expl{-y|u|}dE(u)

The spectral measure E is called Abel-bounded on (X,{pr}) if P(f3y)
belongs to H N X for all f € HN X,y > 0, and if to each r € J there
exists t € J such that

(2.3) p (P(£;y)) < A(r,t)p, (f) (feHnX ;y>0)
with constant A(r,t) > 0 independent of f and y.

In this connection let us consider the following class of functions
(cf. [1],I1I1):

(2.4) CBV := {A € C[0,00] , A(X)-A(o0) = Iw exp{-xy}db(y)
0

for some b € BV[0,o] }
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Iy, o= Jd ldb(y)| + A ()|

where A\ (o) :=1im A(x), and C[0,] and BV[0,=] are the sets of func-
x> .

tions which are continuous and of bounded variation on [0,00], Tespec-

tively.

THEOREM. If E is an Abel-bournded spectral measure for (X,{pr}) and
"if N € CBV, then A(|u|) € M. ‘

Proof. For each £ € H N X set (cf. (11,1115 [2],I)

£ ]:,Pcf;y)db(y) + A ()f

»As {pr}rt_:_T is filtrating, it follows by (2.3) that to each r € J

"‘there exist t € J and s=s(r,t) € J such that
P (1) < [ P, REMIBOI + N Ip (8 S
<AG,OP (5 [ 16|+ NE (e, (B <
0
<A, gy p (6

Furthermore, we have for £ € H Nn'X by (2.1), (2.2) and (2.4) that

2

jij exp{-y|u|}E(u)f db(y) + A(=)f
0

- oo

j dE(u)f(]oexp{—ylul}db(y) £ A ()

ijUuDdef

which completes the proof.

3. APPLICATIONS.

As already indicated in the introduction, we shall here confine our-
selves to a short description of how to construct suitable locally
convex spaces X in connection with classical orthogonal expansions.
Let us commence with some general remarks (see also [6],[7]).

The complete locally convex Hausdorff spaces (X’{pr}reJ) to be con-

 sidered are representable as projective or inductive limits of
Banach spaces. Thus let
X :=1P(a,bsU (x)) , 1<p<=, -»<a<b<e,

(B3]

r a

b 1/
ooy T P (B) it {J |£(x) tPU_(x)dx} P

denote the usual Banach space of measurable functions, pth power
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integrable with respect to the weight Ur(x) >0, reJ. If e.g. J is
some open set in R, one may define complete locally convex Hausdorff
spaces via

X = N Xr and XU g := U X

P,J reJ ’ reJ T

If, furthermore, J can be replaced by a countable set without affec-

ting the topology, X is a countably normed space if the norms

P,J
{pr}reJ are in concordance (cf. [4], p.5). Concerning XU,J’ this would

lead to an analogous study of countable union spaces (of distribu-
tions) (cf. [4], p.20). However, we shall confine ourselves in the

following to product spaces X, j.

3.1. CONTINUOUS SPECTRA.

Let H := LZ(-w,m;1) 1= L2(R) and define the Fourier transform F[ f]
of f € H by
N .
lim IFL€] (v) - LJ f(we Vuauly = 0
N+ V2m J-N
Let F_1 be its inverse and P , 0 € T, be ‘the multiplication projec-
tion
1, ueeo
P f(u) := p (u)f(), p, (u) :=
g o > Yo 0, ugo

Setting, for arbitrary o € X,

1p ¢

(3.1) E(o) := F~ o

it is a familiar fact (cf. [3],III, p.1989) that E is a spectral mea-
sure on H.

In order to construct suitable locally convex spaces X, let us consi-
der spaces Lp(-m,w;Ur(x))'in connection with the Poisson integral.

£(x,y) :=Xr £ gy (y > 0)

LA (x-u)2+y2

Then a result of Muckenhoupt [ 10] asserts:

Let p and v be Borel measures and 1 < p <, y > 0. There exists a

constant C(m,») > 0 <ndependent of £ such that

.2 [ ey PawE <cw,) jm | £(x) |Pdv (x)

if and only if for each interval I C R with length |I| there exists
a constant B, independent of 1, such that
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i dv _(x)y-1
A, := (ﬁill) ess sup ( a ) < B (p
‘ | 1] xel “dx
(3.3)

dv _(x)7-1/(p-1) -1
A := (E&ll)(_l_ J [__é_f_] P dx)P <B (1<p<,
P (1] |1} dx

Va denoting the absolute continuous part of v. A similar version holds
for 2r-periodic functions.

