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SPHERICAL FUNCTIONS

*
Juan A. Tirao

INTRODUCTION.

The fundamental properties of spherical functions have been establis-
hed by R. Godement in a well known paper [1] in 1952. There he defines
in a general manner the notion of spherical function associated to

an irreducible representation of a locally compact unimodular group G.
Moreover, he gives a characterization of such functions as characters
of certain subalgebras of the algebra of all continuous functions on
G with compact support. For certain purposes it is best not to work
with the characters of such subalgebras but rather directly with

their finite dimensional representations. This leads one to consider
spherical functions with values in the endomorphism ring of a finite
dimensional vector space and not just complex valued functions.

Despite the importance of the close connection between the spherical
functions and the representations of G, and being of interest in their
own right, it is desirable to have an intrinsic definition for the
important notion of spherical function. Such definition is given and
explored in §1. '

In fact, it is possible to start from two different points which leads
to the same concept. The reason of our choice is the existence of the
general notion of m-spherical function, where i = ("1’"2) is a double
representation of a compact subgroup K of G on a finite dimensional
vector space E. By this one understands a continuous function ¢ from G
to E such that

¢(k1gk2) = “1(k1)¢(g)#2(k2) (kl ,k2 € K; g € G).

In §2 we establish the close connection between the spherical functions
and the representations of certain algebras of functions on G, from
which the most important properties of spherical functions follow.

In §3 we discuss thoroughly the relation between the two different
view points we mentioned above. In §4 we study the differential pro-
perties of spherical functions on Lie groups.

Since we have dropped every irreducibility assumption, some interesting
questions naturally arise. For example, we don't know if any spherical
function is associated to a representation of G. If G is a compact
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group, then we know that any spherical function is a direct sum of
jrreducibles,because if ¢: G — End(V) is spherical there is an inner
product ( , ) enV such that

(6(g)vy,vy) = (V1.¢(g'1)v2) (vi,v, €V ; g €6)

In some other place we shall be concern with local spherical functions
and complete reducibility of spherical functions on semi-simple Lie
groups.

1. Throughout this paper we shall denote by G a locally compact uni-
modular group and by K a compact subgroup of G. We shall often use
the following notation: if X denotes a group, then x will denote a
generic element of X and e will denote the identity element of X.

Let K denote the set of all equivalence classes of finite dimensional
irreducible representations of Kj for each § € ﬁ, let EG denote the
character of &, d(3) the degree of 3 and Xs = d(5)55- We shall choose

once and for all the Haar measure dk on K normalized by J dk = 1.
K

We shall denote by V a finite dimensional vector space over the field
C of all complex numbers and by End (V) the space of all endomorphisms
of V. Whenever we shall refer to a topology on such véctor spaces we
shall be talking about the unique Hausdorff linear topology on them.

By definition, a sonal spherical function ¢ on G is a continuous,
complex valued function which satisfies ¢(e) = 1 and

%D jkwcxky)dk = P ()¢ () X,y € G

A fruitful generalization of the functional equation above is the equa
tion ‘

2 jxxsck")¢(xky)dk - 6()60) Xy €G

whose End(V)-valued solutions will be called spherical functions on G.

The purpose of this paper, then, is to present in a systematic fashion
the generalities which lie at the basis of the theory of spherical
functions on those pairs (G,K) where G is a locally compact unimodular
group, K a compact subgroup of G.

DEFINITION 1.1, Let & € K. 4 spherical function ¢ (on G) of type § is
a continuous funetion on G with values in End (V) such that:
(1) #(e) =1 (I = identity) ;
(ii) ¢ (x)8 (y) = J Xy (k)8 (xky)dk  for all x.y €G .
K

PROPOSITION 1.2. If ¢: G — End(V) <8 a spherical function of type &
then: :
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(1) #(kgk') = (KO(R)d(k') for all kK€K, geG;

(ii) k ~ ¢(k) is a representation of K such that any irreducible
subrepresentation belongs to .

‘Proof. (i) Let k' € X and g € G. Then we have from the definition
b(k'g) = $(e)d(k'g) = jxxé(k“‘)¢(kk'g)dk.

by the symmetry of X, we can interchange k and k'

8

o(k'g) = ijs(k'1)¢(k’kg)dk = $(k")é(g) -

In a similar way it follows that ¢(gk') = ¢(g)¢(k'), which completes
the proof of (i).

(ii) Since ¢(e) = I, (i) implies that ¢(kk') = ¢(k)¢(k'); that ¢ is
continuous is obvious, therefore, k ~> ¢(k) is a representation of K;
Now,

1= d(e)ele) = | x; (e (k) ax
K .

but, it is well-known that the right hand side is a projection of V

onto the space of all vectors which under k — ¢ (k) transform accor-

ding to 6. This proves (ii).

Concerning the definition let us point out that the spherical function
¢ determines its type univocaly and let us say that the number of ti-
mes that & occurs in the representation k w+ ¢ (k) is called the

height of ¢,

Whenevér XK is a central subgroup of G (i.e. K is contained in the
center of G) and ¢ is a spherical function, we have

(P (y) = ij6(k'1)¢(xky)dk - ngd(k'1)¢(k)¢(xy)dk = 6xy) , X,y €6

in other words, ¢ is a representation of G. Theiefore, if we take K
reduced to the identity, the spherical functions are precisely the
finite dimensional representations of G, and if G is abelian .the
spherical functions are the finite dimensional representations of G
such that 1.2 (ii) is satisfied.

Another extreme case occurs when G is compact and K = G. In this case
the spherical functions are also the finite dimensional representa-
tions of G, with all their irreducible subrepresentations equivalent.

The function 0: G — End(V) identically zero satisfies the functional
equation 1.1 (ii) for any & € i.'If K = {e} the functional equation
reduces to ¢ (x,y) = ¢(x)¢(y) which implies that ¢(e) is a projection-
COmﬁuting with all ¢(G); Let Vi and V2 be respectively the kernel :
and the image of ¢(e). Then V =V, @ V,; if we write ¢ = ¢, @ ¢,
accordingly, we have that ¢2 is spherical while ¢1 is ‘identically
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zero. For a moment one may think that something of this sort happens
in general with the solutions of 1.1 (ii). But, the following example
will show that this is not the case. Let G = R* be the multiplicative
group of all non-zero real numbers and let K = {1,-1}. The two pos-
sible irreducible characters X; of K are given by x,(-1) = *1.

