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ON k-TH POWER RESIDUACITY

Pascual Llorente

INTRODUCTION. It is the purpose of this paper to generalize some
results on k-th power residuacity present1ng simpler and more
conceptual proofs of those results.

In Section 2 a criterion for k-th power residuacity is given.
This criterion generalizes the one obtained by E. Lehmer [3].

In Section 3 a simple solution to one problem considered by
Sylvester [5] and E. Lehmer [4] and already essentially solved
by Kummer [ 1] is given. They all focus their attention on the pe-
riod equation and obtain their results using congruence proper-
ties of its roots. In this paper we consider the corresponding
algebraic numbers field and obtain more general results using

two simple lemmas presented in Section 1.

In the last section a criterion for the k-th character of 2 and
3 which generalizes the one obtained by E. Lehmer [2] for the
case k=5 is given.

We thanks Dr. Marcos Sebastiani for the fruitful talks we kept
during the preparation of this paper.

1. TWO LEMMAS, NOTATIONS AND SOME DEF|N[TI6NS.

LEMMA 1. Let K be an algebraic number field, E/K a cyclic extension
of degree n = k.t and F/K the unique sub-extension of E/K of degree
k. Let q be a prime ideal of K which factors in E as a product of

t différent prime ideals. Then q decomposgs totally over F if and
only if k/t.

Proof. Let q = Q,...Q, and q = Ql"'Qs be the decomposition- of q
as ‘a product of prime ideals in E and F respectively, and suppose
that q C Q1 C Q- Clearly, since ;/t and q decomposes totally over
F (i.e. s=k), then k/t.

Conversely, let's suppose that k/t. Let D, cG = Gal (E/K) be the
decomposition group of Ql over K. Then o(G/Dl) t and o(Dl)/ry
Then Dl C H = Gal(E/F) and D1 is the de;omposition group of Ql
over F. Since o(H/D;) = r/o(D,) = t/k ; then Ql'factors as a pro-
duct of t/k distinct prime factors in E. Since E/K is an abelian



extension, the decomposition groups of Qi (i=1,...,t) over K coin
cide with Dl' Then t = (t/k).s and s = k, i.e. q decomposes totally
‘over F. '~ '

Now we fix the following notation:

Z is the ring of integers
is the rational number field
k, r, p and q are positive integers such that k> 2

P =k.r+ 1 is a prime number
q#p and q is prime
Zq (idem Z#) is the field Z/qZ (idem Z/pZ)
Qq is the field of gq-adic numbers
g is a generator (primitive root) for the multi-

plicative group of Zp
Qp -is a p-th primitive complex root of 1
ﬂo(k,p), nl(k,p),..., nk_l(k,p) are the so called r-nomial periods,

kt+i

r-1
i.e. ni(k,p) = Zo Opg (i=0,...,k-1)
t=

E(p) = Q(9p) is the cyclotomic field, which is a cyclic ex-
_ tension of Q of degree k.r
F (p) = Q(no(k,P)) is, then, the only sub-extension of degree k
of the extension E(p)/Q. :

Finally, for all n € Z such that n # 0 (mod p) we denote
(n/p)k =1 if the equation ¥ = (mod p) has a solution
: (i.e. if n is a k-th power residue mod p).

Most of our results are valid for k=2, but since the case of qua-

dratic residues is very well known, for convenience, we suppose
k> 2,

DEFINITION 1. We say that hk(p,x) is an equation associated to
Fk(p) if it is the minimal polynomial for some entire primitive
number of the extension Fk(p)/Q.

In particular, the polynomial
k k-1 '
QD] fk(p,x) = x 4+ cl(p) X + ... 4 ck(p)

with roots no(k,p),...,nk_l(k,p) (equation of the periods)‘is an

equation associated to Fk(p). It is known that
(2) c,(p) =1
and, if (-1/p)k = 1 (which is always the case if k is odd), then

(3) c,(p) = A (k-1)/2]r



Every equation hk(p,x)’associated to Fk(p) can be considered, in
a natural fashion, as a polynomial in Q [x], and also as a polyno-
mial in Z [x]. It is clear that if h (p,x) has a root in Q , then
it has also a root in Zq. The converse is not true in general

DEFINITION 2. Let hk(p,x) be an equation- associated to Fk(p). We
say that q is an exceptional prime if hk(p,x) has a root in Zq
but not in Qq.

