Revista de la Unión Matemática Argentina Volumen 28, 1977.

STRICTLY CYCLIC WEIGHTED SHIFTS

Domingo A. Herrero

ABSTRACT. A method is given to construct a strictly cyclic bilateral weighted shift on ℓ^2 from a strictly cyclic unilateral shift with nonincreasing sequence of weights. It is also shown that a unilateral weighted shift in ℓ^p whose weights either decrease to 0, or decrease to 1 and satisfy the boundedness condition $\sum_{0}^{\infty} (a_1 a_2 \dots a_n)^{-\varepsilon} < \infty$ for all $\varepsilon > 0$ is not necessarily stricly cyclic for any p, 1 .

1. INTRODUCTION.

A weighted shift T in the complex Banach space $\ell^{p}(K)$, $1 \leq p < \infty$, is a (bounded linear) operator defined by the equations $Te_{n} = a_{n}e_{n+1}$, where $\{e_{n}\}$ is the canonical basis (i.e., e_{n} is the sequence $\{\delta_{nk}\}_{k \in K}$, where δ_{nk} denotes the Kronecker's delta function) and $\{a_{n}\}$ is a (neces sarily bounded) sequence of positive reals. If n runs over the set K = N of all non-negative integers (K = Z of all integers), then T is called a unilateral (bilateral, resp.) weghted shift.

Given $A \in L(\ell^2)$ (= the algebra of all operators acting on ℓ^2), let $A(A) (A^a(A))$ and A'(A) denote the weak closure of the polynomials (the rational functions with poles off the spectrum $\Lambda(A)$ of A, resp.) in A and the commutant of A in $L(\ell^2)$, respectively. Assume that there exists a vector x in ℓ^2 such that $A(A)x = \{Lx: L \in A(A)\}$ ($A^a(A)x$) coincides with ℓ^2 ; then A is said to be a strictly cyclic (analytically strictly cyclic, resp.) operator. It is well known (see [7]) that a strictly cyclic unilateral weighted shift (analytically strictly cy clic bilateral weighted shift B) always satisfies the following: $A(T) = A^a(T) = A'(T)$ (B is invertible and $A(B) \neq A^a(B) = A'(B)$; moreover, A'(B) is the norm closure of the polynomials in B and B⁻¹) and the Gelfand spectrum of the Banach algebra A(T) (A'(B)) can be naturally identified with $\Lambda(T)$ ($\Lambda(B)$, respectively).

Strictly cyclic unilateral weighted shifts (SCUWS) have been analyzed by several authors (see, e.g., [1];[2];[4];[7];[8];[9];[10];[11];[12]; [13]), but very little is known about analytically strictly cyclic bilateral weighted shifts (ASCBWS). In *section* 2 a method will be given to construct an ASCBWS in $\ell^2(Z)$ by using a SCUWS in $\ell^2(N)$ whose weights are bounded below from zero and satisfy a certain boundedness condition (This result applies, in particular, if the weights of the SCUWS form a non-increasing sequence converging to some positive number).

In section 3 a different kind of problem is analyzed: It is shown that there exist UWS in $\ell^p(N)$ whose weights either decrease to 0, or decrease to 1 and satisfy the condition $\sum_{0}^{\infty} (a_0 a_1 \dots a_n)^{-\varepsilon} < \infty$, which are not strictly cyclic for any p, thus answering in the negative a question of A.L.Shields ([13]).

2. A CLASS OF SYMMETRIC ASCBWS.

Let B be a BWS with weight sequence $\{a_n\}_{n \in \mathbb{Z}}$ and define $w_0 = 1$, $w_n = a_0 a_1 \dots a_{n-1}, w_{-n} = (a_{-1} a_{-2} \dots a_{-n})^{-1}$ for n > 0. For T a UWS, the sequence $\{w_n\}_{n \in \mathbb{N}}$ is similarly defined.

THEOREM 1. Let T be a SCUWS with weights {a_n}_{neN} such that

spectral radius (T) =
$$\lim_{n \to \infty} (\sup_{k} w_{n+k}/w_{k})^{1/n} = 1$$
 (1)

and

$$w_n / w_{n+k} = (a_n a_{n+1} \dots a_{n+k-1})^{-1} \le C$$
 (2)

for some constant $C \ge 1$, and for all $n,k \in N$. Define the BWS B by

$$Be_{n} = \begin{cases} a_{n}e_{n+1}, if n \in \mathbb{N} \\ (1/a_{-n})e_{n+1}, if n \in \mathbb{Z} \setminus \mathbb{N} \end{cases}$$

Then B is analytically strictly cyclic and $\Lambda(B)$ is the boundary ∂D of the unit disc D.