Let ¢: R* — MZ(C) be of the form

0 f(g)
¢ (g) =
0 0

where f: R* — C is continuous. Then ¢ satisfies the functional equa-
tion with the character X, (resp. X_) if and only if f is an odd (resp.
even) function.

Later on we shall prove (see Lemma 4.1) that, when G is a Lie group,
every spherical function is C” (moreover analytic). Therefore one
cannot expect to "build up" the solutions of 1.1 (ii) out of spherica
functions and "elementary functions'.

Let v be a complex valued continuous solution of the equation (1). If
¢ is not identically zero then v(e) = 1 (cf. Helgason [1,p.399]).
This result generalizes in the following way: we shall say that a
function ¢: G — End(V) is irreducible whenever ¢ (G) is a non-trivial
irreducible family of endomorphisms of V; then, we have

PROPOSITION 1.3. Let ¢ be an End(V)-valued continuous solution of the
equation (2). If ¢ <s irreducible then ¢ (e) = I.

Proof. Let W, denote the vector space spanned by -{¢(g)v: g € G}. Now
080V = [ X, (78 (xkyIvak e W,
K

which shows that Wv is ¢ (G)-invariant, therefore Wv is either {0} or
V. We also have

I8 (0 () = [ X, (76 kIe (ak = [ [x, (67 g (5120 (xkk y) dka

K KxK

{ (J xs(k'l)xa(kIlk)dk)¢(xkiy)dk1 =
K K

| %5029 ek y)ak, = 6 006 ()
K

§*Xg = Xg (orthogonality relations).
From this and what we observed before it follows that ¢ (g)¢ (e) =
= ¢(g) = d(e)¢(g), all g € G. Henée, ¢ (e) is a projection which com-
mutes with every ¢ (g), therefore ¢ (e) = I.

where we have used that X xX

Spherical functions of type & arise in a natural way upon considera-
tion of répresentations of G. We recall that a continuous représenta4
tion of G on a locally convex, Hausdorff, topological vector space E
over C is a homomorphism g/~+ U(g) of G into the group of topological
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automorphisms of E, such that, the map (g,a) ~ U(g)a of G x E into

.E is continuous. We also want to be able to 1lift U in the well-known
way to a homomorphism g +— U(u) of the algebra MC(G) of Radon measu-
res on G with compact support, into the algebra of continuous linear
operators on E. Thus we want that the integral

Uma = IGU(g)a'dﬂ(g)

defines an element in E for every a € E. This will be the case if we
assume for example that E is complete.

Let P(8) be defined by

P(8) = UKy = JKYG(k)U(k)dk

P(8) is a continuous projection of E onto P(8)E = E(8); E(6) consists
of those vectors in E, the linear span of whose K-orbit is finite
dimensional and splits into irreducible K-submodules of type 8.
Whenever E(8) is finite dimensional, the function ¢: G — End(E(8))
defined by ¢(g)a = P(8)U(g)a, g € G, a € E(B), is spherical of type
8, In fact, if a € E(8) we have

1]

¢ (x)9(y)a = P(B)U(X)P(B)U(y)a = j X  (K)P(3)U(x)U(K)U(y)a dk =

(J X, (k™) (xky)dK)a
K {

(X, (k) = xs(k'l) for all k € K).

In the next paragraph we shall consider the question of seeing when
a spherical function is obtained in this way.

There is an important class of pairs (G,K), namely those where K is
a large compact subgroup of G, where the above construction works.
A compact subgroup K of G is said to be large (in G) if for each

8§ € X there exists an integer m(8) > 1 such that dimE() < m(§) in
every topologically completely irreducible Banach representation
(E,U) of G. Examples of groups which admit large compact subgroups
include the connected semisimple Lie groups with finite center and
the motion groups (cf. Warner [1], §4.5).

I1f the representation g ~ U(g) is topologically irreducible (i.e. U
admits no non-trivial closed G-invariant subspace) then the associa-
ted spherical function ¢ is also irreducible. In fact, let W be a
non-zero ¢ (G)-invariant subspace of E() and let Q: E(6) — W be a
projection of E(§) onto W. Then

0 = P(B)U(g)QP(8) - QP(5)U(g)QP(3) = (I-Q)P(5)U(g)QP(8)

(I = identity transformation of;E(S)). Since the vectors U(g)a, g € G,
a € W, spdn a dense subspace of E, it follows that.I = Q which proVes
our assertion.
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2, THE ALGEBRAS Cc 6(G) AND THEIR REPRESENTATIONS.
’

We consider the given group G, its compact subgroup K and the function

Xgs 8 € X, introduced before.

We shall denote by MC(G) (resp. CC(G))'the algebra, with respect to
convolution "*", of Radon measures (resp. continuous functions) on G
with compact support, and by Mm(G) (resp. Cw(G)) the space of Radon
measures (resp. continuous functions) on G with support contained in
the compact subset w of G. We shall equip MC(G) (resp. Cc(G)) with
the inductive 1limit of the topologies defined by the norm on the spa-
ces Mw(G) (resp. Cm(G)). We shall always identify a measure a € M(K)

on K with the measure a € MC(G) on G given by f +> J f(k)da(k); in
K

this way we get an isomorphism of the algebra M(K) into the algebra
M, (G). We shall choose once and for all a left Haar measure on G,

and we shall always identify every continuous function f(g) with the
corresponding measure f(g)dg. In the same way, every continuous func-
tion on K will be identified with a measure on K, hence with a measu-
re on G.

It is well-known that CC(G) is a two-sided ideal in MC(G), and it is
clear that

(@ = £)(e) = (f % ) (e)
for all a € Mc(G) and all f € CC(G). We shall also use for measures
the operation « — &; & is the transform of o under g > g'l.
ticular, if £€ C (6), f(g) = £(g”!) and &(f) = «(f) for all
a € M_(G), f € C_(G). Of course we have

In par:

(a*ﬁ)v =f % a
for all a ,fp € Mc(G).
Now, we may consider the set Cc,G(G) of those f € Cc(G) which satisfy
YG *« £f=£f=f & 76; since Xg * X6 = X6 (orthogonality relations), it
is clear that Cc,G(G) is a subalgebra of Cc(G) and-that f Ys*f*ig'
is a continuous projection of Cc(G) onto Cc’c(G). We shall consider
CC’G(G) as a topological subspace of CC(G).