LEMMA 2, Let hk(p,x) be an equation asdoectated to Fk(p).

(i) If hk(p,x) has a single root in Zq then q is not an exceptio-
nal prime for hk(p,x). Therefore, every exceptional prime for
hk(p,x) divides the diseriminant of hk(p,x).

(ii) Let k be a prime. If q is an exceptional prime for hk(p,x)
then‘hk(p,x) has a single root in Zq, Z.e., there exists a € 1
such that

h (pox) = (x - &%  (mod q).

Proof. Lemma 2 follows immediately from Hensel Lemma. For (ii) ob-
serve that hk(p,x) factors in Qq[x] then, necessarily it factors
linearly.

2, CRITERION FOR k-TH POWER RESIDUACITY.

Kummer [ 1] - proved that if (q/p)k = 1 then fk(p,x) decomposes in k
linear factors in Zq[x]. The converse was proved by E. Lehmer [ 3]
for all prime q such that q does not divide the discriminant of
fk(p,x), using congruencial properties of the periods ni(k,p).
She obtained the following criterion for k-th power residuacity:

"(q/p)k =1 4f and onZy if £ (p,x) has a root in I ¢ provided q
does not divide the dzserzmznant of £ (p,x)"

The following theorem shows that such criterion is not related to
the equation of the periods but it is to the field Fk(p), and that
it holds for all prime q not exceptional.

THEOREM 1. (Criterion for k-th power residuacity).

Let hk(p,x) be an equation assoctiated to Fk(p). Then (q/p)k =1
if and only <if hk(p,x) has a root in Zq, provided that q is not
an exceptional prime for hk(p,x).

Proof. Since q # p, q is unramified in E(p). Let (q) = Q,.+.2, be
the factorization of the ideal (q) in prime ideals of E(p) and let
f be the residual degree of the ideals Q (i=1,2,...,t). Then
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t.f=p-1-=k.r.

The theorem is proved considering the following chain of logic
equivalences:

(q/p)k =1+ q° =1 (mod p) +— £/r +— k/t «— (q) decomposes
totally in Fk(p) —— hk(p,x) factors linearly in Qq[x] +— hk(p,x)
has a root in Qq — hk(p,x) has a root in Zq.

where the fourth equivalence follows from Lemma 1, the last one

follows from the fact that q is not an exceptional prime for
hk(p,x), and the others follow immediately from well known results.

The above criterion is particularly interesting in case k is a pri
me. Then, by Lemma 2 ii) we have

k 1

COROLLARY 1. Let k be a prime and h, (p,x) = x* + b (p) x*7! +. . .+
+ bk(p), an equation associated to Fk(p). If bk(p) = 0 (mod q)
and b, (p) # 0 (mod q) for some i = 1,...,k-1, then (q/p)k = 1.

In particular we have (recalling (2))

COROLLARY 1'. Let k be a prime.If ck(p)s 0 (mod q),then'(q/p)k= 1.

However the equation of periods has a much more important proper-
ty, which is a consequence of the following general result:

THEOREM 2. Let k be a prime and h, (p,x) an equ:*ion associated to
Fk(p) such that <its roots Qg seensly form a basis for the integers
of Fk(p). Then:
i) For no prime q there exists an integer a € I such that
N k
h (p,x) = (x - a)” (mod q)

ii) hk(p,x) has no exceptional primes.

Proof. Let's suppose there is a prime q and an integer a € Z such
that

(4) h (p,x) = (x - a)*  (mod q)

Since k is a prime and q # p, it is clear that the ideal (q) is ei
ther prime in Fk(p) or decomposes totally as a product of k dis-
tinct prime ideals of Fk(p). In any case, clearly it follows from
(4) that q/(a; - a) (i=1,...,k) in the ring of integers of Fk(p),
which is impossible. Then our assumption (4) is false and Part i)
of the theorem is proved.