Proof. Clearly, $w_n(B) = w_{-n}(B) = w_n(T)$ for all $n \in N$. Let R be the unitary map defined by $\text{Re}_n = e_{1-n}$; then $\text{R} = \text{R}^{-1}$ and $\text{B}^{-1} = \text{RBR}$; in particular, B is invertible.

Let $A \in A'(B)$; then A is the strong limit of the sequence of Cesàro averages of a formal Laurent series $\sum_{n \in \mathbb{Z}} c_n B^n$ (see [5];[6]). B is ASC if and only if, given $x = \sum_{n \in \mathbb{Z}} b_n e_n$, there exists an A_x in A'(B) such that $A_x e_0 = x$ (see [7]). This is equivalent to say that the central column of the matrix of A_x (with respect to the canonical basis) coin cides with the column vector x. By using the fact that $w_n = w_{-n}$, the matrix of A = (formally) $\sum_{n \in \mathbb{Z}} c_n B^n$ is equal to :

(i.e., the (j,k)-entry is equal to $c_{j-k}w_j/w_k$ for all j,k $\in Z$). The dotted lines remark the central column and the central row.

$$= \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{-1}w_{3}/w_{2} & c_{-2}w_{3}/w_{1} & c_{-3}w_{3} & c_{-4}w_{3}/w_{1} & c_{-5}w_{3}/w_{2} & \dots \\ \\ \cdots & c_{0} & c_{-1}w_{2}/w_{1} & c_{-2}w_{2} & c_{-3}w_{2}/w_{1} & c_{-4} & \dots \\ \\ \hline \cdots & c_{1}w_{1}/w_{2} & c_{0} & c_{-1}w_{1} & c_{-2} & c_{-3}w_{1}/w_{2} & \dots \\ \hline \cdots & c_{2}/w_{2} & c_{1}/w_{1} & c_{0} & c_{-1}/w_{1} & c_{-2}/w_{2} & \dots \\ \hline \cdots & c_{3}w_{1}/w_{2} & c_{2} & c_{1}w_{1} & c_{0} & c_{-1}w_{1}/w_{2} & \dots \\ \hline \cdots & c_{4} & c_{3}w_{2}/w_{1} & c_{2}w_{2} & c_{1}w_{2}/w_{1} & c_{0} & \dots \\ \hline \cdots & c_{5}w_{3}/w_{2} & c_{4}w_{3}/w_{1} & c_{3}w_{3} & c_{2}w_{3}/w_{1} & c_{1}w_{3}/w_{2} & \dots \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{pmatrix}$$
(3)

Let $A_{+} = \sum_{n \in \mathbb{N}} c_n B^n$, $A_{-} = \sum_{n \in \mathbb{Z} \setminus \mathbb{N}} c_n B^n$, $x_{+} = \sum_{n \in \mathbb{N}} b_n e_n$ and $x_{-} = \sum_{n \in \mathbb{Z} \setminus \mathbb{N}} b_n e_n$. Then $A = (\text{formally}) A_{+} + A_{-}$ and $x = x_{+} + x_{-}$. Assume that A_{+} and A_{-} actually define bounded linear maps; then it is clear that $A_{+}e_0 \in \ell^2(\mathbb{N})$, while $A_{-}e_0 \in \ell^2(\mathbb{Z} \setminus \mathbb{N})$. Thus, in order to complete the proof, it suffices to show that if $c_n w_n = b_n$ for all $n \in \mathbb{Z}$, then A_{+} is a bounded linear map in A(B) and A_{-} is a bounded linear map in $A(B^{-1})$, whence it readily follows that $A = A_{+} + A_{-}$ and $Ae_0 = A_{+}e_0 + A_{-}e_0 = x_{+} + x_{-} = x$. The matrix of A_{+} is obtained from (3) by replacing the c_n 's by 0's for all negative n. Decompose this matrix according to the heavy lines of (3). Then $A_{+} = (\text{formally}) L^{-} + L^{+} + M^{-} + M^{-}$, where $L^{-}(L^{+})$ is the uper left (lower right, resp.) quarter of A_{+} and $M^{-}(M^{+})$ is the upper (lower, resp.) part of the lower left quarter of A_{+} (and the remaining entries of L^{-} , L^{+} , M^{-} and M^{+} are 0's).

Schematically, we have

A

 $A_{+} = \begin{pmatrix} - & & & & \\ & & & & \\ & &$

 $L^+:\ell^2(N) + \ell^2(N), L^-:\ell^2(Z \setminus N) + \ell^2(Z \setminus N)$ and $M^-(M^+):\ell^2(Z \setminus N) + \ell^2(N)$. $L^+ = A_+ | \ell^2(N) \in A^+(T)$ (The vertical bar denotes "restriction") and therefore, since T is a SCUWS and the first column of L^+ belongs

71

to $\ell^2(N)$, L^+ is actually bounded ([9]).