To give an example, (3.3) is true with du(x) = Ur(x)dx,

dv (x) = U, (x)dx, and Ur(x) = (1+|x])T for r <t and r,t € J =

=J(p) := (-1,p-1) if 1 < p < °°, and additionally for r=0 if p=1.
Obviously, the Hilbert space H = LZ(R) is dense in Lp(-M,m;(1+|xI)r),

1<p<owand r € J(p), and therefore in X := ﬂJLp(-m’w;(1+|Xi)r).
re
Moreover, for the operator P(f;y) in (2.2) we have for all f € H n. X

- o yS+(x-u

'so that the Fourier spectral measure (3.1) is Abel-bounded on X by
(3.3).

3.2. DISCRETE SPECTRA.
Let H be an arbitrary Hilbert space and {Pk}keP C [H] , P being the

set of all non-negative integers, a complete system of mutually ortho
gonal projections of H into itself, so that each f € H admits an ex-
pansion

£f= 7 P £ (f € H)
k=0
Then a épectral measure E on H may be defined by

>(3.4) E(0) := ) P

keo k

0 being an arbitrary Borel set of R. Given a locally convex space
(X,{pr}) such that H n X is dense in X, the operators T to be consi-:
dered are then generated via expansiohs of type

©

TE = ] 7(K)P,f (f € Hn X)
k=0

To treat concrete examples, let Hk(x) denote the kth Hermite polyno-
mial given via

o H (X)
-k s¥ = exp{2xs-s?}
k=0 k!
A . 2 o 12 L 2 .
On H := L%(-o0,00;exp{-x“}) := Lw with w(x) := exp{-x°} we define pro-

jections Pk via
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. 1 ® 2
(3.5) [Pkf)(x) 1= (J%EFI? J_wf(u)Hk(u)exp{-u }du)Hk(x) (k € P)

Note that Pk is in general not defined on LS, p#2. However, the pro-

jections {P p belong to [L:] and are mutually orthogonal. Indeed,

k}ke
a well known result of Pollard [11] states that for each f € H

R R 2 2
lim J ) (P ) (x) - f(x)|“exp{-x“}dx = 0
0

n->eo - k=
and this fails to hold for p#2. Furthermore, Pk(H) C Lg and the set
I of all finite linear combinations of the Hermite polynomials Hk(x)

is dense in Ls, 1<p <o (cf. [1],III and the literature cited
there). With

f(x,v) := Jw P(v,x,u)f(u)exp{—uz}du

® kak(x)Hk(u)
P(v,x,u) := —_—
k=0 v/ 2°k!

it follows that for f € n (cf. [8])

1 v ok
THCR0) I nkzo VER N <L

,

(1 <p <)

Thus the spectral measure (3.4) corresponding to (3.5) is Abel-
bounded on the complete locally convex space X = N Lg for some
open J C [1,0). pe]

Analogous results are true for expansions into Laguerre polynomials.

Finally we examine expansions into ultraspherical polynomials Cg(x),
A > 0, where

I s"chx) = (1-2xs+s?)™ (x € (-1,1))
n=0
Given the Hilbert space H := Lz(O,w;sinZAO) 1= Li with mk(o):=sin2A9,

each £ € H has an ultraspherical expansion (in H)

. ¥ A - A
(3.6) £(0) = kzo a Ch(cos 0) := kzo (P2£) (0)

m 2 '
1= £(0)C? 0)m. (8)do, v, := LLODIZ(Mk!
i Tk JO @ k(COS )mA( ) T ZI_ZAWP(k+ZR)

By a condition similar to (3.3) it follows for the Abel means

£0,) = 1 VKL @) - [P(v,0,0)E0)m, (4)00
k=0 0
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P(v,0,6) = J vkwkc;(cos 6)C} (cos ¢)
k=0 .

that for £(6) sinZAa integrable on [0,7] one has (cf. [9])

T P m P oy
Jjrenl’ v o <cm [ rofu e a<pew

for e.g. the weights

bt gop | TEI@ESCGTED L 1<p <o
lrermi=c1,00 , p=t ,

(3.7) U, ()

r=20 p=1

(3.8) u,(6) (tan 6/2)F for {

reJp):=(-1,p-1)N (1-p,1) 1<p<w

Defining the Banach spaces

Xi 1= {f;f(G)sinzxo integrable on [0,7] such that

™
p (8 1= (] 1£@)P0, 0)a0) !/ <y,

P;(H) c X: and the set I of all finite linear combinations of the
ultraspherical polynomials Ci (cos 6) is dense in Xﬁ, 1 <p <o,
Therefore the spectral measure (3.4) corresponding to (3.6) is Abel-
bounded (with r=t) on the complete locally convex Hausdorff space

XP g i= nJ x} for each open set J C J(p) according to (3.7)‘or (3.8),
’ re e : g
respectively. Thus again our theorem may be applied.
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