We are in a position to take up a very important result, which esta-
blishes a close connection between spherical functions of type § and
representations of the algebra C. G(G)'

. ’

THEOREM 2.1. If ¢ <s a épherical function’on G of type 8, then the
mapping
o1 £ | £(a)e()dg
G
i8 a continuous finite dimensional representation of Cc 6(G) such that
Ie ¢(Cc G(G))' Conversely, if L <& a continuous finite dimensional
td - .

repregentation bf Cc G(G) such that 1 € L(Cc 6(G)) then L <8 represen-
’ L]
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ted as above by a spherical function of typé‘S.
Needless to. say that if L is an irreducible finite dimensional repre-

sentation of C. 6(G) then I € L(Cc 6(G)) (Burnside's theorem).
’ o ’

9
The proof of this theorem requires the following proposition.

PROPOSITION 2.2. Let ¢: G — End(V) be a continuous function such that
st* o = ¢ = ¢ % X Then ¢ satisfies the functional equation 1. (2).
if and only if the mapping

o £ | £@0 @)

1

is a representation of C_ ((G).
Proof. Let f,h be two functions in C_(G), then

6 (£) = Lf(g)ﬂg)dg - ¢ x B

Therefore ‘
(1) $EaEaT,) = 0a(Tgafa¥) ) () = Baxgafuxg) (o) =
' = (@afaxg) (e) = (xgrowf)(e) = (Baf)(e) = 6(F)
8

we have used that X, = Xg» Which is well-known. Now

@ B (X ghEaTy) # (TgahaXy)) = ¢ (EaTuh) = JG(f*Ys*h)(y)¢(y)dy -

| i JGJG(f*YG)(x)h(x-l}’)'ﬁ(y)dx dy =
= I J‘J £ (xk"1)X, (KR (y) (xy)dk dx dy =
¢/e’x :

j f(x)h(y)(]Kxctk'1)¢(xky)dk)dx dy .
GxG '

On the other hand.

] £(OR ()8 ()6 (y)dx Ay

GXG

O—

.(3)“ ¢(x #£4X )0 (X aha¥ ) = ¢ (£)$(h) =

Con51der1ng '(2) ‘and (3)@ thqrp¥93051tlon follows 1mmed1ate1y ,

Proof of Theorem '2.1. Let ¢: G — End(V) be a spherical function on G

of type 8. Then, by Propositions 1.2 and 2.2 the mapping

¢: C, 6(G) — End(V) is a representation of Cc G(G)’ which is obvious-
H] ‘ »

ly continuous.

In order to prove that I € ¢(Cc 6(G)) we first notice that ¢(C 6(G))=

¢(C (G)). The neighborhoods 0 of g € G form a directed system under
1nclu51on, and if fo € C (G) is a nonnegative function with spt fo co
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and satisfying J fo(g)dg = 1, then fO*f — 8 «f in C _(G) (6_ is the
. G 8 c 4

Dirac measure.at g). Then

) | B(£g) = (£446)(e) — (8_4d)(e) = 6(g)

hence the linear spanAof {¢(g): g € G} is contained in.¢(Cc(G)).

Since the other inclusion is obvious we get

(5) $(C, 5(6)) = {9(g): g € Gl

Now it is clear that I € ¢(Cc 6(G)).

Conversely, let L: Cc 6(G) — End (V) be a continuous representation

of C_ 6(G)'such that I € L(C_ ,(G)). The mapping ¢: f — L(X x£4Xg)
H »

defines an End(V)-valued Radon measure on G. Let h € Cc 6(G) be an
element such that L(h) = I, then

6(£) = L(TxExXL(h) = L(Xafah) = ¢ (£xh) = (6xhsf) (e) = (#%h) (£)

for all f € CC(G). Therefore ¢ = ¢*ﬂ is a continuous function on G
which represents L. But we also have

(xg40xg) (£) = ((xgrdax)ab) (o) = (B2 (XgafaT)T)(e) = (94E) (o) = 6(£)

if £ € CC(G), which implies that ¢ = X6*¢*x6. Hence by Proposition
2.2 ,
8000 = | xg (78 Cxeky)dk
K

In particular

(6) (e)o(g) = (xgxd)(g) = 6(2) = (#2x,) (g) = ¢(g)e(e)

hence ¢(e) is an identity of L(Cc G(G)) and therefore ¢(e) = I. This
bl .

completes the proof of Theorem 2.1.

'REMARK 2.3. Under the hypothesis of Proposition 2.2 the function ¢
is spherical of type & if and only if the representation ¢ of the
algebra Cc 6(G) cannot be decomposed as a direct sum of two represen-

tations, one of which is the trivial zero representation. This follows
at once from (6).

Let ¢: G — End(V) be a spherical function of type 8. Then a direct
_consequence of (5) is that a subspace W of V is ¢(G)-invariant if

and only if it is ¢(CC’G(G))-invariant; In particular we have the fol-
lowing corollary: : ' o ‘ o '

COROLLARY 2.4. A spherical function ¢: G — End(V) <s <rreducible
if and only if the linear span of ¢(G) coincides with End (V).

We, shall say that the spherical functions ¢: G — End(V) and

zu;!syuj Gy kg VRS O R SR A T B
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¢1: G — End(Vl) are equivalent if there exists a linear isomorphism
T of V onto V, such that ¢ (G) T¢(g)T for all g € G. It is clear
that this equivalence relatlon preserves the type and the height of
the spherical functions. Moreover we have

PROPOSITION 2.5. The spherical functions ¢: G — End (V) and

¢,: G — End(Vl) of type & are equivalent, if and only if the corres-
ponding representations ¢: Cc’s(G) — End (V) and ¢1:CC’G(G)~+End(V1)
are equivalent.

Proof. Let T be an isomorphism of V onto V such that
¢, (£) = T (£)T™! for all f € C_ 5. Then

6, (£) = ¢, (X rfa¥,) = T¢(X6*f*x6)T'1 = To (£)T" !

for any f € C,(G). Therefore ¢,(g) = T¢(g)T"1, all g € G.

The other assertion is obvious.

As a corollary of Theorem 2.1 and Proposition 2.5 we obtain the fol-
lowing result

-THEOREM 2.6. The irreducible spherical functions ¢ and ¢, are equi-
valent <f and only <f tr ¢(g) = tr ¢1(g) for all g € G.

Proof. It is obvious that if ¢ and ¢1 are equivalent they have the
same trace. Conversely, tr ¢(g) = tr ¢1(g), all g € G, implies

tr ¢(£f) = tr ¢1(f) for all f € Cc,G(G)‘ Since ¢ andk¢1 are two irre-
ducible finite dimensional representations of an associative algebra
over C with the same trace, they are equivalent. Hence, ¢ and ¢1

are equivalent.