Condition (1) implies that $\Lambda(T) = D^{-} = \{z: |z| \le 1\} = \text{point spectrum}$ of T*, the adjoint of T (see [3];[7];[9]). Thus, in particular, $\{1/w_n\}_{n\in\mathbb{N}} \in \ell^2(\mathbb{N})$ and $|c_n| \le \|x\|/w_n \le C'$ for a suitable constant $C' \ge 1$ and for all $n \in \mathbb{Z}$. Consider L⁻; clearly, $\|L^{-}\| \le \sum_{n\in\mathbb{N}} \|L^{-}(n)\|$, where L⁻(n) is obtained from L⁻ by replacing c_m by 0 for every $m \ne n$, $n = 0, 1, 2, \ldots$. Hence, by (2),

$$\|\mathbf{L}^{\mathsf{T}}\| \leq \sum_{\mathbf{n}\in\mathbb{N}} |\mathbf{c}_{\mathbf{n}}| \max\{\mathbf{w}_{\mathbf{j}}/\mathbf{w}_{\mathbf{n}+\mathbf{j}}; \mathbf{j}\in\mathbb{N}\} \leq C \sum_{\mathbf{n}\in\mathbb{N}} |\mathbf{c}_{\mathbf{n}}| \leq C\{\sum_{\mathbf{n}\in\mathbb{N}} (|\mathbf{c}_{\mathbf{n}}|\mathbf{w}_{\mathbf{n}})^{2}\}^{1/2} \{\sum_{\mathbf{n}\in\mathbb{N}} \mathbf{w}_{\mathbf{n}}^{-2}\}^{1/2} < \infty$$

Similarly, by considering the formal decomposition $M^{-} = \sum_{n \in \mathbb{N} \setminus \{0\}} M^{-}(n)$, where $M^{-}(n)$ is that part of the matrix M^{-} corresponding to a fixed coefficient c_n , it is not difficult to conclude that M^{-} is also bounded.

It is easy to see that M^+ has the same norm as the operator $M: \ell^2(N) \rightarrow \ell^2(N)$ defined by the matrix

	$c_2 c_3 w_2 / w_1$	c ₄ w ₃ /w ₁	c ₅ w ₄ /w ₁	•••		
	0 c ₄	c ₅ w ₃ /w ₂	c ₆ w ₄ /w ₂			
M =	$\begin{bmatrix} 0 & c_4 \\ 0 & 0 \\ 0 & 0 \\ \cdot & \cdot \end{bmatrix}$	° ₆	c ₇ w ₄ /w ₃	••••		
	0 0	0	c ₈	•••		
		:	•	}		
Let $y = \sum_{n \in \mathbb{N}} d_n e_n$	$\in \ell^2(N);$ then	$My = \sum_{n \in \mathbb{N}} \{$	$\sum_{k=n+1}^{\infty} c_{k+n}$	^y k-1 ^w 1	(/w _n } e _n .Henc	e
$\ M^+\ ^2 = \ M\ $	$2 = \sup_{\ \mathbf{y}\ =1} \sum_{\mathbf{n} \in \mathbb{N}} $	$\sum_{k=n+1}^{\infty} c_{k+n}$	^y k-1 ^w k ^{/w} .	$ ^2 \leq$		
≼ s ∎y	$up \sum_{\substack{k=1\\n \in \mathbb{N}}} \{\sum_{k=n+1}^{\infty} $	(c _{k+n} w _k	/w _n) ² } {	$\sum_{k=n}^{\infty} y_k ^2$	} ≼	
≤ ∑ n∈N	∑ (c _m w _{m-n} meN	$(w_n)^2 \leq C^2$	$\left\{\sum_{n\in\mathbb{N}}^{w^{-2}}\right\}$	} {	$ w_{m} ^{2} < \infty$	9

The boundedness of A_ follows by a completely symmetric argument. The details are left to the reader.

3. NON-SCUWS WITH NON-INCREASING SEQUENCES OF WEIGHTS.

In ([13], Question 15), A.L.Shields asked the following: If $a_n < 1$ and $\sum w_n^{-2} < \infty$, must T be a SCUWS (in $\ell^2(N)$)? If $a_n < 0$, must T be strictly cyclic?. It is worth to recall that both questions have an affirmative answer in $\ell^1(N)$ ([3];[5]; see also [1]). Nevertheless, the answer is NO in $\ell^p(N)$ for 1 . We shall need the following result:

THEOREM 2. (E.Kerlin and A.L.Lambert, [8], Theorem 3.2). If $\{a_n\}$ is monotonically non-increasing and Te_n = $a_n e_{n+1}$, then T is strictly cyclic in $l^p(N)$ if and only if

 $\sup_{n \in \mathbb{N}} \sum_{k=0}^{n} (w_n / w_k w_{n-k})^q < \infty , \text{ where } q = p/(p-1).$

COROLLARY. (i) There exists a sequence $a_n \ge 1$ such that $\sum w_n^{-\varepsilon} < \infty$ for every $\varepsilon > 0$, but $Te_n = a_{n}e_{n+1}$ does not define a SCUWS in $\ell^p(N)$ for any p, 1 .