Part ii) of the theorem follows immediately from Part i) and
Lemma 2, 'ii). '

Observing that the period equation fk(p,x) satisfies the hypothesis
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of Theorem 2, one obtains:

COROLLARY 2. Let k be a prime. Then:
i) For no prime q there exists an integer a € L such that
k .
£ (p,x) = (x - a)" (mod q).

ii) fk(p,x) has no exceptional primes.

From this result and Theorem 1, one follows:

COROLLARY 3. Let k be a prime. Then, (a/p), = 1.if and only if
fk(p,x) has a root in Zq.

From these results it is possible to obtain more explicit criteria
for k-th power residuacity for those k such that some equation
hk(p,x)_associated to Fk(p) be known. To calculate such an equa-
tion seems to be a very difficult problem. The casesk = 3,4 has
been completely studied in [3].

3. ON THE DIVISORS OF THE DISCRIMINANT OF AN EQUATION ASSOCIATED
T0 F (p).

In this section we shall suppose k prime.

Observihg E. Lehmer's criterion for k-th power residuacity in [3],
one finds natural to ask on the k-th character (mod p) of the pri-
me divisors of the discriminant Dk(p) of the period equation
fk(p,x). She considered this problem in [ 4], where she remarks

that it was posed by Sylvester in [5], although essentially it

had already been solved by Kummer in [1]. Following Kummer's ideas,
that is to say, using congruential properties of the periods
n;(k,p), she proves in [4]:

THEOREM 3. (Kummer - Lehmer). If Dk(p) = 0 (mod q) then (q/p)k = 1.

Here we give a very simple proof of the following general result:

THEOREM 4. Let D be the discriminant of an equation hk(p,x).asso-
ctated to'Fk(p). If q i8 not an exceptional prime for hk(p,x) and
if D=0 (mod q), then (q/p)k =1

Proof. By hypothesis hk(p,x) has ‘a non-trivial factorization in
Zq[x]. If any of these factors were linear, hk(p,x) would be the
product of two coprime non-constant monic polynomials in Z [x]

and, by Hensel's Lemma, Hk(p,x) would be reducib}e in Q [x]. Since
Fk(p) is an abelian extension of Q of prime degree k, hk(p,x)rwould
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have a linear factorization in Qq[x] and, therefore, also in Z [x],
which is a contradiction. Then h (p x) has a root in Z and thus
Theorem 4 follows from Theorem 1.

By Corollary 2, ii), it is clear that Theorem 3 is a particular
case of Theorem 4.

It is interesting to consider the reciprocal of Theorems 3 and 4.
In [4], using a known expression for Ds(p) and some criteria for
the quintic character of 2, 3, 5 and 7, it is proved the following:

THEOREM 5. (Lehmer). If q = 2, 3, 5 or 7, then Ds(p) = 0 (mod q)
if and only if (q/p)5 =1

Here we prove the following general result:

THEOREM 6. Let D be the discriminant of an equation hk(p,x) asso-
etated to Fk(p). If q <k s not an exceptional prime for hk(p,x),
then D = 0 (mod q) Zf and only if (q/p)k =1,

Proof. If D = 0 (mod q) then (q/p)k = 1 (Theorem 4). Reciprocally,
if (q/p)k = 1 then hk(p,x) has a linear factorization in Z [Xx]
and, since q <k, it is clear that hk(p,x) must have multiple
roots in Zq. Therefore D = 0 (mod q).

For the period equation we have:

THEOREM 7. If q <k, then D (p) =0 (mod q) if and only <f
(a/p)

Proof. If q <k the theorem follows from Theorem 6 and Corollary
2,ii). If q = k, one proves (as in the proof of Theorem 6 and
remembering (2)) that fr(p,x) cannot have k different roots in Z ,
because in this case 1 ='c1(p) = 0 (mod q). Then Dk(p) =

(mod q).