REMARK 2.7.. Theorem 2.6 does not hold in general if we drop the
irreducibility hypothesis, because, it is not even true for finite
dimensional representations. For example, the functions

¢,¢1: R — MZ(C) defined by

1 0 1 x
¢(x) = [ ] , ¢, (x) = { ] x € R
0o 1 0o 1

are two spherical functions of the pair (R,{0}) with the same trace
which are not equivalent. But, as one can expect, when G is compact
it is not necessary ‘to assume that the spherical functions are irre-
ducible for Theorem 2.6 to be true.

The possible heights of the various irreducible spherical functions
¢ on (G,K) are not entirely arbitrary. In order to clarify this, it
is convenient to recall the following algebraic fact due to
Kaplansky: let A be an associative algebra over C, and let n be a
fixed integer; if there are enough representations of A of dimen-
sions < n to separate the points of A, ‘then, every irreducible fini-
te dimensional representation of A has dimension < n (cf. Godement
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{11, p.503). Some interesting examples of pairs (G,K) which have the
property that CC 6(G) has a separating family of representations of

dimensions < n are:

(1) G is a motion group, i.e. G is the semi-direct product of a closed
normal abelian subgroup H and a compact subgroup K;

(2) G is a connected semi-simple Lie group which admits a faithful fi
nite dimensional representation and K is a maximal compact subgroup.
In both cases it can be proved (cf. Godement [1], §1) ‘that the inte-
ger n can be taken equal to d(8). Therefore, the height of an irredu-
cible spherical function é on (G,X) ((G,K) as in (1) or (2)) of type
8 is < d(9).

Let us turn now to consider when a spherical function on (G,K) is ob-
tained from a representation of G as described in §1. To avoid some
technical troubles we shall now assume that our locally compact group
G is, furthermore, countable at infinity. We shall also presuppose
that the reader is familiar with inductive limits and strict inducti-
ve limits. A good reference is Horvath [1]. A space (E,7) is called a
strict LF-space if (E,7) is the strict inductive limit of Fréchet spa
ces (r being the topology on E); for example Cw(G) (w a compact sub-
set of G) is a Fréchet space, while Cc(G) is a strict LF-space. Thus,
a strict LF-space is a locally convex, complete, Hausdorff, topolo-
gical vector space. We shall be concerned with continuous representa
tions of G on a strict LF-space E, and with the corresponding quo-
tient representations of G on E/J, J being a closed G-stable sub-
space of E. Even if E/J is not complete, we can lift by integration
the representation of G on E/J to a representation of MC(G).

Let ¢: G — End(V) be an irreducible spherical function of type §,
and let L be a maximal left ideal in End(V). If I is the set of all
fe Cc G(G) such that ¢(f) € L, then I is a closed regular maximal

left ideal in Cc 6(G). Now let J be the set of all f € CC(G) such
that

Ys*h*f*YG el for every h € CC(G)

then J is a closed regular maximal left ideal in Cc(G), I =JnNn Cc 6(G),

and we havé f*76 = f (mod J) for all f € Cc(G) (for the proof see
Godement [1], p.513). )

Since J is a closed left ideal in Cc(G) it is invariant‘under left
translation by elements of G, otherwise said there is induced on the
space CC(G)/J a natural representation U of G. The corresponding lift
of U to MC(G) associates with each p € Mc(G) the operator which
transforms the class of f € Cc(G) (mod J) into the class of wuxf

(mod J); thus, its restrictipp to the ideal Cc(G) is an algebraically
irreducible (J is maximal) representqtion of Cc(G). That is to say
that U is an algebraically irreducible representation of G.
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The projection operator P(8) = U(YG) is given by P(8)(f + J) =
= 76 * f + J; on the other hand f * ik = f (mod J) for all f € CC(G),
hence f +— f + J is a mapping of Cc 6(G) onto—E(8) (the range of

P(6)). Since I = J n Cc 6(G) it is clear that dim E(8) =
= dim Cc 6(G)/I = dim End(V)/L = dim V. The associated spherical func

tion ¢1:'G — End(E(8)) is equivalent to ¢. To see this it is suffi-
cient to show that the representations ¢: CC G(G) — End (V) and

¢1: CC 6(G) — End(E(8)) of Cc 6(G) are equivalent (Proposition 2.5).
If f € Cc 6(G) is such that ¢(f) = 0 then ¢ (fxh) = 0 for all
hecC, ,(6), and ¢ (£)(h+J) = £xh + J = 0 (fxh € I C J); therefore

¢l(f) = 0. Consequently, since it is a question of finite dimensional
irreducible representations of an associative algebra, it follows
that ¢ and ¢1 are equivalent.

The preceding discussion serves to prove that any irreducible spheri-
cal function on G can be obtained from an algebraically irreducible
represeﬁtation U of G, U being a quotient of a representation of G on
a strict LF-space. To complete this circle of ideas, it remains to
show that if the irreducible spherical function ¢, comes from a repre-
sentation U of G as above, the construction of the representation U

of G out of ¢, gets us back to U. .

Let E and E, be the representation spaces of U and U¢ respectively,
let E(6) and E¢(6) be the corresponding K-isotypic subspaces, P(§)
and P¢(6) the corresponding projections. If ¢1 is the spherical func-
tion of type & associated to U,, there exist non-zero vectors

v € E(8), v, € E¢(6) such that ¢(f)v = 0 if and only if ¢1(f)v1 =0,
fe CC(G) (¢ and ¢1 are equivalent). Let S: CC(G) — E and

Sl.Cc(G) — E¢ be the linear maps defined by S(f) = U(f)v, Sl(f) =

= U¢(f)v1. Then Ker(S) = Ker(Sl). In fact, if £ € Ker(S) we have

¢ (hxf)v = U(YGJU(h)U(f)V = 0 therefore 0 = ¢, (h*f)v, =

= U¢(76)U¢(h)U¢(f)v1, h € C_(G), which implies that f € Ker(s,) (alge

braic irreducibility). In the same way one proves that Ker(Sl) C
C Ker(S), and therefore they are equal. The maps S and S1 are clearly
continuous surjective linear maps,hence they are strict morphisms
(cf. Horvdth [1], Prop. 11, p.306). From this it follows that the con-
tinuous representations U and U¢ of G are equivalent, i.e. there
exists a linear bicontinuous bijection Q: E:— E, such that QU(g) =

¢
= U¢(g)Q for all g.€ G.