(ii) There exists a sequence $a_n \neq 0$ such that $Te_n = a_n e_{n+1}$ does not define a SCUWS in $l^p(N)$ for any p, 1 .

Proof. (i) Set $a_0 = 2$, $n_0 = 0$, $n_1 = 1$, $n_{j+1} > 3n_j$ (n_j to be defined) for all j = 1, 2, ... and $a_n = 1 + 2^{-j}$ for $n_j \le n < n_{j+1}$; then $a_n \ge 1$. If $2n_j < n \le n_{j+1} - n_j$ and $n_j < k \le n - n_j$, we have

$$w_n / w_k w_{n-k} = (1 + 2^{-j})^{-j} / w_n = c_j > 0$$

so that we can inductively define the n_i's in such a way that

 $\sum_{k=0}^{n_{j+1}} (w_{n_{j+1}} / w_{k} w_{n_{j+1}-k})^{j} \ge (n_{j+1} - 2n_{j}) (c_{j})^{j} > j \text{ for all } j=1,2,\ldots$

Clearly, the above inequalities remain true if the n_j 's are replaced by m_j 's so that $m_j > n_j$ and $m_{j+1}/m_j > n_{j+1}/n_j$, j = 1, 2, ... Therefore, without loss of generality we can assume that the n_j 's tend to ∞ fast enough so that $a_n > [(n+2)/(n+1)]^n$, whence it follows that $\sum w_n^{-\varepsilon} < \infty$ for every $\varepsilon > 0$.

(ii) Take n_j as above, except that now we take $a_n = 2^{-1}$ for $n_j < n < n_{j+1}$; then $a_n < 0$. For n and k as above, $w_n / w_k w_{n-k} = 2^{-jn} j / w_{n_j} = d_j > 0$, so that we can inductively define the n_j 's in such a way that

$$\sum_{k=0}^{j+1} (w_{n_{j+1}} / w_{k} w_{n_{j+1}-k})^{j} > (n_{j+1} - 2n_{j}) (d_{j})^{j} > j, \quad j = 2, 3, \dots$$

The conclusion is the same in both cases: By THEOREM 2, T cannot be a SCUWS in $\ell^p(N)$, for 1 .

THEOREM 2 and its COROLLARY are actually true for the space $c_0(N)$ of all sequences converging to 0, under the maximum norm, if the expo-

nent q is replaced by 1. (The details for these changes are left to the reader).

REFERENCES

- [1] M.R.EMBRY, Strictly cyclic operator algebras on a Banach space, Pac.J.Math. 45 (1973), 443-452.
- [2] R.GELLAR, Shift operators in Banach space, Dissertation, Columbia University, 1968.
- [3] ------, Operators commuting with a weighted shift, Proc.Amer. Math.Soc. 23 (1969), 538-545.
- [4] ------ , Cyclic vectors and parts of the spectrum of a weighted shift, Trans.Amer.Math.Soc. 146 (1969), 69-85.
- [5] ------ , Two sublattices of weighted shift invariant subspaces, Indiana Univ.Math.J. 23 (1973), 1-10.
- [6] ----- and D.A.HERRERO, Hyperinvariant subspaces of bilateral weighted shifts, Indiana Univ.Math.J. 23 (1974), 771-790.
- [7] D.A.HERRERO, Operator algebras of finite strict multiplicity, Indiana Univ.Math.J. 22 (1972), 13-24.
- [8] E.KERLIN and A.L.LAMBERT, Strictly cyclic shifts on l, Acta Sci. Math. (Szeged) 35 (1973), 87-94.
- [9] A.L.LAMBERT, Strictly cyclic weighted shifts, Proc.Amer.Math.Soc. 29 (1971) 331-336.
- [10] N.K.NIKOL'SKIĬ, The unicellularity and nonunicellularity of weighted shift operators, Dokl.Akad.Nauk 172 (1967), 287-290 = Soviet Math. Dokl. 8 (1967), 91-94.

- [13] A.L.SHIELDS, Weighted shifts and analytic function theory, Math. Surveys Vol.13, Topics in operator theory, Amer.Math.Soc., Providence, R.I., 1974, 49-128.

Universidad Nacional de Río Cuarto Río Cuarto, Córdoba, Argentina

and

Universidad Nacional de San Luis San Luis, Argentina.

Recibido en setiembre de 1975.