The case k=5 and q=7 of .Theorem 5 (which is not included ‘in The-
orem 7) can be easily deduced from our preceding results using a
known expression for the coefficients of Fs(p,x) (see [2]). We
don't give here the proof, not only because it is extraneous to
the spirit of this paper, but also because we have evidence to sup
poSe that Theorem 7 may be generalized in order to include The-
orem 5. In a future communication we will consider the validity

of Theorem 7 for primes q > k.
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L, THE k-TH CHARACTER OF 2 AND 3.

E. Lehmer [ 2] gives some criteria for the quintic character of 2
and 3 (mod p) in terms of the representation of p by certain qua-
dratic forms. Using these criteria and Studying the constant term
cs(p) of the period equation fs(p,x), she obtains the following
result:

(2/p)g = 1 if and only if cg(p) =0 (mod 2) and

(3/p)5 = 1 if and only if c(p)

0 (mod 3).

We generalize this result in the following way:

THEOREM 8. For any prime k > 2, 2 is a k-th power residue of a
prime p = k.vr + 1 2f and only <if ck(p) =0 (mod 2).

Proof. We have seen (Corollary 1') that if ck(p) =0 (mod 2),
then (Z/p)k = 1. Reciprocally, if (2/p)k = 1 then (Corollary 3
and Corollary 2, i)) fk(p,x) has at least two different roots in
Z, and, clearly, one of these must be zero. Then_ck(p) =0

(mod 2).

THEOREM 9. For any prime k = 5 (mod 6), 3 Zs a k-th power residue
of a prime p = k.vr + 1 2f and only <f ck(p) =0 (mod 3).

Proof. We have seen (Corollary 1') that if ck(p) = 0 (mod 3) then
(3/p), = 1. Reciprocally, let (3/p), = 1 and suppose that

ck(p) # 0 (mod 3). Then (Corollary 3 and Corollary 2, i)) fk(p,x)
has at least two non-zero different roots in Z3. Thus,

nl n2
f,p,x) = (x-1) 7" (x-2) 7 (mod 3)

with 0 < n, <k, 0<n,< k and n, +n, = k.

Therefore n, +n,= k = 2 (mod 3) and n, o+ an = '°1(p) = 2
(mod 3) (by (2)). This implies that n, = 2 (mod 3) and n,
(mod 3). Then, by (3) we have

1 nl((n1 - 1)/2) = cz(p) = -((k - 1)/2).r=1 (mod 3)

1]
o

and p = k.t + 1 0 (mod 3), which is impossible. Therefore our
assumption ck(p) # 0 (mod 3) is false and the theorem is proved.

The preceding proof is not valid for primes k = 1 (mod 6) because
in this case n, = 0 (mod 3), n, = 1 (mod 3), cz(p) =0 (mod 3)
and the last condition is verified for every r. In a future com-
munication we will consider the validity of Theorem 9 for primes

k =1 (mod 6) and other related results.



[1]}

[3]

[ 4]

[5]

67 .

REFERENCES

E. E. KUMMER, Ubenr die Divisoren iew{aaea Foamen den Zahlen,
welche aus den Theornie der Kreistheilung enstehen, Journal

vder Mathematik, vol., 30 (1846), pp. 107-116.
(2],

E. LEHMER, The quintic character of 2 and 3, Duke Mathematical
Journal, vol. 18 (1951), pp. 11-18. ' .

————————— » Cnitendia for cubic and quarntic nesiduacity, Mathe-
matika, vol. 5 (1958), pp. 20-29.

——————— s On the divisors of the discniminant of the peniod
equation, American Journal of Mathematics, vol. 90 (1968),
pPP. 375-379.

J. J. SYLVESTER, Instantaneous proof§ of a theorem of Lagrange
on the divisons of the foum Ax2 + By2 + cz2 with a postonipt
on the divisons of the functions which multisect the primitive
hoots of unity, American Journal of Mathematics, vol. 3 (1880),
PP. 390-392, ’

Universidad del Zulia
Maracaibo, Venezuela

‘Recibido en junio de 1976.