One can play exactly the same game as before, but with Fréchet repre-
sentations of G, and prove that any irreducible spherical function
¢: G — End(V) can be obtained from a topologically irreducible re-
presentation of G on a Fréchet space E. For this, one writes G = UKn
as a countable union of an increasing sequence of compact subsets Kn
of G, and such that every compact subset of G is contained in some
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K_. Then, ﬁfH = sup J lo (xy) £ (y)ldy n=1,2,... .
n n
xeKn G

'

(I 1 a norm on End (V)) are semi-norms on Cc(G), and Bfﬂn = 0 for eve

ry n is equivalent to f=0. Then the Fréchet space L(G) which is the
completion of CC(G) by these semi-norms, plays the role of Cc(G) in
the construction of the representation of G (for the details see
Shin'ya [1]).

if a‘spherical function ¢ is associated to a Banach representation U
of G then

I¢ (g)l < lu(g)l for all g €6

(I | is the usual operator norm). The function

p(g) = u(g

is a positive real valued lower semi-continuous function which is
bounded on compact subsets of G and satisfies

p(xy) < p(x)p(y)
for all x,y € G; such a function is called a semi-norm on G.

A Banach spacé valued function f on G is said to be quasi-bounded if

there exists a semi-norm p on G such that sup If(g)lI/s(g) <.
geG
Thus, if a spherical function comes from a Banach representation of

G it is quasi-bounded. Conversely, if ¢ is an irreducible quasi-
bounded spherical function on G, then it is associated to an alge-
braically irreducible Banach representation of G. Let p be a semi-

norm on G such that sup lé(g)l/p(g) < . One constructs the Banach
geG
representation as before, but replacing the space CC(G) by the Banach

algebra obtained by completing CC(G), with respect to the p-norm
e, - [ 1E@le @ (f € C (6]
G
(cf. Godement [1]).

3. THE ALGEBRAS I (G) AND THEIR REPRESENTATIONS.
’

In what follows we shall denote by I (G) the set of functlons
f e C (G) which are K-central, i.e. 1nvar1ant under g +— kgk~ ; thus
IC(G) is a subalgebra of Cc(G) and the operator

£ £0() = I £ (kgk~1)dk
K

is a continuous projection (in the inductive limit topology) of CC(G)
onto Ic(G). We shall pat Ic G(G) = Ic(G) n Cc G(G)’ this is also a

subalgebra of C_(G) and £ — £° maps C_ ,(G) onto I_ ,(G). If
’ ’
f eI (G) and if 76*f = f, then also f = f*is; this means that the

map f > Ysﬁf is a continuous projection of Ic(G) onto Ic 6(G).
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The topology induced by CC(G) is the one we shall consider on I, s0@6).
. . . : >
If o is a Radon measure on G then a® can be defined by the following
"weak" integral: af = J (5k*a*5 _1)dk (Sx denotes the Dirac measure

K k

at x). Observe that
(1 @®%6)% = (a#89)0 = a%4p°

whenever a or B has compact support.

Let ¢: G — End(V) be a spherical function of type & and height p.
Then V is a K-module under w: k F*,¢(k). Let EndK(V) be the’commuta_
tor of the representation m. Now, since the representation = decom-
poses into p equivalent irreducible representations, it is clear that
its commutator is isomorphic with the algebra Mp(C) of all p x p ma-
trices, and such isomorphism is unique up to an inner automorphism

of MP(C). If f e IC(G) then

é(f) = JGf(g)¢(g)dg € End, (V) , in fact

™ (k)¢ (£)

| r@re g | fatgre)eg - | £@xhe @ -
G G G .

j £(g)0 (gk)dg = ¢ ()7 (k).
G

Therefore, we may view ¢: Ic 6(G) — EndK(V) as p-dimensional repre-

sentation of Ic 6(G). Also note that if ¢ (f) = I then ¢(f0) =1

(f € CC(G)). Hence, we have proved the first part of the following

theorem:

THEOREM 3.1. If ¢: G — End(V) Zs a spherical function of type &

then ¢: Ic 5(G) — EndK(V),gives a continuous representation of

Ic 6(G) such that 1 € ¢(Ic G(G))' Conversely, any continuous finite
’ s B .

dimengional representation L of IC_G(G] such that 1 € L(Ic S(G)) 8

’ s

equivalent to one given by a spherical function ¢ of type 6.
We shall prove the second part of this theorem in several steps.

PROPOSITION 3.2. Let V¥: G — End (V) be a K-central continuous func-
tion such. that XS*W = Y.Then ¥ satisfies the functional equation

VW) = | beeox khy)ax
K
if and only <f the mapping V¥: f — J £f(g)v(g)dg Ze a representation
v G .
of Ic,G(G)’

Proof. In view of 2.(2) and 2.(3) we have
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VRO & Kean®eT)) = [ ] £200m0 o) (ijG(k‘i)wcxky)dk)dx&y=
GxG

- [ | Comlmmenaey = [ £eny) (| voox ka0 -
GXxG GXG K

J J f(x)h(y) (J ¥(k x k~ly)dk)dxdy
GxXG K

and

V(X #£05X ) (X 4004 )

i

j £9(x)h0 (y) ¥ (x)¥ (y)dxdy =
G N

X

]
Q—

j £ (x)h (y)¥ (x) ¥ (y) dxdy
G

x
for all f,h € CC(G). Now, the proposition follows immediately.
Let (V,m) be a finite dimensional K-module such that any irreducible

submodule belongs to 8.

Let A denote the vector space of all continuous functions
$: G ~» End(V) such that ¢ (k,;gk,) = 7 (k)¢ (g)7(k,) for all k,k, € K,

and let B denote the vector space of all continuous functions
y: G — EndK(V) such that ¥ is K-central and XG*W =y,

PROPOSITION 3.3. Let A and B be the linear mappings defined by

(A¢) (g) JK 7 (k)6 ()7 (kL) dk for b EA,

(BY) (g) = d(8)2 jK 7 ()Y (k" g)dk for  VEB,

Then A is an isomorphism of A onto B and B is the inverse of A.

Proof. It is clear that (A¢)(g) € EndK(V), g € G, and that A¢ is
K-central. Let us check that X5§A¢ = A¢:

(X #A9) () jK jK X, (0w (k)¢ (k" Lg)m (k71)dk dk =

J j X ()7 (k) (k"1)e (g)w (k] 1) dkdk, = (A9) (g)
K K ’

since J X (m (k" Hak = 1.
K
An obvious computation shows that B maps B into A. For ¥ € B we have,

@) @) = 4627 [ w0t voq er o dk,ak -
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- a®)?| [ waa o e dkeky = V()
K K

since d(8)2 I 7 (kk k" dk = X (k)1
K
In a similar way one proves that B is a left inverse of A, and this

completes the proof of Proposition 3.3.

COROLLARY 3.4. Let ¥ € B; if ¥(e) = I then ¥(k) = X6(e)'1X6(k)I for
all k € K.

Proof. 1f ¢ € A then ¢(e) € EndK(V), since 7w (k)o(e) = ¢ (k) = ¢ (e)m (k)
Therefore (A¢) (e) = ¢ (e). ’
Now let ¢ = By, then ¢(e) = ¥(e) = I and ¢(k) = (k) for all k € K.

From this we get

V) = (A (K) = J 7 (k)8 ()7 (k71 dk, = X, (€)X (0T , k€ K.
K

It may be worthwhile to point out also the following corollary:

COROLLARY 3.5. For any ¢ € A we have trAd = tr¢ and for any ¥ € B we
have trBY = try .

Proof. The first assertion is obvious and to prove the second let
¢ = By , then

trByY trg = trAd = try .

PROPOSITION 3.6. Let ¥ = Ap, ¢ € A. Then ¢ satisfies

(2) JOT I RN G L
if and only <f ¥ satisfies

(3) VEIUG) = jK Yk x k" ly)ak .

Proof. 1f we assume (3) we have

60060 = BN BN = 40| [ 7t v i (k)03 ) ak,dk,-

KxK

d(8)4j J I 7 (k k) (kk] x k~'k;ly)dkdk, dk,
KxKxK

a®[ | [ rxprpvaghagt x kly)akak, dx,
KxKxK

d(S)ZJ J m (k)¢ (kk7! x kly)dkdk, = | x, (k)¢ (xk~ly)dk .
1 1 1 K §
KxK
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Conversely, if we assume (2) we have

v(x)¥(y) = (A9) (x) (Ad) (y) =

- J J 7 (k)9 ()7 (k] 17 (k)6 ()7 (k;1)dk dk, =
KxK

- [ [ racgrpemraghe mmaghax ak, -
kxk

- J J J 7 (k)X (k16 (K, x K lky) 7 (k;1)dkdk,dk, =
KxKxK

= J J j w(kz)xs(k-1)¢(kk1 X kIly)n’(k;l)dkdkldk2 =
KxKxK

JK vk, x K ly)dk,

PROPOSITION 3.7. Let ¢: G — End(V) be a continuous function such
that ¢(k1gk2) = w(k1)¢(g)1(k2), all kl,k2 € K. Then ¢ satisfies the
functional equation

@) 4(x)0(y) = jK X, (k™16 (xky) dk

if and only if the mapping &: f +—>r J f(g)¢(g)dg <s a representa-
G

tion of Ic,S(G)‘

Proof. That ¢ gives a representation of Ic 6(G) whenever ¢ satisfies

(4), it follows at once from Proposition 2.2,

To prove the converse let ¥ = A$¢ and observe that

() (6 = [ [ £e10 (hgihraxdg - jG £(g)¥(g)dg = ¥(£)
GxK '

for all f € Ic(G). Therefore by Propqsition 3.2 ¥ satisfies (3) which
in turn implies that ¢ satisfies (4).

Proof of Theorem 3.1. The first part was already proved. Now let

L: Ic 6(G) — MP(C) be a continuous representation such that L(h) = I

for some h € Ic 6(G). The composite map ¥: CC(G) — MP(C) defined by
, .

V(f) = L(Ysafo) is a Mp(C)-valued Radon measure on G. We have

VE) = Lxae0) = LTE0h) = L(Tya (£40)0) = ¥(£xh) = (¥ah) (£)

for all f € Cc(G). Therefore ¥ = Y*h is a continuous function on G
which represents L. Using once more (1) we get

V(E) = W(E®) = paE07) () = (Waf 0)0(e) = (WOx£7)0Ce) = ¥O(£)
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for any f € Cc(G), which shows that ¢ is K-central. In a similar way
one also establishes that Xé*w =y,

Let (V,m) be a K-module which is the direct sum of p irreducible mo-
dules belonging to 8. If we identify MP(C) with EndK(V) the function
¥ € B. Let ¢ = By (see Proposition 3.3). Now, L(f) = ¢(f) = ¢ (f) for
every f € IC’G(G) (cf. (5)). Therefore, by Proposition 3.7, ¢ satis-
fies the functional equation (4). To finish the proof we have to
show that ¢(e) = I. From the fact that ¢ satisfies (3) we obtain
v(e)v(g) = ¥(g) = ¥(g)¥(e), g € G. Since ¢(Ic’6(G)) coincides with

the linear span of {¥(g): g € G} it follows that ¥(e) = I, which im-
plies ¢(e) = I (see Corollary 3.4).

REMARK 3.8. If V = Vse..ﬁv6 (p-times) is a K-module as above, it is

easy to verify that there is an algebra isomorphism
L End(Vs) ® EndK(V) — End(V) such that ¢« (T ® S) = (T®...®T)S. Let

I1(8) = C(K)*YG; of course I(8) is a #-algebra isomorphic to End(V6),
more precisely, if we make use of the natural identification

End(VG) =V, ® Vz then an isomorphism £ can be described by

L(v ® \) (k) = d(8)A(k"L.v) for all v e Ve» A €V, k e K. Now the re-

lation between the linear maps ¢: Cc 6(G) — End (V) and
/R Ic 6(G) — EndK(V), defined by ¢ € A and ¥ = A¢, can be explained
appealing to the following structural fact due to Dieudonné (cf.

Dieudonné [1], p. 237): the bilinear map (a,f) — a*f of
I(8) @ Ic G(G) into CC(G), establishes a *-algebra isomorphism of the

tensor product #-algebra I(§) e Ic 6(G) with Cc G(G)‘ Then
1) e I, s(6) = C_ ,(6)
Loy ¢

End(Vs) ® EndK(V) — End(V)
R ‘

commutes. A simple and important consequence of this is the following:
there exists a natural one-to-one correspondence between the equiva-
lence classes of finite dimensional irreducible representations of
IC.G(G) and those of Cc.G(G).

REMARK 3.9. Let ¢: G — End(V) be an irreducible spherical function
of height p. Let ¢v(g) = tré¢(g), g € G, and put ¥y = d(&)'1¢. Then
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v
I, 5(6) —— M (C)

W\ C/u

is commutative, where wo(f) = J f(g)wo(g)dg and
G

y(f) = JG f(g) (A¢) (g)dg € EndK(V) o~ MP(C), f e Ic,G(G)' According

to Proposition 3.2 o satisfies (3) if and only if tr: MP(C) — C is
a homomorphism which corresponds to p=1. Therefore we have proved
that ¢ satisfies

o (x)e(y) = d(5) jK o (k x ky~})dk

for arbitrary x,y € G, if and only if p=1 (cf. Godement [1], p. 524).

For completeness we shall point out the following. Suppose that eve-
ry topologically completely irreducible Banach representation of
Cc 6(G) is finite dimensional (see Warner [1], p. 228). Then the set

of all irreducible spherical functions of type & separates the
points of Cc G(G)' In fact, in virtue of the Gelfand-Raikov Theorem
s

the set of all topologically irreducible unitary representations of
G separates the points of CC(G). Let f e Cc G(G)’ f#0 and let U be
. B ’

a topologically irreducible unitary representation of G such that
U(f) # 0. But U(f) = U(Yaﬁf*fa) = U(YS)U(f)U(YS), which says

¢(f) # 0, ¢ being the spherical function of type & associated to U.
As a consequence of this we have:
PROPOSITION 3.10. The following properties are equivalent:

(1) Ic S(G) ig commutative.

(ii) Every irreducible spherical function of type 8§ is of
height one.

(iii) Ic,d(G) 18 the center of Cc,G(G)'

Proof. If (ii) holds, then Ic 6(G) admits sufficiently many one di-
mensional representations, hence (i). Conversely, if Ic 6(G) is com;

mutative, then every finite dimensional irreducible representation
of I, 6(G) is one dimensional so that every irreducible spherical
L]

function of type 8§ is of height one.It is clear that (iii) implies‘
(i). To complete the proof it suffices to show that (ii) implies
(iii). Let f € Ic 6(G), then for any h € Cc G(G) and any irreducible

spherical function ¢ of type § we have ¢ (fxh) = ¢ (£)¢ (h) = ¢ (h)o (f) =
= ¢ (h#f) since ¢ (f) is a scalar for every f € Ic 6(G). Therefore
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I, 6(G) is contained in the center of Cé 6(G). Furthermore, if f be-

longs to the center of Cc 6(G) then ¢ (f) is a scalar in every irredu-

cible spherical function of type &, hence ¢(f0) = ¢ (f), which proves
0

that £~ = f.

If ¢: G — End(V) is a spherical function of type & and height p, the
function A¢ = Y: G — EndK(V) o~ MP(C) should be considered as the
other face of the same coin. Thus a spherical function ¥ (on (G,K))

of type & is also a continuous function on G with values in End (W)

(W a finite dimensional vector space) such that:

(i) v(e) = I.
({1) Xgav = ¥,
(iii) vX)¥(y) = J vk x k_ly)dk for all x,y € G.
K

The dimension of W is the height of .

PROPOSITION 3.11. Let ¥: G — End(W) be a continuous K-central func-
tion which satisfies (iii). Then ¥ can be decomposed in a unique way
as the direct sum ¥ = 0 + Z¢6 of a zero function and of spherical

funetions ¢6 of type 6.

Proof. Note that for any g € G,

-1 _ -1, -1 .
(Xa*w)(g) JKXS(k)w(k g)dk JKJKxa(k)w(klk k1 g)dkldk

i}

[ X, avaTHverax = (g (¥ ()
K

Because ¥ is K-central, Xs*w = w(XG*w)(e) follows as before. Conse-
quently, (X *¢) (e)¥y = X *y = ¥ (X *¥)(e).

Given 8,8' € i we have

(X xd)(e) (X, x9)(e) = (X x(Xx¥)(e)¥)(e) = (X, *Xg%¥) (e)

showing that (Xd*w)(e), § € ﬁ, are orthogonal projections, and there-
fore they are zero for almost all § € k. Hence, ¢(k) = Z(Xs*w)(k)

all k € X, and in;particular v(e) = Z(xs*w)(ej. 8
We also have ¥(e)¥(x) = ¥(x) = w(x)i(e) for all x € G.
Therefore ¥ = (I-¥(e))V + g(xG*W)(e)w = (I-¢(e))y + gxd*w s
which clearly completes the proof of the proposition.

The K-central functions ¥: G — End(W) which satisfies (iii) are pre-
cisely those which give a representation of IC(G) on W.
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4. DIFFERENTIAL PROPERTIES OF SPHERICAL FUNCTIONS. THE ALGEBRA
DO(G) AND THEIR REPRESENTATIONS.

In this section, we assume that G is a connected Lie group.

LEMMA 4.1.If ¢:G — End(V) Zs a spherical function, then ¢ <s dif-

ferentiable ™.

rroof. Let | | be a norm on End(V) such that ITSI < ITI ISI for all
T,S € End(V). Now, it is well-known that if IT-1] <1, T € End(V),

then T is invertible. Since ¢ is continuous we can choose a neigh-

borhood U of the identity in G such that II - ¢(g)ll <1 for all

g € u.

Let £ be a C* real valued function with compact support contained in

U such that £ > 0 and J f(g)dg = 1. Then J f(g)o(g)dg is an automor-
G G

phism of V. In fact

I - J £(g)6 (g)dgl = nJ £(g) (I -6(g))dgl < J £()IT - ¢(g)ldg < 1.
G G G

Finally,

¢(X)ch()’)¢()’)d)’ = | £(y) J'X (k-l)d’(Xk)’)dde =

I,
. j X, (k™H) ij(k‘lx“ly)¢(y)dydk -
J, ¢

j X (xHeE xy)de (y) dy

o

which shows that ¢ is C

Let D(G) denote the algebra of all left invariant differential ope-
rators on G and let DO(G) denote the set of operators in D(G) which
are invariant under all right translations from K. Of course DO(G)
is a. subalgebra of D(G).
LEMMA 4.2. Let ¢ be a spherical function of type 8. Then

[Do](g) = ¢(g)[Dél(e)
for all D € DO(G), g € G.

Proof. For each D € D(G) we get from 1.(2)

% (x)[ D8] (y) J X, ("1 Do} (xky)dk.
K

Putting y=e we obtain

6COIDAI () = [ X, (™) D8] (xI)dk.
K
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If De D,(G), then
[D¢] (gk) = [D(s%8 )1 (g) = [De] (g)¢ (k)

for all g € G. Therefore,

6 ()( D8] (&) «kaa(k'l)[D¢](g)¢(k)dk = (D61 ()6 (e)

which proves the lemma.
PROPOSITION 4.3. Any spherical function on G <s analytie.

Proof. Suppose f£: G — V is a C” function such that [Df] (g) = Tf(g),
all g € G, for some T € End{V) and some D € D(G). We can find a ba-
sis {ei} of V so that T is given by a matrix of the form

Let S € End(V) be the linear map defined by Sei = Aiei, i=1,2,...,n.
Then (D-S)™f = (T-S)™f = 0. Hence, if £, denotes the i®P_component
of f with respect to {e,} we have (D-xi)“fi = 0. If D is elliptic,
by a theorem of S. Bernstein and induction on n, it follows that

every solution of an equation (D-A)"h = 0 is analytic. Therefore, in
this case our function f is analytic.

It is well-known that DO(G) contains elliptic operators (cf.Godement

[1], p. 539) thus, the proposition follows now directly from Lemma
4.2,

We shall frequently use the following basic property:

LEMMA 4.4, Let f be a K-central analytie function on G; then £=0
18 equivalent to

[Df](e) = O for every D e DO(G).

Proof. Since f is analytic and since G is connected, it is clear that

£=0 is equivalent to [Df] (e) = 0 for all D € D(G). Let pL(8) pR(e)
denote respectively the left and right translation by g of D € DO(G).
We can form the integral

D, = J pR(K) gk
K

which is an operator in DO(G). Since f is K-central we have

[DRR)g) () = (D2 £)(e) = [DFICe) , so
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(041 (o) = | (DR8] (e)ak = (D] (o)
K

This proves the lemma.

PROPOSITION 4.5. Let ¥: G — End(V) be a K-central analytic function.
Then Y satisfies the functional equation 3.(3) if and only <if the
mapping V¥: D — [DY] (e) is a representation of D,(G).

Proof. From 3.(3) one gets, in a completely similar way as we proved
Lemma 4.2, [DY] (g) = ¥(g)[DV¥] (e) for every D € D,(G). Conversely, it is
also clear in virtue of Lemma 4.4, that this implies 3.(3). Invoking
once more Lemma 4.4 one sees that

[D¥] (g) = ¥(g)IDV¥l(e) for every D &€ D, (G)
is equivalent to require that ¥: DO(G) — End(V) is a representation.

In the following proposition (V,m) will be a K-module as in Section 3.

PROPOSITION 4.6. Let ¢: G — End(V) be an analytic function such
that ¢(kgkl) = ﬂ(kl)¢(g)ﬂ(k2) (all k,kl € K). Then ¢ satisfies the

funetional equation 1.(2) if and only if the mapping ¢: D — [D¢] (e)
is a representation of DO(G).

Proof. First of all let us observe that [D¢] (e) € End, (V) for all
D e DO(G). In fact, if D € DO(G) we have

-1
(Do) (e)m (k) = [DsRE 1(e) = (DR M1 (k) = (DX g (k) =

-1
= [pe" % 1 (e)

7 (k)[ D¢ (e).

Let ¥ = A¢ (see Proposition 3.3), then

y(D) = ij(k)[D¢1(e)w(k‘1)ak - o)

for every D € DO(G). Therefore, the proposition follows at once from
Propositions3.6 and 4.5.

REMARK 4.7. Of course, combining Proposition 3.3 and Lemma 4.4 one
gets the following analogue of Lemma 4.4 for analytic functions
¢: G — End(V) which satisfies ¢(kgk1) = 7 (k)¢ (g)7 (k;), for all

k,k1 € K, namely: ¢ = 0 if and only if [D¢] (e) = 0 for all D € DO(G).
We shall consider a topology on DO(G), introduced by Godement (cf.

Godement [1], p. 538). We say that a variable D € DO(G) converges to
a given Do € DO(G) if [Df] (e) converges to [Dof](e) for every analy-

tic K- central function f. This topology is precisely the weak topo-
logy defined on DO(G) by the natural pairing of DO(G) and the vec-

:tor space of all K-central analytic functions on G.




We are now in a position to prove the main result of this section
which is an infinitesimal counterpart to Theorem 3.1. q

We recall that if (V,7) is a finite dimensional K-module which is the
direct sum of p irreducible equivalent submodules, we can identify
MP(C) with EndK(V).

THEOREM 4.8. If ¢: G — End(V) <& a spherical function then

¢: D — [D¢] (e) maps DO(G) into EndK(V), giving a continuous represen
ta?ion of DO(G). Conversely, any continuous finite dimensional repre-
sentation of DO(G) 18 the direct sum of a zero representation and

ones given by spherical functions.

Proof. That [D¢] (e) € EndK(V) for every D € DO(G) was observed du-
ring the proof of Proposition 4.6. If we put ¥ = A (see Proposi-
tion 3.3) we have [D¢] (e) = [Dy] (e), which shows that

o: DO(G) — EndK(V) is continuous, by the very definition of the
topology in DO(G)' From Proposition 4.6 we get that ¢ defines a re-
presentation of DO(G).

To prove the second part, let us assume that L: DO(G) — MP(C) is a
continuous representation. By weak duality such a linear map is de-
fined by a K-central analytic function y: G — M (C);

L(D) = [Dy] (e). Now by Proposition 4.5 we know that ¢ satisfies

YUy = ijckxk‘ly)dk all x,y €6 ,

which in turn implies our contention (cf. Proposition 3.11).

Naturally, a subspace W C CP is y(G)-invariant if and only if it is
W(DO(G))-invariant (y(D) = [DY]l(e), D e DO(G)). This follows at once
from Lemma 4.4. Thus, in particular, Theorem 4.8 establishes a one-
to-one correspondence between the equivalence classes of continuous

' finite dimensional irreducible representations of DO(G) and the equi
valence classes of irreducible spherical functions on G.

The relation between the spherical function ¢: G — End(V) and its
associated representation of DO(G), is the exact generalization of
the correspondence between a finite dimensional representation of G
and the derived representation of the Lie algebra of G. In fact, if
we take K = {e} then DO(G) becomes the 'algebra D(G) of all left in-
variant differential operators on G, which is isomorphic to ‘the uni-
versal enveloping algebra of the cdmpléxification of the Lie algebra
of G. Since in this case the spherical functions are precisely the
finite dimensional representations and moreover, there is a natural
one-to-one correspondence between the set of all representations of
a Lie algebra a on V and the set ofiall representations of the uni-
versal enveloping algebra of a on V, our assertion is clear.
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